晶体定向和晶体学符号
- 格式:ppt
- 大小:28.35 MB
- 文档页数:54
第四章 晶体定向和晶体符号[内容介绍] 本章介绍晶体定向、晶面符号、单形符号、晶带符号的概念、各晶系晶体的定向原则及各种晶体符号的确定方法。
[学习目的] 理解和掌握晶体定向、晶体符号的概念及其确定原则和方法,系统地掌握结晶学的基本知识,为学习矿物学和晶体光学打下良好基础。
图4-1所示的两个晶体,都是由四方柱和四方双锥组成的聚形,均属L 44L 25PC 对称型,但其形态明显不同。
这种形态的差异,是由于四方柱和四方双锥的相对位置不同造成的。
由此可见,在研究晶体时,仅确定其对称型和由哪些单形所组成,仍不能获得晶体形态的完整概念,必须进一步确定各单形在空间的相对位置,因而需要在晶体上选定一个坐标系统,这就是晶体定向。
还必须进一步研究晶面、晶棱(晶带)以及单形等在晶体上的方向,并用一定的符号表示它们,这就是所谓的晶面符号、晶棱符号与单形符号。
这些符号统称为晶体符号。
晶体定向和晶体符号不仅在研究晶体形态时需要,在确切地描述晶体的异向性、对称性以及矿物鉴定、矿物内部结构和物理性质的研究工作中都具有重要的意义。
第一节 晶 体 定 向一、晶体定向的概念晶体定向就是在晶体中确定坐标系统。
具体说来,就是要选定坐标轴(晶轴)和确定各晶轴上单位长度(轴长)及其比值(轴率)。
(一)晶轴 如图4-2所示,晶轴系交于晶体中心的三条直线,它们分别为a 轴(或称x 轴)前端为“+”,后端为“-”、b 轴(或称y 轴)右端为“+”,左端为“-”和c 轴(或称z 轴)上端为“+”,下端为“-”;对于三方和六方晶系要增加一个d 轴或称u 轴,前端为“-”,后端为“+”(图4-3)。
晶轴的选择:晶体中晶轴的选择应与空间格子类型的特征相吻合。
三个晶轴的方向应当平行晶胞中三个棱的方向。
由于对称轴、对称面法线及晶棱的方向与空间格子的行列方向相平行。
因此,晶轴的选择,首先应选对称称轴作为晶轴,在无对称轴及对称轴数量不足时,可选对称面法线作为晶轴,若两者均缺乏时,则可选择平行主要晶棱的方向线作为晶轴。
实验2. 晶体定向和结晶符号一、目的要求掌握不同晶系晶轴选择的原则,确定模型中单形的名称及其符号。
二、基本原理为了获得晶体形态的完整描述,需要确切地表示晶面在空间的相对位置。
在晶体学中,确定晶面在空间的位置是按晶体的对称特征选择坐标系,将晶体按对称特征放置于该坐标系中(晶体定向),再以一种符号表示法表示出晶面在空间的位置。
晶体定向就是给晶体选择坐标轴(晶轴)和确定坐标轴上的轴单位。
在七个晶系中,有五个晶系(立方、四方、斜方、单斜、三斜)采用三轴定向,即选择交于晶体中心的三条直线,它们分别记为a、b、c轴(或X、Y、Z轴)。
相应b与c间轴角为α,a与c间轴角为β,a与b间轴角为γ。
三方、六方晶系一般采用四轴定向,即在ab平面上增加了一个d轴,使水平面三轴间正向的轴角形成120°,以满足该类晶系对称性的要求。
晶体放置的取向原则是要反映晶体的对称性,从晶体的外形上讲,对称轴、倒转轴、对称面的法线及晶棱是与晶体构造中的行列重合的,因此晶体与坐标轴的相对取向按对称轴、倒转轴、对称面的法线、晶棱的优先顺序作晶轴方向。
轴单位是晶轴上的单位长度。
由于所选定的晶轴都是格子构造中的行列方向,所以晶轴的轴单位就是该行列的结点间距。
a、b、c轴上的轴单位分别以a o、b o、c o表示,有时也直接用a、b、c表示,其间比率a:b:c称为轴率(或称轴单位比)。
轴率a:b:c和轴角α、β、γ合称为晶体几何常数。
在晶体定向的基础上,我们就可以确定晶体各种结晶几何参数在空间的位置。
表示这些参数在空间位置所用的符号称为结晶符号,结晶符号主要有晶面符号、晶向符号、单形符号和晶带符号。
表示晶面在空间位置的符号称为晶面符号。
晶面符号有几种,通常多采用米氏符号,又称米勒指数或晶面指数,是英国学者米勒(W.H.Miller)于1839年提出。
