解析几何试题库完整
- 格式:doc
- 大小:5.08 MB
- 文档页数:77
高一解析几何试题及答案一、选择题(每题5分,共20分)1. 若点P(3, -4)在直线2x - 3y + 6 = 0上,则该直线的斜率是:A. 2/3B. -2/3C. 3/2D. -3/2答案:B2. 已知圆C的方程为x^2 + y^2 - 6x - 8y + 25 = 0,圆心坐标为:A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)答案:A3. 直线x + y = 1与圆x^2 + y^2 = 1相交于点A和点B,若AB的中点为(a, b),则a + b的值为:A. 0B. 1C. -1D. 2答案:B4. 椭圆x^2/4 + y^2 = 1的焦点坐标为:A. (±1, 0)B. (±2, 0)C. (0, ±1)D. (0, ±2)答案:B二、填空题(每题5分,共20分)1. 已知直线l的方程为y = 2x + 1,且与x轴交于点A,与y轴交于点B,则AB的长度为______。
答案:√52. 抛物线y^2 = 4x的准线方程为______。
答案:x = -13. 双曲线x^2/9 - y^2/16 = 1的实轴长为______。
答案:64. 圆x^2 + y^2 - 6x - 8y + 25 = 0的半径为______。
答案:5三、解答题(每题15分,共30分)1. 已知直线l:y = -2x + 3与圆C:x^2 + y^2 - 6x - 8y + 25 = 0相交于点P和Q,求线段PQ的长度。
答案:首先求出圆心C(3, 4)到直线l的距离d,使用点到直线距离公式,得到d = |-2*3 + 4 - 3| / √((-2)^2 + 1^2) = √5。
由于圆的半径r = 5,线段PQ的长度为2√(r^2 - d^2) = 2√(5^2 - (√5)^2) = 4√5。
2. 已知椭圆E:x^2/a^2 + y^2/b^2 = 1(a > b > 0)的焦点在x轴上,且离心率e = √3/2,椭圆与y轴交于点(0, b)和(0, -b),求椭圆的方程。
大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。
选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。
2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。
对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。
二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。
答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。
将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。
2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。
答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。
这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。
三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。
解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B.22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D.22(1)(1)2x y +++=[解析]圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径错误!即可. [答案]B 2.直线1y x =+与圆221x y +=的位置关系为〔A .相切B .相交但直线不过圆心C .直线过圆心D .相离 [解析]圆心(0,0)为到直线1y x =+,即10x y -+=的距离1222d ==,而2012<<,选B 。
[答案]B 3.圆心在y 轴上,半径为1,且过点〔1,2的圆的方程为〔A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1〔直接法:设圆心坐标为(0,)b ,则由题意知2(1)(2)1o b -+-=,解得2b =,故圆的方程为22(2)1x y +-=。
解法2〔数形结合法:由作图根据点(1,2)到圆心的距离为1易知圆心为〔0,2,故圆的方程为22(2)1x y +-=解法3〔验证法:将点〔1,2代入四个选择支,排除B,D,又由于圆心在y 轴上,排除C 。
[答案]A4.点P 〔4,-2与圆224x y +=上任一点连续的中点轨迹方程是〔A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=[解析]设圆上任一点为Q 〔s,t,PQ 的中点为A 〔x,y,则⎪⎪⎩⎪⎪⎨⎧+-=+=2224t y s x ,解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得〔2x -42+〔2y +22=4,整理,得:22(2)(1)1x y -++=[答案]A5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是〔A. 1或3B.1或5C.3或5D.1或2 [解析]当k =3时,两直线平行,当k ≠3时,由两直线平行,斜率相等,得:kk --43=k -3,解得:k =5,故选C 。
