程守洙《普通物理学》(第6版)(下册)-第12章 光 学-课后习题详解【圣才出品】
- 格式:pdf
- 大小:4.52 MB
- 文档页数:79
6.2 课后习题详解一、复习思考题§6-1 热力学第零定律和第一定律6-1-1 怎样区别内能与热量?下面哪种说法是正确的?(1)物体的温度越高,则热量越多.(2)物体的温度越高,则内能越大.答:(1)内能①定义:内能是由热力学系统状态所决定的能量.微观上讲,内能是系统内粒子动能和势能的总和.②理解内能的概念时要注意以下问题:a.内能是状态函数,一般用宏观状态参量(如p、T、V)描述的系统状态,是单值函数;而理想气体的内能仅是温度T的单值函数;b.内能的增量只与确定的系统始、终态有关,与变化的过程无关;c.系统的状态若经历一系列过程又恢复原状态,则系统的内能不变;d.对系统作功或者传热可以改变系统的内能.(2)热量①定义:是指存在温度差的系统之间传递的能量.微观上讲,传递热量是通过分子之间的相互作用完成的.②理解热量的概念时要注意以下问题:a.热量是过程量,对某确定的状态,系统有确定的内能,但无热量可言;b.系统的热量传递,不仅与系统的始、终状态有关,也与经历的过程有关;c.在改变系统的内能方面,传热也是改变系统内能的一个途径,与作功等效,都可作为系统内能变化的量度.(2)①说法(1)是不正确的.温度是状态量,热量是过程量.“温度高”表示物体处在一个分子热运动的平均效果比较剧烈的宏观状态,无热量可言.②说法(2)不完全正确.a.对理想气体的内能仅是温度T的单值函数,故是正确的.b.对一般热力学系统,内能是分子热运动的动能与势能之和,即内能并非只是温度的单值函数.6-1-2 说明在下列过程中,热量、功与内能变化的正负:(1)用气筒打气;(2)水沸腾变成水蒸气.答:(1)功的分析:①气筒打气是外力压缩气筒内的空气,气筒内空气体积减小,即△V<0,因此气筒内空气作负功;②传热的分析:压缩过程进行得很快,气体还来不及与外界交换热量就已被压缩,因此可近似看作是绝热压缩过程,即Q=0.③内能的分析:根据热力学第一定律△E=Q-A=-A>0,因此气筒内空气的内能增加.(2)①若容器体积可以变化,水到达沸点时:a.大量吸收热量(Q>0);b.此过程温度不变,因而内能不变(△E=0);c.水汽的体积增加,对外作功(A>0).②若容器体积不能变化,水沸腾时:a.吸取足够的热量(Q>0);b.水汽不能对外膨胀作功;c.水汽从外界吸取大量热量而成为过热蒸汽,温度上升,内能增加.§6-2 热力学第一定律对于理想气体准静态过程的应用6-2-1 为什么气体热容的数值可以有无穷多个?什么情况下,气体的摩尔热容是零?什么情况下,气体的摩尔热容是无穷大?什么情况下是正值?什么情况下是负值?答:(1)气体热容的数值可以无穷多个的原因:根据热容定义,即不发生化学反应且在同等条件下温度升高1 K所需的热量.由于热量dQ是过程量,热力学系统可以经过无数个过程从一平衡态过渡到另一平衡态,不同的过程传热不同,因此这就对应有无数个不同的热容C.(2)C m=0气体的摩尔热容的定义是指1 mol气体温度升高1 K所需的热量,用C m表示.根据热容定义知,在绝热过程中dQ=0,因此C m=0.(3)等温过程中dT=0,由知,(4)C m取正值:根据热容定义:,C m的符号取决于dQ.如,①在恒压膨胀过程中,由于△E>0,A=p△V>0,则Q=△E+A>0,因此C p,m>0.②在恒容升温过程中,Q=△E>0,其摩尔热容C v,m也为正值.(5)C m取负值:在多方过程中,如果多方指数1<n<γ(γ为摩尔热容比),即系统温度升高1 K,反而放出热量(△Q<0),则将出现多方负热容,如6-2-2第(1)问.6-2-2 一理想气体经图6-1-1所示各过程,试讨论其摩尔热容的正负:(1)过程Ⅰ-Ⅱ;(2)过程Ⅰ′-Ⅱ(沿绝热线);(3)过程Ⅱ'-Ⅱ.图6-1-1答:设以上三个过程代号分别1,2,3,都经过升温后,系统的初、末状态的温度都相同,因此内能的增量都相同,即△E 1=△E 2=△E 3>0;过程曲线下的面积表示所作的功,包围的面积越大,作负功的绝对值也越大.由图可知.(1)过程2:为绝热过程,即,因此该过程的摩尔热容等于零.(2)过程1:根据热力学第一定律,则,得到.那么,,该过程升温反而放出热量,其摩尔热容为负值.这是因为外界压缩气体作功不仅提高了系统的内能,而且还向外界放出了一些热量,导致摩尔热容为负.(3)过程3:同理可得,,该过程中外界压缩系统作正功的同时系统还从外界吸取了热量才使系统升温,因此其摩尔热容为正值.6-2-3 对物体加热而其温度不变,有可能吗?没有热交换而系统的温度发生变化,有可能吗?答:这两种情况都是可能的.(1)对物体加热而温度不变时,则Q>0,内能不变△E=0,由热力学第一定律可知Q=A,说明系统吸收外界的热量全部用于对外作功,例如理想气体的等温膨胀.(2)没有热交换,说明是绝热过程,Q=0.若系统的温度发生变化,则内能也会发生相应变化.根据热力学第一定律有Q=△E+A=0,△E=-A.①假设是绝热膨胀过程,系统对外作功,则内能减少,说明这是通过消耗内能来做功的;②假设是绝热压缩过程,内能增加,说明外界对系统作功提高了系统的内能.§6-3 循环过程卡诺循环6-3-1 为什么卡诺循环是最简单的循环过程?任意热机的循环需要多少个不同温度的热源?答:(1)热力学第二定律表明,不可能制造一种只依靠一个热源循环动作的热机.也就是说,至少要两个以上的热源才可能制造循环动作的热机.卡诺循环是由两个可逆的等温过程和两个可逆的绝热过程组成的循环,包括一个提供热量的高温热源和一个接受热量的低温热源,因此这是构成循环热源数最少、最简单的理想循环.(2)如图6-1-2所示,任一可逆循环都可分割成许多小卡诺循环,小卡诺循环的数目越多,就与实际的循环过程越接近,所对应的不同温度热源数也就越多.图6-1-26-3-2 有两个热机分别用不同热源作卡诺循环,在p-V 图上;它们的循环曲线所包围的面积相等,但形状不同,如图6-1-3所示.它们吸热和放热的差值是否相同?对外所作的净功是否相同?效率是否相同?图6-1-3答:(1)做功分析:p-V 图中循环曲线所包围的面积即是循环系统对外作的净功,面积相同,而不论形状如何,这两个循环对外作的净功就相同;(2)热量分析:循环过程,系统的内能不变(△E=0),因此对外作的净功和系统与外界交换的热量相等,即吸热与放热之差相同.(3)效率分析:①根据热机效率的定义知:。
普通物理学考研程守洙《普通物理学》考研复习笔记一、第1章力和运动1.1复习笔记本章回顾了力学部分的基础内容,主要知识点包括质点与参考系、运动学的基本概念、基础机械运动(直线运动、抛体运动、圆周运动和一般曲线运动)的基本特征、牛顿运动定律、常见力及其特征、相对运动、伽利略相对性原理和伽利略变换,以及经典力学的时空观,其中,质点与参考系、运动学的基本概念和常见力及其特征是所有力学问题的根基,物体以及系统的受力分析、基础机械运动及其组合运动是力学问题的常见研究对象,牛顿运动定律是经典力学以及研究力学问题的核心,在复习本章内容时,每个知识点都要充分理解和掌握,为之后章节的复习奠定坚实的基础。
一、质点运动的描述1质点(见表1-1-1)表1-1-1质点2参考系与坐标系(见表1-1-2)表1-1-2参考系与坐标系3空间与时间(见表1-1-3)表1-1-3空间与时间4运动学基本概念(见表1-1-4至表1-1-7)表1-1-4位矢与运动学方程表1-1-5位移表1-1-6速度表1-1-7加速度速度的大小为:5质点运动学的两类问题(见表1-1-8)表1-1-8运动学的两类问题及解法二、圆周运动和一般曲线运动1自然坐标系、速度、加速度(见表1-1-9)表1-1-9自然坐标系、速度、加速度2圆周运动的角量描述(见表1-1-10)表1-1-10圆周运动的角量描述3一般平面曲线运动中的加速度(见表1-1-11)表1-1-11一般平面曲线运动中的加速度4抛体运动的矢量描述(见表1-1-12)一般地,在研究抛体运动时,通常取抛射点为坐标原点,沿水平方向和竖直方向分别引Ox轴和Oy轴,建立笛卡尔直角坐标系。
表1-1-12抛体运动的矢量描述三、相对运动常见力和基本力1相对运动(见表1-1-13)表1-1-13相对运动2常见力(见表1-1-14至表1-1-16)表1-1-14万有引力、重力、弹力表1-1-15弹力的几种常见形式表1-1-16摩擦力3基本力(见表1-1-17)表1-1-17基本相互作用四、牛顿运动定律(见表1-1-18)表1-1-18牛顿运动定律五、伽利略相对性原理非惯性系惯性力(见表1-1-19)表1-1-19伽利略相对性原理非惯性系惯性力。
4.2 课后习题详解一、复习思考题§4-1 狭义相对论基本原理洛伦兹变换4-1-1 爱因斯坦的相对性原理与经典力学的相对性原理有何不同?答:(1)经典力学的相对性原理:运动关系的相对性表明,物质之间存在着相对运动的关系而非彼此孤立.相对运动的形式丰富多样,由相对运动产生的相互作用力也形式不一.(2)爱因斯坦的相对性原理:在所有惯性系中,物理定律的形式相同,或者说,所有惯性系对于描述物理现象都是等价的.(3)二者的分析比较:①经典力学的相对性原理说明一切惯性系对力学规律的等价性,而爱因斯坦的相对性原理将此种等价性推广到一切自然规律上去,包括力学定律和电磁学定律.②爱因斯坦的相对性原理的等价性推广意义深刻.我们可借助于电学或光学实验确定出本系统的“绝对运动”来,绝对静止的参考系是存在的,然而这与实验事实相矛盾.③爱因斯坦基于对客观规律的根本认识以及对实验事实的总结,才提出这个相对性原理的.相对论是研究相对运动和相互作用的科学.它使研究物质、能量及其相互作用的物理学发展到更高更深的层次.4-1-2 洛伦兹变换与伽利略变换的本质差别是什么?如何理解洛伦兹变换的物理意义?答:(1)洛伦兹变换与伽利略变换的本质差别:①洛伦兹变换是相对论时空观的具体表述;②伽利略变换是经典力学绝对时空观的具体表述.(2)洛伦兹变换的物理意义①洛伦兹变换集中地反映了相对论关于时间、空间和物质运动三者紧密联系的观念.②洛伦兹变换是建立相对论力学的基础.a.运用洛伦兹变换,评判一条物理规律是否符合相对论的要求,凡是通过洛伦兹变换能保持不变式的物理规律都是相对论性的规律.b.在v<<c时,洛伦兹变换将转换为伽利略变换,从这个角度出发,相对论力学就是经典牛顿力学的继承、批判和发展.4-1-3 设某种粒子在恒力作用下运动,根据牛顿力学,粒子的速率能否超过光速?答:(1)牛顿力学认为粒子的质量不会改变,粒子的加速度正比于所受外力.外力越大,粒子所得的加速度也越大.因此,粒子速度是没有极限的,粒子的速率可以超过光速.(2)相对论力学认为,粒子的质量随速度的增大而增大,粒子的加速度并非与所受外力成简单正比关系,加速度的大小有限制,使得粒子的速率不会超过光速.