高二物理玻尔原子模型2
- 格式:pdf
- 大小:1.71 MB
- 文档页数:8
玻尔的原子模型重/难点重点:玻尔原子理论的基本假设。
难点:玻尔理论对氢光谱的解释。
重/难点分析重点分析:玻尔原子理论的基本假设包括能级(定态)假设、跃迁假设、轨道量子化假设。
难点分析:原子从基态向激发态跃迁的过程是吸收能量的过程。
原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。
突破策略1.玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为n E )跃迁到另一种定态(设能量为m E )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 m n h E E ν=-(h 为普朗克常量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:21n r n r = n =1,2,3……能 量: 121n E E n =n =1,2,3…… 式中1r 、1E 、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,n r 、n E 分别代表第n 条可能轨道的半径和电子在第n条轨道上运动时的能量,n 是正整数,叫量子数。
3.氢原子的能级图从玻尔的基本假设出发,运用经典电磁学和经典力学的理论,可以计算氢原子中电子的可能轨道半径和相应的能量。
(1)氢原子的大小:氢原子的电子的各条可能轨道的半径211n r r n r =:,1r 代表第一条(离核最近的一条)可能轨道的半径例:n =2, 10 2 2.1210m r -=⨯。
玻尔原子结构模型主要观点【摘要】玻尔原子结构模型是20世纪初提出的重要理论,揭示了电子在原子中的运动规律。
该模型主要包括玻尔模型的基本假设、能级概念、光谱线的解释以及其局限性。
通过该模型,人们得以理解原子内电子的轨道运动和能级跃迁,为解释光谱线提供了重要依据。
玻尔模型也存在一些局限性,无法解释更复杂的原子结构现象。
尽管如此,玻尔原子结构模型仍然具有重要意义,为量子力学的发展奠定了基础,推动了现代物理学的进步。
通过对玻尔原子结构模型的研究,我们可以更深入地理解原子内部的微观世界,为科学技术的发展提供了坚实的理论支撑。
【关键词】玻尔原子结构模型、玻尔模型、基本假设、能级、光谱线、局限性、重要性、现代量子力学、发展。
1. 引言1.1 玻尔原子结构模型概述玻尔原子结构模型是由丹麦物理学家尼尔斯·玻尔提出的,并于1913年首次提出。
这一模型是为了解释氢原子光谱中的谱线规律而建立的。
玻尔原子结构模型是量子力学的奠基之作,为后来的量子理论的发展奠定了基础。
玻尔原子结构模型的核心思想是电子围绕原子核旋转,且只能在特定的轨道(能级)上运动,而不能在中间状态停留。
这些能级是量子化的,即只能取离散的数值。
当电子从一个能级跃迁到另一个能级时,会释放或吸收特定频率的光子,形成光谱线。
这一模型的重要性在于它成功地解释了氢原子光谱中的谱线位置和间距。
此外,玻尔模型对于量子力学的发展也起到了重要的作用,为人们理解微观世界提供了新的视角。
总的来说,玻尔原子结构模型的提出是一次重要的科学突破,影响深远,也为后续量子力学的发展奠定了基础。
2. 正文2.1 玻尔原子结构模型主要观点1. 原子是由一个核和围绕核旋转的电子组成的。
电子只能在特定的轨道上运动,而不会螺旋入核。
2. 电子在不同轨道上具有不同的能量,这些能量被称为能级。
电子可以跃迁到更高或更低能级,释放或吸收能量。
3. 玻尔模型描述了电子在不同轨道上的运动方式,并解释了氢原子光谱线的产生原因。