解析几何复习题-数学试题(一)选择题1、从点P(m, 3)向圆(x + 2)2 + (y +2)2 = 1引切线, 则一条切线长的最小值为A.B.5 C.D.2、若曲线x2-y2 = a2与(x-1)2 + y2 = 1恰有三个不同的公共点, 则a的值为A.-1 B.0 C.1 D.不存在3、曲线有一条准线的方程是x = 9, 则a的值为A.B.C.D.4、参数方程所表示的曲线是A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分, 且过点D.抛物线的一部分, 且过点5、过点(2, 3)作直线l, 使l与双曲线恰有一个公共点, 这样的直线l共有A.一条B.二条C.三条D.四条6、定义离心率为的椭圆为“优美椭圆”, 设(a > b > 0)为“优美椭圆”, F、A分别是它的左焦点和右顶点, B是它的短轴的一个端点, 则ÐABF为A.60° B.75° C.90° D.120°7、在圆x2 + y2 = 5x内, 过点有n条弦的长度成等差数列, 最小弦长为数列的首项a, 最大弦长为an, 若公差, 则n的取值集合为A.B.C.D.8、直线与圆x2 + y2 = 1在第一象限内有两个不同的交点, 则m的取值范围是A.1 < m < 2 B.C.D.9、极坐标方程表示的曲线是A.椭圆B.抛物线C.圆D.双曲线10、设a, b, c是ABC中ÐA, ÐB, ÐC所对边的边长, 则直线sinA·x + ay + c = 0与bx-sinB·y + sinC = 0的位置关系是A.平行B.重合C.垂直D.相交但不垂直(二)填空题11、有下列命题:(1)到两个定点的距离的和等于常数的点的轨迹是椭圆;(2)到两个定点的距离的和等于差的绝对值为常数的点的轨迹为双曲线;(3)到定直线和定点F(-c, 0)的距离之比为(c > a > 0)的点的轨迹为双曲线;(4)到定点。
解析几何习题一、选择题(本大题共12个小题在每小题给出的四个选项中,只有一项是符合题目要求的)1. 平面上有两个定点A 、B 及动点P ,命题甲:“|P A |-|PB |是定值”,命题乙“点P 的轨迹是以A 、B 为焦点的双曲线”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 如果双曲线经过点(6,3),且它的两条渐近线方程是y =±13x ,那么双曲线方程是( ) A.x 236-y 29=1 B.x 281-y 29=1 C.x 29-y 2=1 D.x 218-y 23=1 3. 点(a ,b )关于直线x +y +1=0的对称点是( )A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )4. 直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1 5. 椭圆x 29+y 24+k =1的离心率为45,则k 的值为( ) A .-21 B .21 C .-1925或21 D.1925或21 6. 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .127. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1 8. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ). A. 2 B. 3 C.3+12 D.5+129. 若不论k 为何值,直线y =k (x -2)+b 与曲线x 2-y 2=1总有公共点,则b 的取值范围是( ) A .(-3,3) B .[-3,3] C .(-2,2) D .[-2,2]10. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ) A.172 B .3 C. 5 D.9211. 已知F (c,0)是椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点,F 与椭圆上点的距离的最大值为m ,最小值为n ,则椭圆上与点F 的距离为m +n 2的点是( ) A .(c ,±b 2a ) B .(c ,±b a) C .(0,±b ) D .不存在12. A (x 1,y 1),B ⎝⎛⎭⎫22,53,C (x 2,y 2)为椭圆x 29+y 225=1上三点,若F (0,4)与三点A 、B 、C 的距离为等差数列,则y 1+y 2的值为( )A.43B.103C.163D.223二、填空题(本大题共4小题,将正确的答案填在题中横线上)13. 设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于________.14. 平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.15. 在Rt △ABC 中,AB =AC =1,如果一个椭圆通过A ,B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率为________.16. 点P 是双曲线x 24-y 2=1上的一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是________.三、解答题(本大题共5个小题,解答应写出文字说明、证明过程或演算步骤)17. 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.18. 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围.(2)求被椭圆截得的最长弦所在的直线方程.19. 已知直线y =-12x +2和椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A 、B 两点,M 为线段AB 的中点,若|AB |=25,直线OM 的斜率为12,求椭圆的方程.20. 在面积为1的△PMN 中,tan ∠PMN =12,tan ∠MNP =-2,建立适当的坐标系,求以M ,N 为焦点且过点P 的双曲线方程.。
解析几何测试题(椭圆、双曲线、抛物线)姓名一. 选择题:(本大题共12小题,每小题5分,共60分)1. 抛物线x y 42=的焦点坐标是( ) A .(1,0) B .(0,1) C .(0,2) D .(2,0)2. 若椭圆长轴长为8,且焦点为F 1(-2,0),F 2(2,0),则这个椭圆的离心率等于( )A.22B. 13C. 12D.413. 已知方程01222=+-+m y m x 表示双曲线,则m 的取值范围是( )A .m<-2B .m>-1C .-2<m<-1D .m<-2或m>-14. 以双曲线1322=-x y 的一个焦点为圆心,离心率为半径的圆的方程是A .4)2(22=+-y xB .2)2(22=-+y xC .2)2(22=+-y xD .4)2(22=-+y x5. 如果点M (x,y )在运动过程中,总满足关系式10)3()3(2222=-++++y x y x 则点M 的轨迹方程为( )A.191622=+yx B. 191622=+x y C. 1162522=+y x D. 1162522=+x y6.已知双曲线C :x 2a -y 2b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ) A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 7. 