§4-3 狭义相对论的时空观4-3-1 长度的量度和同时性有什么关系?为什么长度的量度和参考系有关系?答:(1)长度的量度:测量一物体的长度就是在本身所处的参考系中测量物体两端点位置之间的距离.(2)同时性分析:①当待测物体相对于观测者静止时,在不同的时刻测量两端点的位置,其距离总是物体的长度;②当待测物体相对于观测者运动时,物体的长度就必须同时测定物体两端点的位置.若非同时测定,测量了一端的位置时,另一端已移动到新的位置,其坐标差值不再是物体的长度了.(3)由于同时性的相对性,所以长度的量度与同时性紧密相连,从而与测量的参考系有关.(4)下面举例说明:假设有一细棒静止在K′系的x′轴上,而K′系相对惯性系K 以速度v沿O x 轴运动.如把记录细棒左端坐标为事件1,记录细棒右端坐标为事件2,则两事件在两参考系中相应的时空坐标为由于细棒静止在K '系,所以△x'=x '2-x '1就是细棒的固有长度,根据洛伦兹变换在K 系测量两端坐标必须同时进行,即△t=0,故有所以在K 系中测得物体的长度为这就是长度收缩效应现象.4-3-2 下面两种论断是否正确?(1)在某一惯性系中同时、同地发生的事件,在所有其他惯性系中也一定是同时、同地发生的.(2)在某一惯性系中有两个事件,同时发生在不同地点,而在对该系有相对运动的其他惯性系中,这两个事件却一定不同时.答:(1)正确.在一个惯性系中同时、同地发生的事件,实质上就是一个事件.因而,可得:△x=0,△t=0根据洛伦兹变换:△x'=0,△t'=0因此,在所有其他惯性系中也一定是同时、同地发生的.(2)正确.对惯性系K 中同时发生在不同地点的两个事件,可得△t=0.△x≠0在相对运动的其他惯性系K '中,有在惯性系K '中这两个事件一定不同时.因此,同时性是相对的.4-3-3 两只相对运动的标准时钟A 和B ,从A 所在惯性系观察,哪个钟走得更快?从B 所在惯性系观察,又是如何呢?答:(1)从A 所在惯性系观察,根据“时间膨胀”或“原时最短”的结论,相对静止的时钟A 所指示的时间间隔是原时,它走得“快”些;而时钟B 给出的时间间隔是运动时,因“时间膨胀”而走得“慢”些.(2)同理,从B所在惯性系观察时,则相反,时钟B走得“快”些,而时钟A走得“慢”些.4-3-4 相对论中运动物体长度缩短与物体线度的热胀冷缩是否是一回事?答:不是一回事.(1)“热胀冷缩”①是涉及分子微观热运动的基本热学现象;②这与物体的温度有关,与其宏观运动速度无关.(2)“长度收缩”①是由狭义相对论所得到的重要结论,指在相对物体运动的惯性系中测量物体沿运动方向的长度时,测得的长度总是小于固有长度或静长这一现象;②这与物体的运动速度有关,与物体的组成和结构无关,是普遍的时空性质的反映.4-3-5 有一枚以接近于光速相对于地球飞行的宇宙火箭,在地球上的观察者将测得火箭上的物体长度缩短,过程的时间延长,有人因此得出结论说:火箭上观察者将测得地球上的物体比火箭上同类物体更长,而同一过程的时间缩短.这个结论对吗?答:此结论不正确.(1)狭义相对论认为,“长度收缩”和“时间膨胀”都是相对的.(2)若以火箭和地球为相对运动的惯性参考系,则火箭上的观察者也会观测到“长度收缩”和“时间膨胀”的现象.4-3-6 比较狭义相对论的时空观与经典力学时空观有何不同?有何联系?答:(1)两种时空观的不同:①狭义相对论时空观:a.狭义相对论中关于不同惯性系之间物理事件的时空坐标变换的基本关系式是洛伦兹变换.在洛伦兹变换关系中,长度和时间都是相对的,反映了相对论的时空观.b.狭义相对论时空观认为:第一,空间和时间不可分割,与物质运动密切相关;第二,时间是相对的,时间间隔因惯性系不同则会有差别;第三,空间是相对的,在不同的惯性系中,相同两点的空间间隔会有差别.②经典力学时空观:a.经典力学中关于不同惯性系之间物理事件的时空坐标变换的关系式是伽利略变换.在伽利略变换关系中,长度和时间都是绝对的,反映了经典力学的绝对时空观.b.经典力学时空观认为:时间、空间是彼此独立的,都是绝对的,与物质运动无关.(2)两种时空观的联系:①洛伦兹变换式通过狭义相对论的两个基本原理推导得出,并由此得出反映相对论时空观的几个重要结论,比如同时性的相对性、长度收缩、时间膨胀等;②当v<<c时,洛伦兹变换可以过渡到伽利略变换,即经典力学是相对论力学的低速近似.§4-4 狭义相对论动力学基础4-4-1 化学家经常说:“在化学反应中,反应前的质量等于反应后的质量.”以2g 氢与16g氧燃烧成水为例,注意到在这个反应过程中大约放出了25J的热量,如果考虑到相对论效应,则上面的说法有无修正的必要?。
第12章 光 学12.1 复习笔记一、几何光学简介1.光的传播规律(1)光在传播过程中遵从的三条实验规律①光的直线传播定律:光在均匀介质中沿直线传播;②光的独立传播定律:光在传播过程中与其他光束相遇时,各光束都各自独立传播,不改变其性质和传播方向;③光的反射定律和折射定律:光入射到两种介质分界面时,其传播方向发生改变,一部分反射,另一部分折射.图12-1 光的反射和折射实验表明:a .反射光线和折射光线都在入射光线和界面法线所组成的入射面内.b .反射角等于入射角.ii ='c .入射角i 与折射角r 的正弦之比与入射角无关,而与介质的相对折射率有关,即或rn i n sin sin 21=式中,比例系数n 21为第二种介质相对于第一种介质的折射率.(2)光路可逆原理当光线的方向返转时,光将循同一路径而逆向传播.(3)费马原理费马原理:光从空间的一点到另一点是沿着光程最短的路径传播.光程是折射率n 与几何路程l 的乘积,则费马原理的一般表达式为⎰=BAl n 值值d 即光线在实际路径上的光程的变分为零.2.全反射(1)全反射概念当入射角i =i c 时,折射角r =90°,因而当入射角i ≥i c 时,光线不再折射而全部被反射(图12-2),该现象称为全反射,入射角i c称为全反射临界角.12c arcsin n n i =图12-2 光的反射和折射(2)隐失波根据波动理论,光产生全反射时,仍有光波进入第二介质,它沿着两介质的分界面传播,其振幅随离开分界面的距离按指数衰减.一般来说,进入第二介质的深度约为一个波长,这样的波称为隐失波.(3)全反射的应用光导纤维特点:外层折射率小于内层折射率.图12-3 光导纤维3.光在平面上的反射和折射(1)平面镜从任一发光点P 发出的光束,经平面镜反射后,其反射光线的反向延长线相交于P '点.而实际光线并没有通过P '点,因此P '点为P 点的虚像,P '点与P 点成镜面对称.图12-4 平面镜成像(2)三棱镜①三棱镜偏向角三棱镜截面呈三角形的透明棱柱称为三棱镜,与其棱边垂直的平面称为主截面.出射光线与入射光线间的夹角,称为偏向角,用δ表示偏向角,δ与棱镜顶角α间的关系为图12-5 光在三棱镜内的折射②色散色散是指不同波长的光对介质有不同的折射率的现象,其中紫光偏折最大,红光偏折最小.4.光在球面上的反射和折射(1)球面镜概念如图12-6所示,AOB 表示球面的一部分,这部分球面的中心点O 称为顶点,球面的球心C 称为曲率中心,球面半径称为曲率半径,以r 表示.连接顶点和曲率中心的直线CO 称为主光轴.从轴上的一物点S 发出光线经球面反射后相交于主光轴上I 点,I 点为物点S 的像.从顶点O 到物点S 的距离称为物距,以p 表示,从顶点O 到像点的距离称为像距,以p '表示.图12-6 球面镜(2)正负号法则①以反射(或折射)面为界,将空间分为两个区:A区:光线发出的区;B区:光线通过的区.对于反射镜,B区和A区重合;对于折射面和透镜,两区分别在表面的两侧.②由A区决定的量:物距p:物体在A区为正(实物);物体在A区的对面为负(虚物).③由B区决定的量:像距p':像在B区为正(实像);像在B区的对面为负(虚像).曲率半径r:曲率中心在B区为正;曲率中心在B区的对面为负.焦距f:焦点在B区为正,焦点在B区的对面为负.(3)焦点和焦平面图12-7 焦点和焦平面平行主光轴的光束经球面反射后,将在光轴上会聚成一点,如图12-7(a)所示,该像点称为反射球面的焦点,以F表示;在镜后的焦点称为虚焦点;这个平面称为焦平面.(4)球面反射的物像公式,以上两组式子均为在傍轴光线条件下球面反射的物像公式.(5)横向放大率①图示物距为p、高为h的物SS',经球面反射后成像,像距为p',像高为h'(图12-8).像高与物高之比定义为横向放大率.。
2.2 课后习题详解一、复习思考题§2-1 质点系的内力和外力质心质心运动定理2-1-1 一物体能否有质心而无重心?试说明之.答:一物体可能有质心而无重心.(1)质心是表征物体系统质量分布的一个几何点,任何物体都有其质量分布,因此物体都有质心.(2)重心是地球对物体重力的作用点.在失重环境中,物体不受重力作用,重心就没有意义.2-1-2 人体的质心是否固定在体内?能否从体内移到体外?答:(1)质心是从平均意义上来表示物体的质量分布中心.它的位置由物体的质量分布来决定.所以,当物体质量改变时,质心的位置可以不固定.(2)质心可以由体内移到体外.人体在直立时,质心在体内,如果人体弯曲,就可把质心从体内移到体外.2-1-3 有人说:“质心是质量集中之处,因此在质心处必定要有质量”.这话对吗?答:(1)说法不对.(2)质心是描述物体系统质量分布的一个几何点,并非质量集中之处,质心所在处不一定有质量分布.如:质量均匀分布的空心球,其质心在球心,但质量却均匀分布于球面上.§2-2 动量定理动量守恒定律2-2-1 能否利用装在小船上的风扇扇动空气使小船前进?答:这是可以的.(1)假定风扇固定在小船上.当风扇不断地向船尾扇动空气时,风扇同时也受到了空气的反作用力.(2)该反作用力是向着船头的、并通过风扇作用于船身.根据动量定理,该力持续作用时会使船向前运动的动量获得增量.(3)当该作用力大于船向前运动时所受的阻力时,小船就可向前运动了.2-2-2 在地面的上空停着一气球,气球下面吊着软梯,梯上站着一个人.当这人沿软梯往上爬时,气球是否运动?答:选择人、气球和软梯组成的系统为研究对象.(1)当人相对软梯静止时,系统所受合力等于零.系统的动量在垂直方向上等于零并守恒,系统的质心将保持原有的静止状态不变.(2)当人沿软梯往上爬时,人与软梯间的相互作用力是内力,系统所受合外力仍为零,总动量恒定不变.系统的质心位置仍保持不变.根据动量守恒定律可知,当人沿软梯往上爬时,气球和软梯将向下运动.2-2-3 对于变质量系统,能否应用?为什么?答:(1)变质量系统的问题属于质点系的动力学问题,牛顿第二定律依然适用,但式中mν应理解为质点系的总动量.(2)这类问题的代表是发射中的火箭、下落中的雨滴等问题,其研究对象一般是主体的运动规律,对于运动过程中所吸附或排出的那一部分质量,在变化前后与运动主体有不同的运动速度,所以用来处理主体的运动是不正确的.