螺旋桨流固耦合
- 格式:ppt
- 大小:3.30 MB
- 文档页数:19
华中科技大学硕士学位论文摘要作为常见的船舶推进装置,螺旋桨具有几何形状简单、安装使用方便、推进效率高等特点。
但随着船舶事业的飞速发展,船舶逐渐向大型化、高速化的特点发展,对船舶螺旋桨性能的要求越来越高。
现阶段的常规材料螺旋桨具有噪声大、不耐腐蚀、使用寿命较短等缺点,因此近年来螺旋桨材料发生了巨大的变化。
由于新型材料的物理性质发生了变化,螺旋桨的流固耦合问题引起了越来越多的关注。
本文主要对DTMB 4119螺旋桨流固耦合问题进行以下方面的研究工作:(1)针对DTMB4119螺旋桨在不同工作工况下,研究流体计算网格量对螺旋桨敞水性能的影响;采用标准k-e、RNG k-e、SST k-w湍流模型,研究分析湍流模型对螺旋桨敞水性能的影响,并与参考文献给出的试验结果进行对比分析,从结果来看采用RNG k-e湍流模型的计算结果与文献误差最小。
(2)采用三种材料属性不同的各向同性材料,对螺旋桨水动力性能与结构响应特性与材料属性之间的关系进行探究。
从仿真结果来看,材料属性对前两种材料螺旋桨影响较小,流体与固体之间的相互影响可以忽略不计;而对玻璃纤维材料螺旋桨的影响较大,纤维材料螺旋桨的敞水性能、流场特性以及桨叶的应力应变、变形都有明显的变化。
(3)计算考虑铺层方式的流固耦合特性。
结果表明,层铺方式对螺旋桨水动力性能影响较小,但对螺旋桨的应力应变影响较大。
关键词:流固耦合,复合材料螺旋桨,水动力性能,结构响应特性,铺层方式华中科技大学硕士学位论文AbstractPropeller, as a common propulsion device, has the characteristics of simple structure, convenient use and high efficiency. But with the rapid development of the shipbuilding industry, the ship develops towards the characteristics of large scale and high speed, which also requires more. At present, the conventional propeller has many disadvantages, such as large noise, no corrosion resistance, short service life and so on, so many new type propellers have emerged. And due to the change of material properties, the fluid - structure interaction of propellers has attracted more and more attention.In this paper, the following two aspects are carried out on the two ways fluid- structure interaction of propeller:(1) For the DTMB4119 propeller under different working conditions, using the standard k-e, RNG k-e and SST K-W turbulence model, the open water performance of the propeller is calculated by numerical simulation. The results are compared with the experimental results given in the reference literature. The results show that the error between the RNG k-e turbulence model and the literature are minimum.(2) Three isotropic materials of alloy steel, nickel aluminum bronze and glass fiber are used to investigate the relationship between the hydrodynamic performance of a propeller, the response characteristic of the structure and the properties of the material. From the simulation results, the material properties have little influence on the first two kinds of material propellers, and the interaction between the fluid and the solid can be ignored, but the effect on the propeller of glass fiber material is larger. The open water performance, the flow field characteristics and the stress strain and deformation of the blade have obvious changes.