抛物线)0(242>=a ax y 上有一点M ,它的横坐标为3,它到焦点的距离是5,则抛物线的方程为 ( )A.x y 82=B. x y 122=C. x y 162=D. x y 202= 8.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则 cos ∠F 1PF 2= ( ) A.14 B.35 C.34 D.459. 等轴双曲线C 的中心在原点,焦点在x 轴上,双曲线c 与抛物线x y 162=的准线交于B A 、两点,AB =34,则双曲线C 的实轴长为 ( )A. 2B. 22C. 4D. 810.已知定点A (3,4),点P 为抛物线y 2=4x 上一动点,点P 到直线x=-1的距离为d ,则|PA|+d 的最小值为( ) A ..2 C . . 11. 设椭圆)0(12222>>=+b a b y a x 的离心率21=e ,右焦点F (c ,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在 ( ) A .圆222=+y x 内 B. 圆222=+y x 上 C .圆222=+y x 外 D. 以上三种情况都有可能12.过双曲线22221(0,0)y x a b a b -=>>的左焦点F ,作圆222a y x =+的切线交双曲线右支于点P ,切点为T ,PF 的中点M 在第一象限,则以下正确的是( )A .||||b a MO MT -<-B .||||MT MO a b -=-C .||||MT MO a b ->-D .||||MT MO a b --与大小不定二.填空题:(本大题共4小题,每小题4分,共16分)13.双曲线22221x y a b-=的两条渐近线互相垂直,那么双曲线的离心率为14. 已知B ,C 是两个定点,坐标分别为(3,0),(-3,0),若顶点A 的轨迹方程为)0(1162522≠=+y y x ,则 △ABC 的周长为15.过抛物线)0(22>=p px y 的焦点作一条直线交抛物线于A(x 1,y 1),B(x 2,y 2),则2121x x y y 的值为 16.方程12422=-+-t y t x 所表示的曲线为C ,有下列命题:①若曲线C 为椭圆,则2<t<4;②若曲线C 为双曲线,则t>4或t<2;③曲线C 不可能为圆; ④若曲线C 表示焦点在y 轴上的双曲线, 则t>4, 则以上命题正确的是三. 解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.求双曲线14416922=-x y 的实轴长,虚轴长,顶点和焦点的坐标,离心率,渐近线方程。
空间解析几何一、 填空题(每小题4分,共20分)1、已知2,==a b 且2⋅=a b , 则⨯=a b ;2、已知三向量,,a b c 两两互相垂直,且1,1===a b c ,则向量=+-s a b c 的模等于 ;3、旋转曲面2z =是由曲线 绕z 轴旋转一周而得;4、空间曲线⎩⎨⎧==+x z 1y x 在yOz 面上的投影为 ; 5、当λ=____时,直线231x y z ==-平行于平面40x y z λ++=。
二、选择题(每小题4分,共20分)1、若非零向量a,b 满足关系式-=+a b a b ,则必有 ;(A )-+a b =a b ; (B )=a b ; (C )0⋅a b =; (D )⨯a b =0.2、已知{}{}2,1,21,3,2---a =,b =,则Pr j b a = ;(A )53; (B )5; (C )3; (D . 3、直线11z 01y 11x -=-=--与平面04z y x 2=+-+的夹角为 ; (A )6π; (B )3π; (C )4π; (D )2π. 4、点(1,1,1)在平面02=+-+1z y x 的投影为 ;(A )⎪⎭⎫ ⎝⎛23,0,21; (B )13,0,22⎛⎫-- ⎪⎝⎭; (C )()1,1,0-;(D )11,1,22⎛⎫-- ⎪⎝⎭. 5、方程222231x y z -+=表示 曲面,其对称轴在 上;(A)单叶双曲面,x 轴; (B)双叶双曲面,x 轴;(C)单叶双曲面,y 轴; (B)双叶双曲面,z 轴;三、 判断题(每题3分,共18分)1.若0≠a ,且c a b a ⋅=⋅或c a b a ⨯=⨯,则c b =。
( )2.与ox,oy,oz 三个坐标轴之正向有相等夹角的向量,其方向角必为3,3,3πππ。
( ) 3.平面1432===z y z 与6x+4y+3z+12=0平行。
( ) 4.向量)()(c a b c a a ⋅-⋅与c 恒垂直。
高中解析几何试题及答案1. 已知圆的方程为 \((x-2)^2+(y-3)^2=9\),求该圆的圆心坐标和半径。
答案:圆心坐标为 \((2, 3)\),半径为 \(3\)。
2. 求直线 \(2x + 3y - 6 = 0\) 关于点 \((1, 2)\) 对称的直线方程。
答案:对称直线的方程为 \(2x - 3y + 8 = 0\)。
3. 已知椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))经过点 \((2, 3)\),且离心率 \(e = \frac{c}{a}\) 为 \(\frac{1}{2}\),求椭圆的长轴和短轴长度。
答案:根据离心率 \(e = \frac{c}{a} = \frac{1}{2}\),我们有 \(c =\frac{a}{2}\)。
由于椭圆经过点 \((2, 3)\),代入椭圆方程得\(\frac{4}{a^2} + \frac{9}{b^2} = 1\)。
又因为 \(c^2 = a^2 -b^2\),代入 \(c = \frac{a}{2}\) 得 \(\frac{a^2}{4} = a^2 -b^2\),解得 \(b^2 = \frac{3}{4}a^2\)。
将 \(b^2\) 代入椭圆方程,解得 \(a^2 = 16\) 和 \(b^2 = 12\)。
因此,椭圆的长轴长度为\(2a = 32\),短轴长度为 \(2b = 24\)。
4. 求抛物线 \(y^2 = 4px\)(\(p > 0\))的焦点坐标。
答案:焦点坐标为 \((\frac{p}{2}, 0)\)。
5. 已知双曲线 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 的一条渐近线方程为 \(y = \frac{b}{a}x\),求双曲线的离心率。
答案:双曲线的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)。