(3)一般从质点系的动量定理的角度入手,由系统的动量定理可得式中m 为运动主体的质量,为附加物在吸附或排出后相对于运动主体的速度.上式变形得:该式是指主体的动量变化率等于主体所受的外力与单位时间内附加物变化的动量的矢量和.2-2-4 物体m 被放在斜面m'上,如把m 与m'看成一个系统,问在下列何种情形下,系统的水平方向分动量是守恒的?(1)m 与m'间无摩擦,而m'与地面间有摩擦;(2)m 与m'间有摩擦,而m'与地面间无摩擦;(3)两处都没有摩擦;(4)两处都有摩擦.图2-1-1答:如图2-1-1所示,物体与斜面视为一个系统,对系统进行受力分析:物体与斜面受到重力作用,地面对斜面有支持力,地面与斜面之间存在摩擦力.其中物体与斜面间的摩擦力和支持力均是系统的内力.当系统在水平方向的合外力为零时,系统的水平方向分动量守恒.讨论如下:(1)m'与地面间有摩擦时,系统在水平方向的合外力不为零,故水平方向的分动量不守恒.(2)m'与地面间无摩擦时,系统的水平方向的分动量守恒.(3)与(2)结论一致,系统的水平方向的分动量守恒.(4)与(1)结论一致,系统的水平方向的分动量不守恒.2-2-5 用锤压钉,很难把钉压入木块,如用锤击钉,钉就很容易进入木块,这是为什么?答:钉子打入木块,主要是钉子与木块之间的摩擦力小于钉子所受的作用力.(1)锤压钉子的压力一般不大,当钉子所受的摩擦力大于锤对钉子的压力时,钉子就无法进入木块,,因此难以把钉压入木块.(2)锤击钉子时,具有一定的动量,打击到钉子后,动量变成零.根据动量定理和牛顿第三定律,由于打击时间很短,钉子受到平均冲力很大,因此很容易克服木块的阻力而进入木块.2-2-6 如图2-1-2所示,用细线把球挂起来,球下系一同样的细线.拉球下细线,逐渐加大力量,哪段细线先断?为什么?如用较大力量突然拉球下细线,哪段细线先断?为什么?图2-1-2答:任何细线只能承受一定张力,当给予细线的拉力超过它所能承受的极限张力,线就会断掉.如图示的情况:(1)当逐渐加大力量拉球下线时:在任一时刻,线中的张力与拉力达到平衡,而球上面线中的张力等于拉力和球的重力.因此,在渐渐增大拉力的过程中,球上面的线中的张力首先超过其极限张力会先断.(2)当用较大的力量突然拉球下线时:由动量定理可知,作用在线上的拉力就是冲力,由于力的作用时间较短,冲力还未传到球上面的线前,球下面的线就已经断了.2-2-7 有两只船与堤岸的距离相同,为什么从小船跳上岸比较难,而从大船跳上岸却比较容易?答:(1)选择人和船作为一个系统,并将人和船视为质点,忽略水的阻力.人以水平速度跳出时,系统在水平方向的动量分量守恒,即(2)由上式可知,大船没有小船后退厉害,人与小船的作用时间比较短了,在作用力相等时,所得的冲量就比较小了.因此人用同样大的力自小船上前跳的速度比自大船上前跳时的小,所以从小船跳上岸比从大船要困难.§2-3 功 动能 动能定理2-3-1 物体可否只具有机械能而无动量?一物体可否只有动量而无机械能?试举例说明.答:一个物体的动能和动量与相对于某参考系的速度有关;而物体的势能则与势能零点的选取有关.机械能是动能和势能的代数和.(1)一物体可能只具有机械能而无动量.如:①静止在离地面h 处的物体,它的动能和动量均为零.不将势能零点选在离地面高h 处时,物体就具有势能.因此,物体具有机械能而无动量.②弹簧振子在水平面内振动,在位移最大处,速度等于零,动能和动量也等于零.如将弹簧的原长处作为弹性势能的零点,那么此时弹簧振子具有弹性势能,其机械能不为零而动量为零.(2)一物体也可能只有动量而无机械能.如:物体离地面h 处自由下落至地面时,物体速度不为零,那么物体具有动量和动能.如将重力势能的零点选定在物体下落处,则到达地面时具有重力势能-mgh .由于开。
普通物理学第六版下册答案【篇一:普通物理学第二版课后习题答案(全)】>1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m)、千克(kg)、时间(s)、安培(a)、温度(k)、摩尔(mol)、坎德拉(cd)。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m)、千克(kg)、时间(s)。
1.2中学所学习的匀变速直线运动公式为12s?v0t?at,2 各量单位为时间:s(秒),长度:m(米),若改为以h(小时)和km(公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h,如何?若仅v0单位改为km/h,又如何?解答,(1)由量纲dim v?3?lt?1,dim a?lt?2,改为以h(小时)和km(公里)作为时间和长度的单位时,1?3m/s?10km/h?10?3600km/h3600?3.6km/h12?3m/s?10km/(h)2?10?3?36002km/h23600?3.6?3600km/h212s?3.6v0t??3.6?3600at,2(速度、加速度仍为单位下的量值)验证一下:2siv0?2.0m/s, a?4.0m/s, t?3600s?1.0h12s?v0t?at,2利用计算得:12s?2?3600??4?36002?7200?25920000?25927200(m)12s?3.6v0t??3.6?3600at,2利用计算得 12s?3.6?2?1??3.6?3600?4?12?7.2?25920?25927.2(km)(2). 仅时间单位改为h?1由量纲,dim adim v?lt?lt?2得若仅时间单位改为h,得:1m/s?m/h?3600m/h3600?3600m/h12m/s?m/(h)2?36002m/h2360022?3600m/h验证一下:122s?3600v0t??3600at,22v0?2.0m/s, a?4.0m/s, t?3600s?1.0h 12 s?v0t?at,2利用计算得:12s?2?3600??4?36002?7200?25920000?25927200(m)122s?3600v0t??3600at,2利用计算得: 122s?3600?2?1??3600?4?12?7200?25920000?25927200(m) (3). 若仅v0单位改为km/h由量纲dim v?lt?3?1,得1m/s?10km/(h)?3.6km/h,36001km/h?m/s3.6仅v0单位改为km/h,因长度和时间的单位不变,将km/h换成m/s得验证一下:112s?v0t?at,3.62v0?2.0m/s, a?4.0m/s2, t?3600s?1.0h12s?v0t?at,2利用计算得:12s?2?3600??4?36002?7200?25920000?25927200(m)112s?v0t?at,3.62利用计算得: 12?10?312s???3600??4?36003.61/36002?7200?25920000?25927200(m)1.3设汽车行驶时所受阻力f与汽车的横截面积s成正比,且与速率 2vv之平方成正比。
9.1 复习笔记一、电磁感应定律1.电磁感应现象当穿过一个闭合导体回路所包围的面积内的磁通量发生变化时,不管该变化是由何原因引起的,在导体回路中均会产生感应电流.这种现象称为电磁感应现象.感应电流的方向和大小分别由楞次定律和法拉第电磁感应定律来确定.2.楞次定律闭合回路中感应电流的方向,总是使得它所激发的磁场来阻止引起感应电流的磁通量的变化(增加或减少).楞次定律,可用来确定感应电流的方向.3.法拉第电磁感应定律(1)法拉第电磁感应定律通过回路所包围的面积的磁通量发生变化时回路中产生的感应电动势与磁通量对时间的变化率成正比,即(2)感应电动势的方向感应电动势的方向与的变化间的关系如图9-1所示.台图9-1 感应电动势的方向与的变化之间的关系(3)N 匝线圈中的总电动势当每匝中通过的磁通量都相同时,N 匝线圈中的总电动势应为各匝中电动势的总和:把称为线圈的磁通量匝数或磁链.φN (4)感生电荷量在t1到t2时间内通过导线任一截面的感生电荷量为:式中,和分别为时刻通过导线回路所包围面积的磁通量.1Φ2Φ21,t t 结论:在一段时间内通过导线截面的电荷量与这段时间内导线回路所包围的磁通量的变化值成正比,而与磁通量变化的快慢无关.(5)法拉第电磁感应定律的积分形式式中,S 是以闭合回路为边界的任意曲面.二、动生电动势1.动生电动势磁场保持不变,导体回路或导体在磁场中运动,由此产生的电动势称为动生电动势.2.感生电动势导体回路不动,磁场发生变化,由此产生的电动势称为感生电动势.3.在磁场中运动的导线内的感应电动势如图9-2,导线MN 在磁场中以速度V 向右运动,则(1)自由电子受到的洛伦兹力F 为:式中,e为电子电荷量的绝对值.(2)运动导线内总的动生电动势:(3)载流导线在外磁场中受到安培力F 的大小为图9-2 动生电动势4.在磁场中转动的线圈内的感应电动势如图9-3,矩形线圈abcd 在均匀磁场中以为轴作匀速转动,线圈匝数为N ,线圈面积为S ,线圈平面的法线单位矢量与磁感应强度B 之夹角为θ,则(1)通过每匝线圈平面的磁通量为:(2)N匝线圈中所产生的动生电动势为:(3)线圈中最大动生电动势的量值为:(4)交变电动势为在均匀磁场内转动的线圈中所产生的电动势是随时间作周期性变化的,周期为2π/ω.在两个相邻的半周期中,电动势的方向相反,这种电动势称为交变电动势.图9-3 磁场中转动线圈的感应现象三、感生电动势 感生电场1.感生电场(1)概念①感生电动势:由磁场变化引起的感应电动势.②感生电场:变化磁场在其周围激发的一种电场.感生电场不同于静止电荷产生的电场,不是保守力场,又称为有旋电场.感生电场作用于导体内的自由电荷从而形成感生电动势和感应电流.(2)法拉第电磁感应定律当回路固定不动,回路中磁通量的变化全是由磁场的变化所引起的,法拉第电磁感应定律可表示为:式中,表示感生电场的场强.i E 注:若有导体回路存在时,感生电场的作用便驱使导体中的自由电荷作定向运动,从而显示出感应电流;若不存在导体回路,则没有感应电流,但变化的磁场所激发的电场还是客观存在的.2.电子感应加速器(1)基本原理利用变化的磁场所激发的电场来加速电子.(2)结构原理图电子感应加速器的结构原理图如图9-4所示.电子感应加速器是在磁场随时间作正弦变化的条件下进行工作的.图9-4 电子感应加速器结构原理图3.涡电流(1)概念在一些电器没备中常常遇到大块的金属体在磁场中运动,或者处在变化着的磁场中,此时在金属体内部也会产生感应电流,这种电流在金属体内部自成闭合回路,称为涡电流.(2)应用①产生焦耳热,可用来冶炼金属;②产生阻尼作用.(3)弊害在变压器中,消耗了部分电能,降低了电机的效率,而且会因铁芯严重发热而不能正常工作.(4)减小涡流的方法采用互相绝缘的薄片或细条叠合而成的铁芯,使涡流受绝缘的限制.四、自感应和互感应1.自感应(1)自感现象和自感电动势由于回路本身电流产生的磁通量发生变化,而在自己的回路中激起感应电动势的现象,称为自感现象,相应的电动势称为自感电动势.(2)自感电动势①大小设有一无铁芯的长直螺线管,长为l,截面半径为R,管上绕组的总匝数为N,通有电。