本实验通过在晶体模型上确定米勒指数和单形符号,达到掌握晶体定向和确切表示晶面族在空间的相对位置的方法。
晶体的定向与晶体学符号实验报告实验报告:晶体的定向与晶体学符号实验目的:掌握晶体的定向方法,理解晶体学符号的意义,熟悉晶体的结构与性质。
实验原理:晶体是由具有规则排列的原子、离子或分子组成的固体,其内部结构表现出一定的规则性。
晶体的定向研究的是晶体各个晶面的方位关系,通过确定晶面间的角度来描述晶体的性质。
晶体学符号是用来表示晶体的内部结构及其定向关系的符号体系,由晶体的晶格常数、晶面指数和晶体学方位的几何关系构成。
实验步骤:1.样品制备:a. 选取适合的晶体样品,清洗干净并对其进行标记。
b. 准备一个平面镜片,用手持孔光源照明以便观察。
2. 定向观察:a. 将晶体样品放在平面镜片上。
b. 透过照明,使用显微镜观察晶体表面的晶面形貌和交叉菲涅尔图案。
c. 观察晶面间的夹角,记录下各个晶面的指数。
3. 晶体学符号的确定:a. 根据观察到的晶面指数,计算晶面间的角度。
b. 使用晶体学符号表,确定晶体的晶体学符号。
4. 实验记录与分析:a. 记录实验中观察到的晶面指数和夹角。
b. 根据晶体学符号确定晶体的晶格常数和晶体学方向。
实验结果与讨论:通过观察和分析晶体的定向和晶体学符号,我们可以得到晶体的结构信息、晶面间的角度关系以及晶格常数等重要参数。
这些数据对于理解晶体的性质、优化材料制备和研究晶体的应用具有重要意义。
结论:本次实验通过观察晶体的定向和计算晶面间的角度,确定了晶体的晶体学符号,并得到了晶格常数及晶体学方向的信息。
实验结果有助于深入理解晶体的结构与性质,并为进一步的研究和应用提供了基础。
附注:请注意,在进行晶体的定向与晶体学符号实验时,应遵循实验室的安全操作规程,并根据实际情况调整实验步骤和参数。
第五章晶体定向和结晶符号只要在生长时有足够的自由空间,晶体必然会长成由许多晶面和晶棱包围的几何多面体。
在晶体上,所有的晶面、晶棱和角顶,它们的分布都是对称的。
但除此而外,晶面和晶棱之间还有另一方面的几何关系,表现在晶面和晶棱相截或平行时,都可以用确定的数学形式来表征彼此间的空间取向关系。
为了表达这种关系,首先需要在晶体中建立起一个坐标系,这就是晶体定向。
所谓晶体定向,就是要在晶体上选择合理的三维坐标系,包括在晶体上选择坐标轴和确定各坐标轴的度量单位两项工作。
在此基础上,就可以进一步确定晶面符号和晶棱符号,用数学的方式来表示各个晶面或晶棱在晶体上的方向,并反映出它们彼此间的几何关系。
其中,平行于同一晶棱的若干晶面,特别称之为一个晶带。
而整数定律则是进行上述这些工作的依据。
在本章中,首先讨论晶体定向的原则,以便在晶体中建立起一个三维坐标系,在此基础上,分别叙述晶面符号和晶棱符号的构成。
最后,再讲述整数定律以及有关晶带的问题。
第一节结晶轴和晶体几何常数一、结晶轴的概念和选择原则⒈结晶轴的概念晶体中的坐标轴称结晶轴,简称晶轴。
晶轴是几根假想的直线,沿着与晶体对称有关的限定方向穿过理想晶体,相交在晶体中心。
⒉晶轴的选择原则晶轴的选择不是任意的。
首先,晶轴的选择要符合晶体自身的对称性,因此,要优先选择对称轴和对称面的法线方向。
若晶体无对称轴和对称面或其数目不够时,则选合适的晶棱方向,在选择晶棱做晶轴时,可以设想将其平移至晶体中心。
其次,在满足上述条件的前提下,应使晶轴尽可能互相垂直或近于垂直,并使轴单位尽可能相等,即使a=b=c α=β=γ=90°。
⒊晶轴的安置及名称三轴定向:除三方晶系、六方晶系以外的晶体,均采用X、Y、Z三轴定向。
X、Y、Z晶轴的安置是:Z轴直立,上端为正;X轴前后,前端为正;Y 轴左右,右端为正。
轴角:X、Y、Z晶轴正端之间的夹角为轴角。
分别用α(Y∧Z)、β(Z∧X)、γ(Y∧Z)表示,如图5-1。