(3), Calculating and comparing the fluid solid coupling characteristics of Considering the effect of composite stacking mode on composite propeller. The results show that the stacking mode method has little effect on the hydrodynamic performance of propeller, but it has great influence on the stress and strain of propeller.Key words:FSI, composite propeller, open water performance, structure response stacking mode华中科技大学硕士学位论文目录摘要 (I)Abstract (II)1 绪论1.1课题研究背景及意义 (1)1.2复合材料螺旋桨的应用与研究现状 (2)1.3论文主要研究内容 (7)2 数值计算基本理论2.1引言 (8)2.2计算流体力学基本原理 (8)2.3结构计算相关理论 (11)2.5本章小结 (15)3 螺旋桨水动力性能数值方法3.1引言 (16)3.2螺旋桨水动力计算 (16)3.3网格独立性验证 (21)3.4湍流模型的选取 (24)3.5螺旋桨敞水性能分析与验证 (26)3.6本章小结 (27)华中科技大学硕士学位论文4 螺旋桨流固耦合特性模拟与分析4.1引言 (28)4.2螺旋桨结构计算方法 (28)4.3螺旋桨流固耦合计算 (29)4.4本章小结 (38)5 复合材料螺旋桨流固耦合计算5.1引言 (39)5.2基于ACP复合材料分层有限元模型 (39)5.3复合材料螺旋桨流固耦合结果分析 (43)5.4本章小结 (45)6 结论与展望6.1结论 (46)6.2展望 (47)致谢 (48)参考文献 (50)华中科技大学硕士学位论文1 绪论1.1课题研究背景及意义进入新世纪后,随着全球经济的飞速发展,越来越频繁的贸易往来使得全球交通运输业发生了巨大变化。
第五章 轴流泵的流固耦合5-1 流固耦合概论流固耦合问题一般分为两类,一类是流‐固单向耦合,一类是流‐固双向耦合。
单向耦合应用于流场对固体作用后,固体变形不大,即流场的边界形貌改变很小,不影响流场分布的,可以使用流固单向耦合。
先计算出流场分布,然后将其中的关键参数作为载荷加载到固体结构上。
典型应用比如小型飞机按刚性体设计的机翼,机翼有明显的应力受载,但是形变很小,对绕流不产生影响。
当固体结构变形比较大,导致流场的边界形貌发生改变后,流场分布会有明显变化时,单向耦合显然是不合适的,因此需要考虑固体变形对流场的影响,即双向耦合。
比如大型客机的机翼,上下跳动量可以达到5 米,以及一切机翼的气动弹性问题,都是因为两者相互影响产生的。
因此在解决这类问题时,需要进行流固双向耦合计算。
下面简单介绍其理论基础。
连续流体介质运动是由经典力学和动力学控制的,在固定产考坐标系下,它们可以被表达为质量、动量守恒形式:()0v tρρ∂+∇⋅=∂ (1) ()B v vv f tρρτ∂+∇⋅-=∂ (2) 式中,ρ为流体密度;v 为速度向量;Bf 流体介质的体力向量;τ为应力张量;在旋转的参考坐标系下,控制方程变为: ()0r v v tρρ∂+∇⋅=∂ (3) (-)+B r r c v v v f f tρρτ∂+∇⋅=∂ (4) 形式和固定坐标系下基本相同,只是速度变成了相对速度,另外就是增加了附加力项c f 。
固体有限元动力控制方程为:[]{}[]{}{}...[]{}M u C u K u F ++= (5)式中,[]M ,[]C ,[]K 分别是质量矩阵,阻尼矩阵以及刚度矩阵,{}F 为载荷矩阵。
流固耦合遵循最基本的守恒原则,所以在流固耦合交界面处,应满足流体与固体应力、位移、热流量、温度等变量的相等或守恒,即满足如下四方程:f f s s n n ττ⋅=⋅ (6)f s d d = (7)f s q q = (8)f s T T = (9)5-2 单向流固耦合思路分析:轴流泵的单向流固耦合仅仅考虑流场对结构的影响,并不考虑结构变形对流场的影响,所以其数据的传递是单向的,流场和结构的分开计算,完成流场计算之后将其作为结构的边界条件加载到结构域上。
基于流固耦合的船舶轴-桨耦合振动特性分析李小军1,朱汉华1,熊 维2,吴继东2(1. 武汉理工大学 能源与动力工程学院,湖北 武汉 430063;2. 武昌船舶重工集团有限公司,湖北 武汉 430060)摘要: 以研究螺旋桨水动力和离心力对船舶轴-桨组合振动特性的影响为本文的研究目的,基于W o r k-bench平台,采用流固耦合有限元分析方法,进行船舶轴-桨组合模态分析。
在CFX中计算螺旋桨敞水性能,并在Ansys中将螺旋桨叶面水压力和离心力作为预应力分析轴桨组合振动的固有频率和振型,比较轴系、螺旋桨单独模型和轴-桨组合模型在固有频率上的区别。