7.2 课后习题详解一、复习思考题§7-1 物质的电结构库仑定律7-1-1 一个金属球带上正电荷后,该球的质量是增大、减小还是不变?答:理论上质量减小,但仍可认为该球的质量没有变化.因为金属球带正电荷实际上是失去了负电子,所以理论上质量减小,但由于一个电子的质量m e=9.1×10-31kg,所带电荷量为-1.6×10-19C,金属球失去了1 C的负电荷相当于失去了9.1×10-31kg×1 C/1.6×10-19C=5.7×10-12kg的质量,这相对于整个金属球来说是微不足道的,所以仍可认为该球的质量没有变化.7-1-2 点电荷是否一定是很小的带电体?什么样的带电体可以看作是点电荷?答:(1)不是,因为点电荷是研究带电体电性质时提出的一个理想模型,“大小”是一个相对的概念,所以点电荷也只具有相对的意义,它本身不一定是很小的带电体.(2)可以看作是点电荷的带电体有以下两种情况:①相对所论点的位置距离,即当带电体的几何大小相对它至所论点的距离小很多,可忽略时,该带电体才可以看作是“点电荷”;②某一点至一带电体的距离,或者两带电体之间的距离只有在带电体可以当作“点”处理时才有确切的意义,此时带电体的形状、大小和电荷分布都可以不予考虑,而仅当作有一定电量的几何点.如:在一般情况下,半径为R,电荷面密度为σ均匀带电圆盘轴线上与盘心相距为x 的任一给定点P处的电场强度是仅当若x>>R 时,上式可以简化为这正是点电荷的电场强度公式,它说明当点P 离开圆盘的距离远远大于圆盘本身的大小时,点P 的电场强度与电荷量q集中在圆盘的中心的一个点电荷在该点所激发的电场强度相同,即此时带电圆盘可以看作是点电荷.但若R>>x ,即在点P 处看来均匀带电圆盘可认为是无限大,则点P 的电场强度又可化简为无限大均匀带电平面所激发的电场由此可见,同一带电体是否能看作点电荷完全由所讨论的问题决定.7-1-3在干燥的冬季人们脱毛衣时,常听见噼里啪啦的放电声,试对这一现象作一解释.答:脱毛衣时,毛衣与内衣发生摩擦,会使两者分别带有异号电荷,由于毛衣和内衣都是绝缘材料,这些电荷会在其表面积聚起来;在一般情况下,空气比较潮湿,含有大量的正负离子,它们很容易快速地与出现在毛衣和内衣表面上的电荷中和掉;但在干燥的冬季里,空气中的正负离子很少,毛衣与内衣发生摩擦会导致两者表面积聚很多电荷,从而产生很高的电场强度,其大小往往高于空气的击穿电场强度,因此会将空气击穿,产生噼里啪啦的放电声.7-1-4 带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒.试解答:(1)木屑被吸引移向带电棒的原因:假定带电棒带有正电荷,则处于该正电荷电场中的干燥软木屑会被极化,木屑靠近带电棒一端被极化出负电荷,木屑背着带电棒的一端被极化出正电荷,它们分别受到带电棒正电荷的吸引力和排斥力,但因木屑上负电荷更靠近带电棒,受到的吸引力大于木屑上正电荷的排斥力,所以木屑总是被吸引移向带电棒.(2)木棒剧烈地跳离带电棒的原因:假定带电棒带有正电荷,则一旦木屑接触到带电棒后,木屑上负电荷会被带电棒上的正电荷所中和,此时木屑受到的吸引力会消失,而由于木屑上正电荷仍旧存在,因此它会受到带电棒上的正电荷排斥,便又立即跳离带电棒.若带电棒带有负电荷,除了木屑两端极化电荷的极性相反以外,整个过程都与上述情况相同,即木屑总是先被吸引,接触到棒以后,又剧烈地跳离带电棒.§7-1 静电场电场强度7-2-1 判断下列说法是否正确,并说明理由.(1)电场中某点电场强度的方向就是将点电荷放在该点处所受电场力的方向;(2)电荷在电场中某点受到的电场力很大,该点的电场强度E一定很大;(3)在以点电荷为中心、r为半径的球面上,电场强度E处处相等.答:(1)不一定,这取决于该点电荷所带的电荷量.有以下两种情况:①该点电荷所带的电荷量比较小时它的引入几乎不会改变原场源电荷所激发的电场分布,而且正电荷所受到的电场力方②该点电荷所带的电荷量比较大时它的引入破坏了原场源电荷所激发的电场分布,那么该点电荷所受到的电场力就不能反映原来电场的性质,其方向当然就不能代表其所在点的电场方向,尤其是所带电荷是负电荷的话,电场力方向就更不能说是所在点的电场方向.(2)不一定.原因如下:①电荷在电场中所受到的电场力不仅取决于该电荷所在处的电场强度,而且还与该电荷的电量有关,即F=qE;②当用电场力来确定某点的电场强度,且受力的电荷是带电量不太大的点电荷时:a.该电荷可以当作是点电荷处理该电荷在电场中的线度足够小,此时所受到的电场力越大,说明点电荷所在处的电场强度也越强;b.该点电荷不能当作点电荷处理该电荷在电场中的线度比较大,此时所受到的电场力就无法说明是哪一点的电场强度.(3)不准确.电场强度是一矢量,既有大小也有方向.①大小相同在真空中一点电荷所激发的电场具有球对称,在以点电荷为中心的同一球面上的点都有相等的电场强度大小;②方向不同同一球面上不同的点其径向不同,所以就电场强度方向来说不同点有不同的方向(电场强度方向沿半径方向).因此,电场强度E并不处处相等.7-2-2 根据点电荷的电场强度公式当所考察的场点和点电荷的距离r→0时,电场强度E→∞,这是没有物理意义的,对这似是而非的问题应如何解释?答:当场点和电荷距离很近时,该电荷已不能再看作是点电荷了,即在r→0时点电荷的模型不成立,那么点电荷的电场强度公式也不能用,即推不出E→∞.7-2-3 点电荷q如只受电场力的作用而运动,电场线是否就是点电荷q在电场中运动的轨迹?答:不一定.(1)在一般情况下,电场线并不能代表点电荷q在电场中的运动轨迹电场线上任一点的切线方向反映了该点电场方向,是点电荷q在该处受到的电场力方向,也即加速度的方向.而电荷运动轨迹上任一点的切线方向是电荷在该点的速度方向.加速度的方向并不总是和速度的方向一致,因此点电荷q不可能总是沿电场线运动.如:一正点电荷q以初速度v0入射一平行板电场,如图7-1-1所示,其电场线由上板指向下板,即电场力(加速度)方向总是垂直向下,而运动轨迹是一条曲线,电子速度沿其切线方向,与加速度方向并不重合.(2)在某些特殊的情况下,点电荷也有可能沿电场线运动①初速度为零的正点电荷q在平行板电场中的运动轨迹就与电场线重合;②在点电荷Q的非均匀电场中,初速度为零的正点电荷q沿径向电场线运动.上述两种情况速度与加速度方向一致,电场线都是直线,运动轨迹也是直线.图7-1-1 正点电荷q在平行板电场中的运动7-2-4 在正四边形的四个顶点上,放置四个带相同电荷量的同号点电荷,试定性地画出其电场线图.答:可分为两个步骤:(1)画出两个带相同电荷量的同号点电荷的电场线图正电荷的电场线总是从电荷出发呈辐射状的,对于两个正电荷的系统,它们的电场线在空中相遇不能相交,只能相互排斥改变路径.同时在两个正电荷连线的中点电场强度为零,即该处的电场线密度为零.因此两个正电荷系统的电场线可描绘如图7-1-2(a)所示.(2)画出四个带相同电荷量的同号点电荷的电场线图当一正四边形的四个顶点上都放上正点电荷时,边线中点的电场强度不再为零,此时对角线中点电场强度为零,即正四边形中心处电场线密度为零.由此正四边形的四个顶点上都放上正点电荷系统的电场线可描绘如图7-1-2(b)所示.图7-1-2 正点电荷系统的电场线。
大学物理下册课后习题全解()第十二章 真空中的静电场12.1 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式 22014q q E k r r ==πε,其中1/(4πε0) = k = 9.0×109N·m 2·C -2. 点电荷q 1在C 点产生的场强大小为: 112014q E AC=πε994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯方向向下.点电荷q 2在C 点产生的场强大小为 2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.2 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强. [解答]在带正电的圆弧上取一弧元d s = R d θ,电荷元为d q = λd s , 在O 点产生的场强大小为 220001d 1d d d 444q s E R R Rλλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/6000sin d (cos )22RR==-⎰ππλλθθθπεπε0(12R=λπε.12.3 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求: (1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分在线与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m). 在细棒上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产生的场强的大小为1220d d d 4()q lE k r x l ==-λπε图12.1场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰014LLx l λπε-=- 011()4x L x L λπε=--+220124L x Lλπε=-. ① 将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯-= 2.41×103(N·C -1), 方向沿着x 轴正向.(2)建立坐标系,y = d 2.在细棒上取一线元d l ,所带的电量为d q = λd l , 在棒的垂直平分在线的P 2点产生的场强的大小为2220d d d 4q lE kr rλπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ, 所以 d l = -d 2d θ/sin 2θ, 因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++, 保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.4 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.图12.4[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为 d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向. 