解析几何一、选择题1.已知两点A (-3,),B (,-1),则直线AB 的斜率是( )33A. B .-33C. D .-3333解析:斜率k ==-,故选D.-1-33-(-3)33答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =,a +2a 则=a +2,得a =1或a =-2.故选D.a +2a 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4B .21313C. D .5132671020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d ==.|1-(-6)|62+2271020故选D.答案:D4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0 B .2x +y -1=0C .2x +y -5=0 D .x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角3的取值范围是( )A. B .[π6,π3)(π6,π2)C. D .(π3,π2)[π3,π2]解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-),由题知直线l 与线段AB 相交(交点不含3端点),从图中可以看出,直线l 的倾斜角的取值范围为.故选B.(π6,π2)答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0 B .2x +y -7=0C .x -2y +3=0 D .x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=,12∴方程为y -3=(x -2),即x -2y +4=0.12答案:A二、填空题7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为+=1,x a yb 由Error!解得Error!或Error!.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB ==-2,解得m =-8.4-mm +2答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即<0,化简得<0,∴-2<a <1.2a -(1+a )3-(1-a )a -1a +2答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.解方程组Error!得Error!所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sinα-1=0和l 2:2x sinα+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-,k 2=-2sin α.1sin α要使l 1∥l 2,需-=-2sin α,1sin α即sin α=±,∴α=k π±,k ∈Z .22π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4法二 由l 1∥l 2,得Error!∴sin α=±,22∴α=k π±,k ∈Z .π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k +2=0,这与21k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一 由方程组Error!解得交点P 的坐标为,(2k 2-k 1,k 2+k 1k 2-k 1)而2x 2+y 2=22+2(2k 2-k 1)(k 2+k 1k 2-k 1)=8+k 2+k 21+2k 1k 2k 2+k 21-2k 1k 2=k 21+k 2+4k 21+k 2+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二 交点P 的坐标(x ,y )满足Error!故知x ≠0.从而Error!代入k 1k 2+2=0,得·+2=0,y -1x y +1x 整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇 第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1 B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则=1,得t =2,12+(t -2)2所以圆的方程为x 2+(y -2)2=1,故选A.答案:A 2.(2014郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2=,(x -2)2+y 2(x -8)2+y 2化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考陕西卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d ==1<2,(3-2)2+(0-0)2点P (3,0)恒在圆内,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考辽宁卷)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0 B .x +y +3=0C .x -y +1=0 D .x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C 5.(2013年高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -=0B .x +y +1=02C .x +y -1=0D .x +y +=02解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得=1,故b =±.因为直线与圆相切于第一象限,故结合图形|b |12+122分析知b =-,则直线方程为x +y -=0.故选A.22答案:A 6.(2012年高考福建卷)直线x +y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦3AB 的长度等于( )A .2B .253C. D .13解析:因为圆心到直线x +y -2=0的距离d ==1,半径r =2,3|0+3×0-2|12+(3)2所以弦长|AB |=2=2.22-123故选B.