计算结果表明,轴桨组合的固有频率远远低于轴系和螺旋桨独立模型的固有频率;轴-桨旋转产生的离心力对其固有频率影响不大;螺旋桨在流场中产生的水压力略微提高纵向振动固有频率,但影响很小,在实际应用中可以忽略。
关键词:流固耦合;螺旋桨;轴系;Ansys;模态分析中图分类号:U664.21 文献标识码:A文章编号: 1672 – 7649(2017)07 – 0019 – 05 doi:10.3404/j.issn.1672 – 7649.2017.07.004Coupled vibration characteristic analysis of shaft-propeller system of ship basedon fluid structure interactionLI Xiao-jun1, ZHU Han-hua1, XIONG Wei2, WU Ji-dong2(1. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China;2. Wuchang Shipbuilding Industry Group Company Limited, Wuhan 430060, China)Abstract: In order to explore the effect of propeller hydrodynamics and centrifugal force on coupled vibration charac-teristic of shaft-propeller system, taking Workbench as a tool, modal analysis of shaft-propeller system of ship was com-pleted with the fluid-structure interaction method. The open water performance of propeller was calculated in CFX, the natur-al frequency and mode shape of shaft-propeller system were analyzed in Ansys taking propeller water pressure and centrifu-gal force as pre-stress, and the difference of natural frequency of the single model of the shaft, the single model of the pro-peller and the combination model of shaft-propeller was analyzed. The results show that, the natural frequency of the shaft-propeller system is much lower than the natural frequency of the single model of the shaft and the single model of the pro-peller; the centrifugal force generated by the rotation of the shaft-propeller system has little effect on the natural frequency; the pre-stress produced by the propeller in the flow field increases the natural frequency of the longitudinal vibration slightly, but the influence is small, which can be ignored in the practical application.Key words: fluid-structure interaction (FSI);propeller;shaft;Ansys;modal analysis0 引 言船舶螺旋桨和轴系在实际工作时,流场中不均匀载荷会影响桨叶表面压力分布和桨叶振动特性;同时流场中的载荷会通过螺旋桨叶面传递给轴系,引起轴系应力、应变以及振动特性的变化,因此研究轴-桨组合的流固耦合振动特性对探索船舶尾部振动和噪声的产生原因非常有意义。
流固耦合概述及应用研究进展流固耦合概述及应用研究进展摘要流固耦合力学是流体力学与固体力学交叉而生成的一门力学分支。
顾名思义,它是研究变形固体在流场作用下的各种行为以及固体位形对流场影响这二者交互作用的一门科学。
流固耦合力学的重要特征是两相介质之间的交互作用(fluid.solid interaction):变形固体在流体载荷作用下会产生变形或运动,而变形或运动又反过来影响流场,从而改变流体载荷的分布和大小。
总体上 ,流固耦合问题按耦合机理可分为两大类:一类的特征是流固耦合作用仅仅发生在流、固两相交界面上,在方程上耦合是由两相耦合面的平衡及协调关系引入的;另一类的特征是流、固两相部分或全部重叠在一起 ,耦合效用通过描述问题的微分方程来实现。
1 流固耦合概述1.1引言历史上,人们对流固耦合现象的早期认识源于飞机工程中的气动弹性问题。
Wright兄弟和其它航空先驱者都曾遇到过气动弹性问题。
直到1939年二战前夕,由于飞机工业的迅猛发展,大量出现的飞机气动弹性问题的需要,有一大批科学家和工程师投入这一问题的研究。