再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2.12.5 一宽为b 的无限长均匀带电平面薄板,其电荷密度为ζ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a 处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = ζd x ,根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰/2/2ln(/2)2b b b a x σπε--=+-0ln(1)2b aσπε=+. ① 场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = ζd x , 带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,图12.5沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰0arctan()2bd σπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = ζb , ①式的场强可化为0ln(1/)2/b a E a b a λπε+=, 当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得:02z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.6 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0. (2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.7 面电荷密度为ζ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为 q = πR 2ζ,通过球面的电通量为 Φe = q /ε0,通过半球面的电通量为Φ`e = Φe /2 = πR 2ζ/2ε0.12.8 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2).(3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为 d e SΦ=⋅⎰E S 2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,高斯面在板内的体积为V = Sd ,包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强迭加法.(1)由于平板的可视很多薄板迭而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为 d ζ = ρd y ,产生的场强为 d E 1 = d ζ/2ε0,积分得100/2d ()222r d y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0, E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场迭加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.10 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R 的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为匀强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的迭加.图12.10对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为 03E r ρε=. 当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为 3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=,方向由O 指向O `. O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=,方向也由O 指向O `. [证明]在小球内任一点P ,大球和小球产生的场强大小分别为03r E r ρε=, `0`3r E r ρε=,方向如图所示. 设两场强之间的夹角为θ,合场强的平方为 222``2cos r r r r E E E E E θ=++222()(`2`c o s )3r r r r ρθε=++, 根据余弦定理得222`2`c o s ()a r r r r πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.11 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C 点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0; 在C 点产生的电势为 0004346Cq q q U R R Rπεπεπε--=+=, 电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.12 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2ζ,B 平面的电荷面密度为ζ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为 E A = 2ζ/2ε0 = ζ/ε0,E B = ζ/2ε0,两平面在它们之间产生的场强方向相反,因此,总场强大小为 E = E A - E B = ζ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为 U = Ed = ζd /2ε0,图12.11当点电荷q 从A 面移到B 面时,电场力做的功为 W = qU = qζd /2ε0.12.13 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为 204Q E rπε=,由于 d d R R R U U E r ∞∞∞-=⋅=⎰⎰E l 200d 44RRQQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04QU Rπε∞=-.12.14 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=,电荷的体密度为 334Q QV R ρπ==. 利用12.10题的方法可求球内外的电场强度大小为30034QE r r Rρεπε==,(r ≦R ); 204QE rπε=,(r ≧R ). 取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l 3200d d 44RrRQ Qr r r R r πεπε∞=+⎰⎰230084RrRQ QrRrπεπε∞-=+22300()84QQR r R R πεπε=-+2230(3)8Q R r Rπε-=.12.15 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其它地方无电荷. (1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反. (1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为 d e S Φ=⋅⎰E S 0d d d 2S S S ES =⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS , 包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为 V = S 2b ,包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y ); E = -ρb/ε0, (y ≦-b ). E-y 图如图所示.(2)对于平面之间的点,电势为0d d y U y ρε=-⋅=-⎰⎰E l 22y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为 22y U ρε=-,(-b ≦y ≦b ).这是一条开口向下的抛物线.当y ≧b 时,电势为00d d nqb nqb U y y C εε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为 00d d b bU y y C ρρεε=-⋅==+⎰⎰E l , 在y = -b 处U = -ρb 2/2ε0,所以 C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得 200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其它关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.16 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷ζ=3.3×10-6C·m -2,求:(1)在两板之间离A 板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为 E=ζ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为 d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l 0()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V). (2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.17 电量q 均匀分布在长为2L 的细直线上,试求: (1)带电直线延长线上离中点为r 处的电势; (2)带电直线中垂在线离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L .