答案:B二、填空题7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d ==,|2×3-4+3|4+15∴弦长为2×=2=4.25-5205答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d ==2,|1-1+4|12+(-1)22又圆半径r =.2所以圆C 上各点到直线l 的距离的最小值为d -r =.2答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴=1,|4m -9m |5∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=,2mm 2+1∴x =.mm 2+1当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =,y -1x 代入x =,得x=,mm 2+1[(y -1x )2+1]y -1x 化简得x 2+2=.(y -32)14经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2+2=.(y -32)1412.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=2时,求直线l 的方程.2解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有=2.解得a =-.|4+2a |a 2+134(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得Error!解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇 第3节一、选择题1.设P 是椭圆+=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )x 225y 216A .4 B .5C .8D .10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D 2.(2014唐山二模)P 为椭圆+=1上一点,F 1,F 2为该椭圆的两个焦点,若x 24y 23∠F 1PF 2=60°,则·等于( )PF1→ PF 2→ A .3 B .3C .2 D .23解析:由椭圆方程知a =2,b =,c =1,3∴Error!∴|PF 1||PF 2|=4.∴·=||||cos 60°=4×=2.PF 1→ PF 2→ PF 1→ PF 2→ 12答案:D3.(2012年高考江西卷)椭圆+=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦x 2a 2y 2b 2点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A. B .1455C. D .-2125解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e ==.故应选B.ca 55答案:B4.(2013年高考辽宁卷)已知椭圆C :+=1(a >b >0)的左焦点为F ,C 与过原点的x 2a 2y 2b 2直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =,则C 的离心率45为( )A. B .3557C. D .4567解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×=36,45则|AF |=6,∠AFB =90°,半焦距c =|FO |=|AB |12=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e ==.c a 57故选B.答案:B5.已知椭圆E :+=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与x 2m y 24l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A 、B 、C ,故选D.答案:D6.(2014山东省实验中学第二次诊断)已知椭圆+=1(a >b >0)的左、右焦点分别为x 2a 2y 2b 2F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使=,则该椭圆的离心率的asin ∠PF 1F 2csin ∠PF 2F 1取值范围为( )A .(0,-1) B .2(22,1)C.D .(-1,1)(0,22)2解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得=,|PF 2|sin ∠PF 1F 2|PF 1|sin ∠PF 2F 1所以由=a sin ∠PF 1F 2c sin ∠PF 2F 1可得=,a|PF 2|c|PF 1|即==e ,|PF 1||PF 2|ca 所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=.2ae +1由于a -c <|PF 2|<a +c ,所以有a -c <<a +c ,2ae +1即1-e <<1+e ,2e +1也就是Error!解得-1<e .2又0<e <1,∴-1<e <1.故选D.2答案:D 二、填空题7.设F 1、F 2分别是椭圆+=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中x 225y 216点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆+=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线x 2a 2y 2b 2与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=,2a =|MF 1|+|MF 2|=2+,332c =|F 1F 2|=1.∴e ==2-.ca 3答案:2-39.(2014西安模拟)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方35y 225x 29程为________________.