从而,气动弹性力学开始发展成为一门独立的力学分支。
如果将与飞机颤振密切相关的气动弹性研究作为流固耦合的第一次高潮的话,则与风激振动及化工容器密切相关的研究可作为流固耦合研究的第二次高潮。
事实上,从美国ASME应用力学部召开的历次流固耦合研讨会上可以看出,流固耦合问题涉及到很多方面。
比如:空中爆炸及响应,噪声相互作用问题,气动弹性,水弹性问题,充液结构内的爆炸分析,管道中的水锤效应,充液容器的晃动及毛细流中血细胞的变形,沉浸结构的瞬态运动,流固相互冲击,板的颤振及流体引起的振动,圆柱由于热交换引起支持附件松动的非线性流固耦合系统,声音与结构的相互作用,涡流与结构的相互作用,机械工程中的机械气动弹性问题等等。
1.2流固耦合力学定义和特点流固耦合力学是流体力学与固体力学交叉而生成的--I'l力学分支。
螺旋桨和水翼作为航行器的重要部件,在航行过程中扮演着至关重要的角色。
螺旋桨是转动推进器,主要负责船舶或飞机的推进作用,而水翼则是支撑器,能够提供额外的升力和稳定性。
由于二者在航行过程中需要与水或气流进行耦合运动,因此对于其流固耦合机理和计算方法的研究显得尤为重要。
1. 螺旋桨和水翼的流固耦合机理螺旋桨和水翼的流固耦合机理主要涉及了流体力学和结构力学两个层面。
在流体力学方面,螺旋桨和水翼在水或空气中运动时,会受到流体的阻力和压力,同时也会对流体产生影响,这种相互作用就构成了流固耦合。
在结构力学方面,螺旋桨和水翼的形状、材料等因素将直接影响其在流体中的运动特性,因此需要考虑结构与流体的相互作用。
2. 流固耦合的数学建模为了深入研究螺旋桨和水翼的流固耦合机理,需要建立相应的数学模型。
在这个过程中,需要考虑流体的运动方程和结构的力学方程,同时还要充分考虑二者之间的相互作用。
对于螺旋桨来说,需要考虑其在水或空气中的推进功率和受到的阻力等因素;对于水翼来说,需要考虑其在水或空气中产生的升力和阻力等因素。
通过建立数学模型,可以对螺旋桨和水翼的运动规律进行准确地描述和预测。
3. 流固耦合的计算方法针对螺旋桨和水翼的流固耦合问题,需要开发相应的计算方法。
在过去的研究中,人们已经提出了各种各样的计算方法,其中既包括基于数值模拟的计算方法,也包括基于试验的计算方法。
数值模拟方法可以通过计算流体和结构的相互作用来预测螺旋桨和水翼的运动轨迹和性能,而基于试验的计算方法则可以通过实际的船舶或飞机模型进行测试和验证。
4. 研究现状与发展趋势目前,螺旋桨和水翼的流固耦合机理和计算方法研究已经取得了一些进展,但仍然存在诸多挑战。
流固耦合问题本身具有复杂的非线性和多物理场耦合特性,因此需要开发更加精确和高效的数值模拟方法。
另对于螺旋桨和水翼的结构设计和优化也需要更加深入的研究,以提高其性能和效率。
未来,随着计算机技术和数值模拟方法的不断发展,相信对于螺旋桨和水翼的流固耦合机理和计算方法研究将会取得更加显著的成果。
流固耦合的研究与发展综述目录1.引言............................................... - 1 -2.流固耦合的分类与发展............................... - 1 -3.流固耦合的研究方法................................. - 2 -4.流固耦合计算法..................................... - 4 -5.软件应用方法....................................... - 6 -6.总结与展望........................................ - 14 - 参考文献............................................ - 15 -流固耦合的研究与发展1.引言近来,航空航天工业在世界上发展迅速,而作为“飞机心脏”的航空发动机是限制其发展的主要因素。
目前,航空发动机日益向高负荷、高效率和高可靠性的趋势发展,高负荷导致的高你压力梯度容易引起流动分离,同时随着科技的发展,航空发动机的设计使得材料越来越轻,越来越薄,这就使得发动机内部的不稳定流动对叶片的影响大大增加,成为发动机气动及结构设计要考虑的关键问题之一。
而以往单单考虑气动或结构因素不能满足实际的需求,必须将气动设计和结构设计相结合,考虑其相互作用的影响,因此流固耦合的研究应运而生。
流固耦合是流体力学与固体力学交叉而生成的一门独立的力学分支,它的研究对象是固体在流场作用下的各种行为以及固体变形或运动对流场影响。
流固耦合力学的重要特征是两相介质之间的交互作用,固体在流体动载荷作用下会产生变形或运动,而固体的变形或运动又反过来影响流场,从而改变流体载荷的分布和大小,正是这种相互作用将在不同条件下产生形形色色的流固耦合现象。
流固耦合概述及应用研究进展流固耦合是指涉及流体和固体相互作用及其相互影响的一种物理过程。
在流体中存在的固体物体会受到流动力的影响,而流体的流动又会受到固体物体的阻碍或改变。
流固耦合研究的目的是探索流体与固体耦合过程中的物理现象和机理,并为相关领域的应用提供理论和实践基础。
流固耦合是多学科、多领域交叉研究的产物,涉及机械工程、流体力学、材料科学、土木工程等众多领域。
流固耦合现象广泛存在于自然界和工程中,例如空气和飞机翼之间的相互作用、水流与水坝之间的相互影响、海洋中风浪作用于海洋工程结构等。
对于这些情况,了解流体对固体的作用以及固体对流体的影响有助于提高工程设计的可靠性和安全性。