(1)建立坐标系,在细在线取一线元d l ,所带的电量为d q = λd l , 根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为 10d 4L L l U r l λπε-=-⎰0ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细在线取一线元d l ,所带的电量为d q = λd l , 在线的垂直平分在线的P 2点产生的电势为2221/20d d 4()lU r l λπε=+,积分得2221/201d 4()LLU l r l λπε-=+⎰0)4Ll Ll λπε=-=08qLπε=0ln4q LLrπε=.(3)P 1点的场强大小为11U E r ∂=-∂011()8q L r L r L πε=--+22014q r L πε=-, ① 方向沿着x 轴正向.P 2点的场强为22U E r ∂=-∂01[4q L r πε==, ②方向沿着y 轴正向.[讨论]习题12.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-,由于2L λ = q ,取x = r ,就得公式①. (2)习题12.3的解答还计算了中垂在线的场强为y E =d 2 = r ,可得公式②.由此可见,电场强度可用场强迭加原理计算,也可以用电势的关系计算.12.18 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势. 在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-,包含的电量为 Q = ρV , 这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.(2)A 点的场强为 0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂.[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为 3314()3V r R π=-, 包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0,可得B 点的场强为 3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为 33214()3V R R π=-, 包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为 33212200()43R R qE r rρπεε-==,(R 2≦r ). A 点的电势为d d AAA r rU E r ∞∞=⋅=⎰⎰E l 12131200d ()d 3A R R r R R r r r r ρε=+-⎰⎰2332120()d 3R R R r r ρε∞-+⎰ 22210()2R R ρε=-.B 点的电势为d d BBB r rU E r ∞∞=⋅=⎰⎰E l 23120()d 3BR r R r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰322120(32)6B B R R r r ρε=--. A 和B 点的电势与前面计算的结果相同.12.19 一圆盘,半径为R ,均匀带电,面电荷密度为ζ,求:(1)圆盘轴线上任一点的电势(用该点与盘心的距离x 来表示); (2)从电场强度的和电势梯度的关系,求该点的电场强度. (此题解答与书中例题解答相同,在此省略)12.20 (1)设地球表面附近的场强约为200V·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为 R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量. 根据公式 E = -ζ/ε0,电荷面密度为 ζ = -ε0E ;地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = ζS = -4πε0R 2E = -R 2E /k ,k 是静电力常量,因此电量为 629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C). (2)在离地面高为h = 1400m 的球面内的电量为 2()``R h E Q k+=-=-0.9×105(C),大气层中的电荷为 q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为 V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为 ρ = q /V = 1.137×10-12(C·m -3).第十三章 静电场中的导体和电介质13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为 204q E r πε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为 04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d S Φ=⋅⎰D S Ñ012d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr ,其方向垂直中心轴向外. 电场强度为 E = D/ε0εr = λ/2πε0εr r ,方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势迭加,大小为图13.3000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少? (2)A 板电势为多少? [解答](1)设A 的左右两面的电荷面密度分别为ζ1和ζ2,所带电量分别为q 1 = ζ1S 和q 2 = ζ2S ,在B 、C 板上分别感应异号电荷-q 1和-q 2,由电荷守恒得方程q = q 1 + q 2 = ζ1S + ζ2S . ① A 、B 间的场强为 E 1 = ζ1/ε0,A 、C 间的场强为 E 2 = ζ2/ε0. 设A 板与B 板的电势差和A 板与C 板的的电势差相等,设为ΔU ,则ΔU = E 1d 1 = E 2d 2, ② 即 ζ1d 1 = ζ2d 2. ③解联立方程①和③得 ζ1 = qd 2/S (d 1 + d 2), 所以 q 1 = ζ1S = qd 2/(d 1+d 2) = 2×10-8(C); q 2 = q - q 1 = 1×10-8(C). B 、C 板上的电荷分别为 q B = -q 1 = -2×10-8(C); q C = -q 2 = -1×10-8(C).(2)两板电势差为 ΔU = E 1d 1 = ζ1d 1/ε0 = qd 1d 2/ε0S (d 1+d 2), 由于 k = 9×109 = 1/4πε0,所以 ε0 = 10-9/36π, 因此 ΔU = 144π = 452.4(V).由于B 板和C 板的电势为零,所以 U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A ,带电量为q ,在它的附近放一块与A 平行的金属导体板B ,板B有一定的厚度,如图所示.则在板B 的两个表面1和2上的感应电荷分别为多少?[解答]由于板B 原来不带电,两边感应出电荷后,由电荷守恒得q 1 + q 2 = 0. ① 虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S ,则面电荷密度分别为 ζ1 = q 1/S 、ζ2 = q 2/S 、ζ = q/S ,它们产生的场强大小分别为 E 1 = ζ1/ε0、E 2 = ζ2/ε0、E = ζ/ε0. 在B 板内部任取一点P ,其场强为零,其中1面产生的场强向右,2面和A 板产生的场强向左,取向右的方向为正,可得 E 1 - E 2 – E = 0,即 ζ1 - ζ2 – ζ = 0, 或者 q 1 - q 2 + q = 0. ② 解得电量分别为 q 2 = q /2,q 1 = -q 2 = -q /2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V ,两板间相距为1.2mm ,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以ζ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面, 所以ζ4 = 0.由于两板带等量异号的电荷,所以ζ2 = -ζ3. 两板之间的场强为 E = ζ3/ε0,而 E = U/d , 所以面电荷密度分别为ζ3 = ε0E = ε0U/d = 8.84×10-7(C·m -2),ζ2 = -ζ3 = -8.84×10-7(C·m -2).13.7 一球形电容器,内外球壳半径分别为R 1和R 2,球壳与地面及其它物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214R C R R πε=-表示.(提示:可看作两个球电容器的并联,且地球半径R >>R 2)图13.4图13.6[证明]方法一:并联电容法.在外球外面再接一个半径为R 3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为1210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为 2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共享一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R RC C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的迭加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`Rq q R =-.根据高斯定理可得两球壳之间的场强为 122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l 121202()d 4R R R q r R r πε=-⎰1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为 120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-. 