预习案【自主学习】1.观察教材86页图4.4-5,电子从半径大的轨道向半径小的轨道跃迁,是吸收光子还是辐射光子?2.观察教材86页图4.4-6,赖曼系的光子比巴耳未系的光子能量高还低?为什么?【自学检测】(答案附后)如图,用能量为12.09 eV的光子照射一群处于基态的氢原子,则氢原子( )A.不能跃迁到其他能级B.只能跃迁到n=3的能级C.跃迁后只能辐射一种频率的光子D.跃迁后不能再辐射出能量为12.09 eV的光子【学始于疑】(请将预习中不能解决的问题记录下来,供课堂解决。
)课堂案【合作探究一】一个与一群氢原子的区别一个氢原子从n=5的激发态向低能级跃迁时,产生的光子种类可能是( )A.4种 B.10种 C.6种 D.8种课堂练习2:教材91页第4题【合作探究二】11.(多选)欲使处于基态的氢原子激发或电离,下列措施可行的是( )A.用10.2 eV的光子照射 B.用11 eV的光子照射C.用14 eV的光子照射 D.用11 eV的电子碰撞课堂练习1:教材91页第6题总结:【进阶闯关检测】A类基础关1.如图是氢原子能级示意图,具有下列哪一能量的光子能被处在n=2能级的氢原子吸收( )A.1.51 eVB.1.89 eVC.2.16 eVD.2.40 eV2.如图所示为氢原子能级图,已知可见光的能量范围为 1.62 eV~3.11 eV,下列说法正确的是( )A.氢原子从高能级跃迁到第2能级,辐射的光子均为可见光B.处于基态的氢原子可吸收能量较强的可见光跃迁到高能级C.处于第4能级的大量氢原子,向基态跃迁时只能释放出3种不同频率的光子D.处于第3能级的氢原子可以吸收可见光的能量被电离3.根据氢原子的能级图,现让一束单色光照射到一群处于基态(量子数n=1)的氢原子上,受激发的氢原子能自发地发出6种不同频率的光,则照射氢原子的单色光的光子能量为( ) A.13.6 eVB.4 eVC.12.75 eVD.12.09 eVB类能力关4.如图为氢原子的能级示意图,已知锌的逸出功是3.34 eV。
玻尔原子模型玻尔原子模型是由丹麦物理学家尼尔斯·玻尔在1913年提出的一种描述原子结构的模型。
该模型通过量子力学的观点解释了氢原子的光谱现象,为后续的量子力学理论奠定了基础。
本文将介绍玻尔原子模型的发展背景、基本原理以及其对于原子结构的重要影响。
一、发展背景在20世纪初,对原子结构的认识相对模糊。
传统的理论无法解释氢原子光谱发射线的不连续性。
为了解决这个问题,玻尔提出了他独特的原子模型。
二、玻尔原子模型的基本原理玻尔原子模型在经典物理学的基础上引入了量子化概念,通过以下几点理论来解释氢原子光谱现象:1. 原子中的电子绕着原子核旋转,但只能存在于特定的能级上。
2. 电子在不同能级之间跃迁时会吸收或者发射特定频率的光子。
3. 电子旋转半径与能级高低有关,能级越高,电子离原子核越远。
三、玻尔原子模型对原子结构的影响玻尔原子模型的提出对后续物理学的发展产生了深远的影响:1. 玻尔原子模型的量子化概念为后来的量子力学理论提供了基础。
量子力学为解释原子结构和性质提供了更为精确的数学模型。
2. 玻尔原子模型通过电子跃迁释放或吸收特定频率的光子解释了原子光谱,为光谱分析提供了理论基础。
3. 玻尔原子模型的影响延伸至其他粒子和物理体系。
类似的量子化概念被应用于核物理和粒子物理领域。
四、玻尔原子模型的局限性尽管玻尔原子模型是对当时来说非常重大的突破,但它也存在一些局限性:1. 该模型仅适用于氢原子,无法准确描述其他原子的光谱现象。
2. 玻尔原子模型无法解释电子为什么会围绕核旋转,并且为何只能在特定轨道上存在。
3. 该模型无法解释复杂原子的结构和性质,对于更高能级的电子行为无法给出详细描述。
五、总结玻尔原子模型是描述氢原子结构的突破性模型,通过量子化概念和电子跃迁现象解释了氢原子光谱的不连续性。
该模型对后续的量子力学理论和光谱分析学产生了重要影响,为解释原子结构和探索微观世界奠定了基础。
尽管存在局限性,玻尔原子模型对于现代物理学的发展仍然具有不可低估的价值。