近年来,流固耦合研究在理论研究和应用方面取得了一些进展。
在理论上,流固耦合模型主要基于数值计算和实验数据,通过建立相关方程和模拟方法来描述流体和固体相互作用。
这些模型主要包括弹性体与流体相互作用、固体与不可压缩流体相互作用、固体与可压缩流体相互作用等。
通过这些模型,可以预测固体的受力和变形情况,并进一步优化设计。
在应用方面,流固耦合的研究涉及了很多领域。
在航空航天工程中,例如在飞机机翼设计中,需要考虑空气流动对机翼的影响,同时也需要考虑机翼的形状对气流的影响。
在海洋工程中,例如在海上钻井平台的设计中,需要考虑海浪对平台的冲击,同时也需要考虑平台的形状对海浪的影响。
在建筑工程中,例如在高层建筑的结构设计中,需要考虑气流对建筑的荷载、风力对建筑的影响。
流固耦合研究的进展带来了许多创新应用,提高了工程设计的精度和可靠性。
例如,在汽车和飞机设计中,通过对流体力学和结构力学的耦合分析,可以更好地优化车身结构和机翼形状,减小风阻和气动噪声,提高车辆的性能和燃油效率。
在海洋工程中,通过对水流和结构的耦合分析,可以更好地预测海浪对海洋结构的冲击,从而减小结构的破坏风险。
虽然流固耦合研究取得了一些进展,但仍存在一些待解决的问题。
首先,流固耦合模型的建立和计算方法的选择仍然具有一定的局限性,需要进一步完善和发展。
基于流固耦合的螺旋桨水动力性能数值仿真黄胜;白雪夫;孙祥杰;陈广杰【摘要】According to the propeller theory, the Computational Fluid Dynamics technology based on the vicious lfow theory has been combined with the structural ifnite element analysis method to establish a numerical simulation method for the propeller lfuid-structure interaction. By using this method, it carries out the calculation and analysis of propellers. The results are consistent with the experimental results by comparison. For the same metal propeller at low advance velocity, it is proved that the results calculated by the proposed FSI method are more accurate than the traditional CFD method. It then presents the advantages of lfuid-structure interaction numerical method for the investigation of the composite propellers from many aspects, which provides the essential tool for its performance analysis.%根据螺旋桨理论,将基于粘流理论的计算流体动力学方法与结构有限元分析方法相结合,构建螺旋桨的流固耦合数值仿真方法。
流-固耦合流-固耦合是现代力学中的一个重要概念,指物体在流体中运动时,物体与流体之间相互作用的现象。
这种相互作用现象被广泛应用于海洋工程、船舶工程和风力发电工程等领域。
本文将从理论和应用两个方面介绍流-固耦合的概念和特点。
一、理论方面在流-固耦合中,流体的运动状态受到物体的影响,物体的运动状态也受到流体的影响。
因此,在研究流-固耦合现象时,要考虑物体的形状、大小、密度、表面形态等因素,同时也要考虑流体的流速、密度、黏度、压力等因素,这样才能较为准确地描述物体和流体之间的相互作用。
从理论上来说,流-固耦合现象是非常复杂的,需要运用现代力学中的流体力学和固体力学等理论对其进行研究。
在流体力学中,研究流体中的流动、稳定、湍流和动量转移等问题,而在固体力学中,研究物体的结构、应力和应变等问题。
将两个领域的知识相结合,才能较为全面地研究流-固耦合现象。
二、应用方面在海洋工程中,流-固耦合现象是非常重要的研究对象。
例如,在海洋上的钻井平台上,海浪和潮汐等流体运动状态对钻井平台的稳定性和安全性产生了重要影响。
而在船舶工程中,船舶在水中的运动状态同样需要考虑流-固耦合现象。
船舶的速度、形状、质量中心等因素会影响到水流的运动状态,而水流的流速、流向和波浪等因素也会影响到船舶的运动状态。
风力发电是近年来快速发展的一种可再生能源,而风力机的设计和研究中也需要考虑到流-固耦合现象。
风力机的叶片在风中旋转时,会引起周围风速的变化,从而影响到风力机叶片的运动状态。
因此,需要通过对流体力学和固体力学的研究,对风力机的叶片形状、材料、强度等因素进行优化设计。
总之,流-固耦合现象在现代工程应用中具有广泛应用前景。
研究这一现象需要充分结合现代力学中的理论知识,对于改善工程的安全性和效率具有重大意义。
船舶桨-轴系统双向流固耦合动力学建模方法研究邹冬林a ,b ,焦春晓a ,b ,徐江海a ,b ,塔娜a ,b ,饶柱石a ,b(上海交通大学a.振动、冲击、噪声研究所;b.机械系统与振动国家重点实验室,上海200240)摘要:螺旋桨激励力引起的轴系及船体振动是船舶低频噪声的重要原因,目前已成为改善我国船舶振动噪声最关键的问题之一。