解析:由题意可设椭圆方程为+=1(m <9),y 225-m x 29-m 代入点(,-),35得+=1,525-m 39-m 解得m =5或m =21(舍去),∴椭圆的标准方程为+=1.y 220x 24答案:+=1y 220x 2410.已知F 1,F 2是椭圆C :+=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且x 2a 2y 2b 2⊥.若△PF 1F 2的面积为9,则b =________.PF1→ PF 2→ 解析:由题意得Error!∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=|PF 1||PF 2|=b 2=9,12∴b =3.答案:3三、解答题11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:+=1(a >b >0)x 2a 2y 2b 2的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得Error!∴Error!故椭圆C 1的方程为+y 2=1.x 22(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2相切得Error!消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1相切得Error!消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②①②联立得Error!解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =时,k =,b =-时,k =-.222222即直线l 的方程为y =x +或y =-x -.22222212.(2014海淀三模)已知椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一x 2a 2y 2b 2内角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的x 2a 2y 2b 2菱形的四个顶点.所以a =,b =1,3椭圆C 的方程为+y 2=1.x 23(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=2,|PO |=3,3所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,所以Error!化简得(3k 2+1)x 2=3,所以|x 1|=,33k 2+1则|AO |==.1+k 233k 2+13k 2+33k 2+1设AB 的垂直平分线为y =-x ,1k 它与直线l :x +y -3=0的交点记为P (x 0,y 0),所以Error!解得Error!则|PO |=,9k 2+9(k -1)2因为△PAB 为等边三角形,所以应有|PO |=|AO |,3代入得=,9k 2+9(k -1)233k 2+33k 2+1解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇 第4节一、选择题1.设P 是双曲线-=1上一点,F 1,F 2分别是双曲线左右两个焦点,若x 216y 220|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17 D .以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考湖北卷)已知0<θ<,则双曲线C 1:-=1与C 2:-π4x 2sin2θy 2cos2θy 2cos2θ=1的( )x 2sin2θA .实轴长相等 B .虚轴长相等C .离心率相等 D .焦距相等解析:双曲线C 1的半焦距c 1==1,双曲线C 2的半焦距c 2=sin2θ+cos2θ=1,故选D.cos2θ+sin2θ答案:D3.(2012年高考湖南卷)已知双曲线C :-=1的焦距为10,点P (2,1)在C 的渐近x 2a 2y 2b 2线上,则C 的方程为( )A.-=1 B .-=1x 220y 25x 25y 220C.-=1 D .-=1x 280y 220x 220y 280解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =x 得a =2b .ba a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为-=1.故选A.x 220y 25答案:A 4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A. B .1435C. D .3445解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =2,2|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,22由余弦定理可知cos ∠F 1PF 2==.故选C.(42)2+(22)2-422×42×2234答案:C5.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆513C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.-=1 B .-=1x 242y 232x 2132y 252C.-=1 D .-=1x 232y 242x 2132y 2122解析:在椭圆C 1中,因为e =,2a =26,513即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为-=1.故选A.x 242y 232答案:A6.(2014福州八中模拟)若双曲线-=1渐近线上的一个动点P 总在平面区域x 29y 216(x -m )2+y 2≥16内,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .[-5,5] D .(-∞,-5]∪[5,+∞)解析:因为双曲线-=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )x 29y 2162+y 2≥16内,即直线与圆相离或相切,所以d =≥4,解得m ≥5或m ≤-5,故实数|4m |5m 的取值范围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考辽宁卷)已知F 为双曲线C :-=1的左焦点,P ,Q 为C 上的x 29y 216点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :-=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点x 2a 2y 2b 2的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e ==2,两式联立得a =1,c =2,ca ∴b 2=c 2-a 2=4-1=3,∴方程为x 2-=1.y 23答案:x 2-=1y 239.