当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的界面插入一薄导体,可知两个电容器串联,电容分别为 C 1 = ε1S/d 1和C 2 = ε2S/d 2.总电容的倒数为 122112121212111d d d d C C C S S S εεεεεε+=+=+=,总电容为 122112S C d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ;(3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d S Φ=⋅⎰D S Ñ012d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl ,根据介质中的高斯定理 Φd = q ,可得电位为 D = λ/2πr ,方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr ,方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLRU E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为 00212ln(/)l qC U R R πε==,所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布;(2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d S SD S r D Φπ=⋅==⎰⎰D S 蜒高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2,方向沿着径向.用向量表示为 D = Q 0r /4πr 3.电场强度为 E = D /ε0εr = Q 0r /4πε0εr r 3,方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4r Q rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以 D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0.(2)在介质层内靠近金属球处,自由电荷Q 0产生的场为 E 0 = Q 0r /4πε0r 3; 极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3; 总场强为 E = Q 0r /4πε0εr r 3.由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为 ``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为 ``21q q =-, 面密度为 ``02222221(1)44r Q q R R σπεπ==-. 13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为 W 1:W 2 = C 2:C 1 = 2:1.两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为 W 1:W 2 = C 1:C 2 = 1:2.13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为 C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ;另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为 C = C 1 + C 2 = (1 + εr )ε0S /2d , 静电能为 W = CU 2/2 = (1 + εr )ε0SU 2/4d .13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能;(3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为 C = (1 + εr )ε0S /2d .(2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为 W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d .(3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d .设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++. 13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少? [解答]平行板电容器的电容为 C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为 C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为。
9.2 课后习题详解一、复习思考题§9-1 电磁感应定律9-1-1 在下列各情况下,线圈中是否会产生感应电动势?何故?若产生感应电动势,其方向如何确定?(1)线圈在载流长直导线激发的磁场中平动,如图9-1-1(a )、(b );(2)线圈在均匀磁场中旋转,如图(c )、(d )、(e );(3)在均匀磁场中线圈从圆形变成椭圆形,如图(f );(4)在磁铁产生的磁场中线圈向右移动,如图(g );(5)如图(h)所示,两个相邻近的螺线管1与2,当1中电流改变时,试分别讨论在增加与减少的情况下,2中的感应电动势.图9-1-1确定可能产生感应电动势的情况答:根据法拉第电磁感应定律,通过回路所包围面积的磁通量发生变化时回路中将产生感应电动势,感应电动势的方向可用楞次定律来确定,据此:(1)无限长载流导线的磁场距直导线为x 处的磁感应强度为:①在(a)的情况下,虽然线圈各点的磁场各不相同,但是线圈内的总磁通量与线圈的位置无关,无论线圈如何运动都不发生变化,因此线圈中不会产生感应电动势.当然,从局部来看,线圈中垂直于直长导线的两条边框会因切割磁感应线出现电磁感应,但是产生的感应电动势的方向都是自下而上,对整个线圈回路来说感应电动势由于方向相反而抵消,整体为零;②在(b)的情况下,线圈向远离直长导线的方向运动,线圈内磁场随x距离的增加而变小,磁通量也变少,发生了变化,因此线圈中会产生感应电动势;通过楞次定律判断,感应电动势的方向为顺时针方向.(2)①(c)的情况,如图示所标定的两个位置通过线圈内的磁通量是不同的.实线位置,线圈平面与磁场方向垂直,通过线圈的磁通量最大,而虚线位置,线圈平面平行磁场方向,通过线圈的磁通量为零;因此当线圈旋转时线圈内的磁通量发生变化,产生感应电动势,其方向会随着线圈旋转所达到的位置发生变化相应改变,如图示所标定的由实线位置旋转到虚线位置时,通过线圈的磁通量变少,感应电动势的方向为顺时针方向;此后由虚线位置继续旋转时,感应电动势的方向为逆时针方向;②(d)的情况,与(c)完全相同;③(e)的情况,线圈运动时其平面始终垂直磁场方向,线圈内的磁通量始终保持不变,所以线圈中不会产生感应电动势;(3)如图(f)所示,当线圈从圆形变成椭圆形的过程中,线圈面积逐渐减小,所包围的磁通量也就变少,于是线圈中产生了顺时针方向的感应电动势;(4)如图(g)所示,当线圈向右移动时,由于磁场越来越弱,通过线圈的磁通量也越来越少,线圈中会产生感应电动势,感应电动势的方向从左向右看为逆时针方向;(5)在图(h)中,当螺线管1中电阻的滑动头向左滑动时,螺线管1中的电流逐渐增大,所激发的磁场逐渐增强,通过螺线管2的磁通量增加,所以在螺线管2中将会产生逆时针方向的感应电动势;相反,当螺线管1中电阻的滑动头向右滑动时,类比可知,在螺线管2中有顺时针方向的感应电动势产生.9-1-2 将一磁铁插入一个由导线组成的闭合电路线圈中,一次迅速插入,另一次缓慢地插入.问:(1)两次插入时在线圈中的感应电动势是否相同?感生电荷量是否相同?(2)两次手推磁铁的力所作的功是否相同?(3)若将磁铁插入一不闭合的金属环中,在环中将发生什么变化?答:(1)①感应电动势:由法拉第电磁感应定律可知,感应电动势的大小有线圈中磁通量的变化率决定,迅速插入磁通量的变化率比缓慢地插入要大,因而迅速插入产生的感应电动势要大一些;②感生电量:在相同时间内通过导线截面的电荷量与导线回路所包围的磁通量的变化值成正比,而与磁通量变化的快慢无关,设线圈的电阻为R,磁铁插入前后线圈中磁通量分别为和,则感生电荷量均是,因此产生的感生电荷量相同.(2)手推磁铁的力所作功的大小与感应电动势在这段时间内所作的功相等,即由于迅速插入时磁通量的变化率比缓慢插入时的大,因此迅速插入时手推磁铁的力所作的功要比缓慢插入时大.(3)当磁铁插入金属环时,金属环所在空间的磁场发生了变化(由弱到强),因而会产生感生电动势,在金属环上有感生电场的存在,但由于金属环没有闭合,所以没有感应电流产生.9-1-3 让一块很小的磁铁在一根很长的竖直铜管内下落,若不计空气阻力,试定性说明磁铁进入铜管上部、中部和下部的运动情况,并说明理由.答:(1)磁铁处于铜管上部时:铜管中将产生感应电流,此时磁铁速度较小,产生的感应电流较小,磁铁受到的阻力较小,因此磁铁仍然加速下落.(2)磁铁处于铜管中部时:感应电流随着磁铁下落速度的增大而增大,感应电流的磁场对下落磁铁的阻力也逐渐增大.竖直铜管足够长时,磁铁所受的重力和阻力的合力可在管内某处等于零.然后,磁铁以恒定速率速率下落.(3)磁铁处于铜管下部时:磁铁即将离开铜管,由于磁铁在管内的磁感应强度逐渐减小,磁铁的重力将大于感应电流的磁场对磁铁的阻力,因而磁铁将加速离开铜管.§9-2 动生电动势9-2-1 如图9-1-2所示,与载流长直导线共面的矩形线圈abcd作如下的运动:(1)沿x方向平动;(2)沿y方向平动;(3)沿xy平面上某一L方向平动;(4)绕垂直于xy平面的轴转动;(5)绕x轴转动;(6)绕y轴转动;问在哪些情况下矩形线圈abcd中产生的感应电动势不为零?图9-1-2 与载流直导线共面的运动线圈答:(1)穿过矩形线圈的磁通减少,感应电动势不为零;(2)穿过矩形线圈的磁通不变,感应电动势为零;(3)穿过矩形线圈的磁通减少,感应电动势不为零;(4)穿过矩形线圈的磁通发生变化,感应电动势不为零;(5)穿过矩形线圈的磁通发生变化,感应电动势不为零;(6)穿过矩形线圈的磁通发生变化,感应电动势不为零.9-2-2 如图9-1-3所示,一个金属线框以速度v从左边匀速通过一均匀磁场区,试定性地画出线框内感应电动势与线框位置的关系曲线.(a)一个金属线框以匀速通过一均匀磁场区(b)感应电动势与线框位置的关系曲线图9-1-3 进入和离开磁场区的金属线框内感应电动势的变化答:只有当金属线框正在进入和正在离开磁场区、且线框有一部分在磁场区外时才有可能产生感应电动势.进入磁场区时穿过金属线框的磁通量增加,离开磁场区时则减少,因此只在这两个时间段内产生的感应电动势方向相反.设金属线框的宽度为d,磁场区的宽度为L,则线框内感应电动势与线框位置的关系曲线如图9-3(b)所示.9-2-3 如图9-1-4所示.当导体棒在均匀磁场中运动时,棒中出现稳定的电场E=vB,这是否和导体中E=0的静电平衡的条件相矛盾?为什么?是否需要外力来维持棒在磁场中作匀速运动?图9-1-4 在均匀磁场中运动的导体棒答:(1)不矛盾.这是两个不同的情况:①当导体棒在均匀磁场中运动时,棒中出现稳定的电场E=vB是“非静电性场”,它反映的是单位正电荷受到的非静电力,即洛伦兹力.非静电性场的场强沿整个闭合电路的环流不等于零,等于电源的电动势.此时,导体内的电荷在包括非静电力场E=vB和库仑力场的作用下的平衡,不是单一的静电平衡.②导体在静电平衡时导体中等于零的电场是静止电荷激发的电场,静电场的场强反映。