为了掌握这类低频噪声成因,有必要从流体、桨、轴系间的复杂耦合关系着手,揭示螺旋桨激励力产生、传递机理及桨-轴系统流固耦合振动演化规律。
因此急需一个桨-轴系统双向流固耦合动力学分析模型。
为此,本文利用有限元法(FEM )耦合边界元法(BEM )建立了流体-弹性桨-轴系双向流固耦合动力学模型,并通过数值仿真分析以及实验研究,验证了所建模型的正确性。
研究表明:本文建立的模型求解精度满足工程要求,且相比于目前广泛采用的商业软件方法具有计算速度快、对计算机性能要求低等优点,非常适合工程应用。
关键词:推进轴系;螺旋桨;流固耦合;有限元法;边界元法中图分类号:O327;O351.3;U664.21文献标识码:A doi:10.3969/j.issn.1007-7294.2021.01.010Research on two-way fluid-solid coupling dynamics modeling for ship propeller-shaft systemZOU Dong-lin a,b ,JIAO Chun-xiao a,b ,XU Jiang-hai a,b ,TA Na a,b ,RAO Zhu-shi a,b (a.Institute of Vibration,Shock and Noise;b.State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China)Abstract :The shafting and hull vibration caused by the propeller excitation force is an important source of the low-frequency noise of the ship,which has become one of the most critical issues for further reduction of the vibration and noise of ships.In order to grasp the causes of such low-frequency noise,it is necessary to reveal the mechanism of the generation and transmission for propeller excitation force and the evolution law of fluid-solid coupling vibration of the propeller-shaft system from the complex coupling relationship among fluid,propeller and shaft system.Therefore,a two-way fluid-solid coupling dynamics analysis model of a pro⁃peller-shaft system is urgently needed.Thus,a two-way fluid-solid coupling dynamic model of the fluid-elastic propeller-shafting is established by the coupled finite element method (FEM)and boundary element method (BEM),the correctness of which is verified by numerical simulation analysis and experimental re⁃search.The research results show that the bi-directional fluid-solid coupling dynamics model of the propel⁃ler-shaft system is accurate enough to meet the engineering requirements,and has the advantages of fast cal⁃culation speed and a low computer performance requirement compared with the widely-used commercial soft⁃ware methods.So the model is suitable for engineering applications.第25卷第1期船舶力学Vol.25No.12021年1月Journal of Ship Mechanics Jan.2021文章编号:1007-7294(2021)01-0080-15收稿日期:2020-07-28基金项目:国家自然科学基金项目(11672178);国家自然科学青年基金项目(11802175);中国博士后科学基金项目(2019T120339)作者简介:邹冬林(1987-),男,博士,E-mail:***********************.cn ;饶柱石(1962-),男,博士,教授,E-mail:**************.cn 。