(2014合肥市第三次质检)已知点P 是双曲线-=1(a >0,b >0)和圆x 2a 2y 2b 2x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=m ,3该双曲线的离心率等于==+1.|F 1F 2|||PF 1|-|PF 2||2m3m -m 3答案:+1310.(2013年高考湖南卷)设F 1,F 2是双曲线C :-=1(a >0,b >0)的两个焦点.若x 2a 2y 2b 2在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt △F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=c ,3根据双曲线的定义:|PF 1|-|PF 2|=2a ,(-1)c =2a ,3e ===+1.c a 23-13答案:+13三、解答题11.已知双曲线x 2-=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,y 22且点P 是线段AB 的中点?解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .由Error!得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0==.x 1+x 22k (1-k )2-k 2由题意,得=1,k (1-k )2-k 2解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.法二 设A (x 1,y 1),B (x 2,y 2),若直线l 的斜率不存在,即x 1=x 2不符合题意,所以由题得x -=1,x -=1,21y 2122y 22两式相减得(x 1+x 2)(x 1-x 2)-=0,(y 1+y 2)(y 1-y 2)2即2-=0,y 1-y 2x 1-x 2即直线l 斜率k =2,得直线l 方程y -1=2(x -1),即y =2x -1,联立Error!得2x 2-4x +3=0,Δ=16-24=-8<0,即直线y =2x -1与双曲线无交点,即所求直线不合题意,所以过点P (1,1)的直线l 不存在.12.(2014南京质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.13(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由已知c =,13设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,则Error!解得a =7,m =3.∴b =6,n =2.∴椭圆方程为+=1,x 249y 236双曲线方程为-=1.x 29y 24(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=2,13∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|==.102+42-(213)22×10×445第八篇 第5节一、选择题1.(2014银川模拟)抛物线y =2x 2的焦点坐标为( )A. B .(1,0)(12,0)C. D .(0,18)(0,14)解析:抛物线y =2x 2,即其标准方程为x 2=y ,它的焦点坐标是.故选C.12(0,18)答案:C2.抛物线的焦点为椭圆+=1的下焦点,顶点在椭圆中心,则抛物线方程为( )x 24y 29A .x 2=-4y B .y 2=-4x55C .x 2=-4yD .y 2=-4x1313解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c ==,a 2-b 25∴抛物线焦点坐标为(0,-),5∴抛物线方程为x 2=-4y .故选A.5答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A .相离 B .相交C .相切 D .不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =(|AA 1|+|BB 1|)12=(|AF |+|BF |)=|AB |,故圆与抛物线准线相切.故选C.1212答案:C4.(2014洛阳高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )A. B .5383C. D .10103解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由Error!解得x 1=3,x 2=,13故线段AB 的中点到该抛物线的准线x =-1的距离等于+1=.故选B.x 1+x 2283答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A. B .134C. D .5474解析:∵|AF |+|BF |=x A +x B +=3,12∴x A +x B =.52∴线段AB 的中点到y 轴的距离为=.xA +xB 254故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞) D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =x +b ,3联立Error!消去y ,得x 2=2p (x +b ),3即x 2-2px -2pb =0,3∴x 1+x 2=2p =3,3∴p =,则抛物线的方程为x 2=y .323答案:x 2=y38.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考北京卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为,3∴直线方程为y =(x -1).3联立方程Error!解得Error!或Error!