普通物理第六版答案【篇一:普通物理练习题第6版下册】/p> 1、作谐振动的物体运动至平衡位置向正方向时,设谐振动方程为x=,v=2 。
???2、质量为10g的小球与轻弹簧组成的系统,按x?0.5?10?2cos?8?t??m的规3??律而振动,式中t以 s为单位。
则振动的角频率= s?1;周期= s;振幅m;初相;速度的最大值m/s;加速度的最大值= m/s2 8?s?1;0.25s;0.5?10?2m;0.126m/s;3.16m/s2(2)t=1s时刻的相位二、选择题1、下列说法正确的是:() ca、所有周期性运动都是简谐振动;b、简谐振动的周期与振幅成正比;c、所有简谐振动都是周期性运动;d、简谐振动的能量与振幅成正比2、简谐振动系统的振动总能量()ba、与速度的平方成正比;b、与振幅的平方成正比;c、与频率成反比;d、与加速度的平方成反比;3、作简谐振动的物体,其振动表达式为x?12cos(?t?25? 3?3)cm,物体从x=+12cm处且向x轴负方向运动到x=+6cm处且向x轴负方向运动所需的最少时间是:()b1111a、s;b、s;c、s;d、s 2346三、简述题1、简述什么是简谐振动?答:运动学定义:物体运动时,如果离开平衡位置的位移(或角位移)按余弦函数(或正弦函数)的规律变化,这种运动称为简谐振动。
在忽略阻力的情况下,弹簧振子的小幅度振动以及单摆的小角度振动都是简谐振动。
简谐振动是一种最简单和最基本的振动,一切复杂的振动都可以看作是由若干个简谐振动合成的结果。
答:动力学定义:把物体受到总是与其相对位置的位移成正比,方向相反的线性回复力作用下的运动叫做简谐振动。
受力与位移关系为f=-kx或位移与时间为余弦函数关系的运动就是简谐振动。
四、计算题1、有一个和轻弹簧相联的小球,沿x轴作振幅为a的简谐振动,其表式用余弦函数表示。
若t=0时,球的运动状态为:(1)x0??a;(2)过平衡位置向x正方向运动;(3)过x?aa处向x负方向运动;(4)过x?处向x正方向运动. 22用矢量图示法确定相应的初相的值,并写出振动表式。
第12章 光 学12-1 一半径为R 的反射球内,P 1、P 2为球内相对于球心C 对称的两点,与球心间的距离为b ,设光线自P 1发出经球面上O 点反射后经过P 2点。
试利用费马原理计算θ为何值时P 1O +OP 2的光程为极小?(θ为半径OC 与CP2之间的夹角。
)解:由图12-1中几何关系得,的光程为:图12-1又根据费马原理,极小时光程应满足:即=0解得:cosθ=0或sinθ=0,即θ为,或0,。
2π32ππ12-2 一个人身高1.8 m ,如果此人能够从铅直平面镜中看到自己的全身,这个平面镜应有多高?如何放置?试作图表示之,假设他的眼睛位于头顶下方10 cm 处。
解:设人身高h =1.8 m ,眼睛位于头顶下方处,平面镜高为L ,距地面距离10x cm =为,如图12-2所示,则有:l。
又因为所以,平面镜高为:L=1.75-0.85=0.9 m。
图12-212-3 设光导纤维内层材料的折射率n1,外层材料的折射率n2(n1>n2),光纤外介质的折射率为n0。
若使光线能在光纤中传播,其最大的入射角为多大?图12-3解:如图12-4所示,设光线在纤维端面的最大入射角为,折射角为,在内、θθ'm外层材料界面发生全反射时的临界角为,根据折射定律,有:。
ic图12-4根据全反射条件,有且则有:所以其最大入射角为:。
12-4 眼睛E和物体PQ之间有一折射率为1.50的玻璃平板,如图12-5所示,平板的厚度d为30cm,求物体PQ的像与物体之间的距离为多少(平板周围为空气)?图12-5解:如图12-6所示,设PQ是一垂直于玻璃表面法线放置的小物体,以玻璃的法线为主轴,玻璃前、后表面与主轴的交点分别为O1、O2。
设物体对玻璃前表面的物距为p1,像距为p1’,由于玻璃表面是平面,因此r=∞。
根据物像公式,有,解得,负号表示玻璃前表面所成的像P1Q1在物体的同一侧。
图12-6对于玻璃的后表面,P1Q1为物,其物距为:设像距为p 2’,由,可得像距:与像P 1Q 1类似,像P 2Q 2仍在物体的同一侧,则像P 2Q 2与物体的间距为:。
第12章 光 学
12.2 课后习题详解
一、复习思考题
§12-1 几何光学简介
12-1-1 试举例说明在日常生活中所观察到的全反射现象.
答:全反射,又称全内反射,是指光由光密(即光在此介质中的折射率大的)介质射到光疏(即光在此介质中折射率小的)介质的界面时,全部被反射回原介质内的现象.产生全反射的条件是:(1
)光必须由光密介质射向光疏介质;(2)入射角必须大于或等于临界角.如图12-1-1所示的全反射棱镜,光以45°入射角由玻璃反射出空气,而临界角约42°,则发生全反射,由此原理制备了潜望镜、望远镜等.
图12-1-1
12-1-2 汽车的后视镜的结构如何?所成的像有何特点?
答:(1)一般在汽车的后视镜设计上,为便于司机的驾驶,将后视镜设为凸面镜;
(2)物体在后视镜所成的像是缩小正立的虚像.
12-1-3 试在表中填写球面反射镜成像的特征.对于凸面镜,作类似的分析.
答:设f表示凹面镜的焦距,p表示物体距离凹面镜的位置,p'表示成像距离凹面镜的位置.
球面反射镜成像的特征如表12-1-1,凸面镜成像的特征如表12-1-2.
表12-1-1 凹面镜成像特征
物像
位置类型(实、
虚)
位置方位放缩性
∞>p>2f实像2f>p′>f倒立缩小p=2f实像p′=2f倒立大小相同f<p<2f实像∞>p>2f倒立放大p=f不成像p′=∞
0<p<f虚像0>p′>-∞正立放大
表12-1-2 凸面镜成像特征
物像
位置类型(实、
虚)
位置方位放缩性
∞>p>0虚像f>p′>0正立缩小
(任何位置)
12-1-4 试列表分析薄透镜(凸透镜和凹透镜)成像的特征.
答:设f表示凹面镜的焦距,p表示物体距离凹面镜的位置,p'表示成像距离凹面镜的位置.
表12-1-3 薄透镜(凸透镜)成像特征
物像
位置类型(实、
虚)
位置方位放缩性
∞>p>2f实像2f>p'>f倒立缩小p=2f实像p'=2f倒立缩小f>p>2f实像∞>p>2f倒立放大p=f不成像p'=∞
0<p<f虚像像与物同侧p′>p正立放大-∞<p<0(
虚物)
实像f>p'>0正立缩小
表12-1-4 薄透镜(凹透镜)成像特征物像
位置类型(实、
虚)
位置方位放缩性
任何位置虚像p'<f正立缩小
§12-2 光源单色光相干光
12-2-1 为什么两个独立的同频率的普通光源发出的光波叠加时不能得到干涉图样?
答:这是因为普通光源发出的光,在振动方向上以及相位上都没有任何联系,而且两光的相位差关系也是随机的.而两列光波叠加后产生干涉现象必须满足:两列光波频率相同,振动方向相同以及相位差恒定,三者缺一不可.因此,两个独立的普通光源所发出的光波一般不能产生干涉现象.
12-2-2 获得相干光的方法有哪些?根据何在?
答:(1)获得相干光的一般方法是分振幅法和分波阵面法:
①分振幅法是将光投射到两种介质面上,经反射而折射分成两束相干光,从而形成相干光源;
②分波阵面法是从光源发出的某波阵面上取出两部分面元作为两个相干的光源.(2)获得相干光的根据:利用反射、折射或衍射等方法把从光源同一点发出的光分成两个振动方向相同、频率相同、相位差相同或恒定的光波列,如此得到的两束光即为相干光.
§12-3 双缝干涉
12-3-1 试讨论两个相干点光源S1和S2在如下的观察屏上产生的干涉条纹:
(1)屏的位置垂直于S1和S2的连线.
(2)屏的位置垂直于S1和S2连线的中垂线.
答:设两个相干点光源初相相同,光在空间的轨迹为一组以S1和S2的连线为中心对
称轴的双叶旋转双曲面,如图12-1-2所示.
(1)当屏的位置垂直于S 1和S 2的连线时,屏上产生的干涉条纹为圆条纹.
(
2)当屏的位置垂直于S 1和S 2连线的中垂线时,屏上产生的干涉条纹为双曲线,可近似看作平行的直条纹.
图12-1-2
12-3-2 在杨氏双缝实验装置中,试描述在下列情况下干涉条纹如何变化:
(1)当两缝的间距增大时;
(2)当双缝的宽度增大时;
(3)当线光源S 平行于双缝移动时;
(4)当线光源S 向双缝屏移近时;
(5)当线光源S 逐渐增宽时.
答:由明纹位置坐标公式,计算得到相邻明纹间距为.
(1)随着两缝间距的增大,屏上明纹间距逐渐变小,条纹变密.
(2)随着双缝宽度的增大,衍射的中央亮区的范围缩小,干涉条纹的数目减少,但
由于有更多光进入单缝,因此干涉条纹的亮度有所增加.
(3)随着线光源S 平行于双缝移动,干涉条纹将沿与光源移动相反的方向移动,如图12-1-3.
图12-1-3
(4)随着线光源S 向双缝屏移近,干涉条纹基本不发生什么变化,明纹光强可能有轻微改变.
(5)随着线光源S 逐渐变宽,可将光源S 微分为无数个互不相干的线光源,各个线
光源在屏上形成各自的干涉条纹(图12-1-4).但是,随着线光源S 的逐渐加宽,干涉条纹逐渐变得模糊,最终会消失.因此存在一个光源的极限宽度,理论上计算得极限宽度为
.当光源超过极限宽度时,就看不到干涉条纹.
图12-1-4
12-3-3 在杨氏双缝实验中,如有一条狭缝稍稍加宽一些,屏幕上的干涉条纹有什么变化?如把其中一条狭缝遮住,将发生什么现象?
答:(1)若把一条狭缝稍稍加宽,于是通过该缝的光强增加,即光的能量增加.此。