由已知得A 的坐标为(3,2),3∴S △OAF =|OF |·|y A |=×1×2=.121233答案:310.已知点P 是抛物线y 2=2x上的动点,点P 在y 轴上的射影是M ,点A ,则(72,4)|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-,焦点F 坐标为.12(12,0)求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+,12所以|PA |+|PM |≥5-=.1292答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-,求实数m 的值.12解:法一 如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,由Error!得2x 2+x -n =0,∴x 1+x 2=-,x 1x 2=-.12n2由x 1x 2=-,得n =1.12又x 0==-,x 1+x 2214y 0=-x 0+n =+1=,1454即点M 为,(-14,54)由点M 在直线l 上,得=-+m ,5414∴m =.32法二 ∵A 、B 两点在抛物线y =2x 2上.∴Error!∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB ==4x 0.y 1-y 2x 1-x 2又AB ⊥l ,∴k AB =-1,从而x 0=-.14又点M 在l 上,∴y 0=x 0+m =m -,14即M ,(-14,m -14)∴AB 的方程是y -=-,(m -14)(x +14)即y =-x +m -,代入y =2x 2,12得2x 2+x -=0,∴x 1x 2=-=-,∴m =.(m -12)m -122123212.已知过抛物线y 2=2px (p >0)的焦点,斜率为2的直线交抛物线于A (x 1,y 1),2B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值.OC → OA → OB→ 解:(1)直线AB 的方程是y =2,与y 2=2px 联立,2(x -p2)从而有4x 2-5px +p 2=0,所以x 1+x 2=.由抛物线定义得|AB |=x 1+x 2+p =9,5p4所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-2,y 2=4,22从而A (1,-2),B (4,4).22设=(x 3,y 3)=(1,-2)+λ(4,4)OC→ 22=(4λ+1,4λ-2),22即C (4λ+1,4λ-2),22所以[2(2λ-1)]2=8(4λ+1),2即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
1. 已知椭圆C :14522=+y x 的左右焦点分别为21,F F(1)若P 是椭圆上的一点,且∠︒=3021PF F ,求△的面积;(2)过椭圆的左焦点作一条倾斜角为45°的直线l 与椭圆交于A.B 两点,求AB 的长.2.已知点P 为圆A:8)1(22=++y x 的动点,点B (1,0),线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为C 。
(1)求曲线C 的方程;(2)当P 在第一象限,且322cos =∠BAP 时,求点M 的坐标3.已知椭圆E :)0(,12222>>=+b a by a x 的离心率为21,点A,B 分别为椭圆E 的左右顶点,点C 在E 上,且△ABC 面积的最大值为32, 求(1)椭圆E 的方程;(3)设F 为E 的左焦点,点D 在直线x=-4上,过F 作DF 的垂线交椭圆E 与M,N 两点。
证明:直线OD 平分线段MN 。
4. 已知椭圆)0(,12222>>=+b a by a x 的左右焦点分别为21,F F ,A为上顶点,P 为椭圆上任一点(与左右顶点不重合)。
(1)若21AF AF ⊥,求椭圆的离心率; (2)若P (-4,3),且021=∙PF PF ,求椭圆的方程;(3)若存在一点P 使∠21PF F 为钝角,求椭圆的离心率的取值范围。
21PF F5. 如图,A,B,C 是椭圆M :上的三点,其中A 是椭圆的右顶点,BC 过椭圆M 的中心,且满足AC ⊥BC,BC=2AC. (1) 求椭圆M 的离心率(2)若y 轴被△ABC 的外接圆所截得的弦长为9,求椭圆M 的方程。
6. 设椭圆C :)0(,1222>=+a y a x 的两个焦点)0,(),0,-(21c F c F (c>0),且椭圆C 与圆222c y x =+有公共点。
(1)求a 的取值范围;(2)若椭圆上的点到焦点的最短距离是2-3,求椭圆的方程。
解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B 2.直线1y x =+与圆221x y +=的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离2d ==,而012<<,选B 。
【答案】B 3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1(直接法):设圆心坐标为(0,)b1=,解得2b =,故圆的方程为22(2)1x y +-=。
解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1x y +-=解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。
【答案】A4.点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是( )A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得(2x -4)2+(2y+2)2=4,整理,得:22(2)(1)1x y -++=【答案】A 5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是( )A. 1或3B.1或5C.3或5D.1或2【解析】当k =3时,两直线平行,当k ≠3时,由两直线平行,斜率相等,得:kk --43=k -3,解得:k =5,故选C 。
【答案】C6.过圆22(1)(1)1C x y -+-=:的圆心,作直线分别交x 、y 正半轴于点A 、B ,AOB ∆被圆分成四部分(如图), 若这四部分图形面积满足|||,S S S S I∏+=+则直线AB 有( )(A ) 0条 (B ) 1条 (C ) 2条 (D ) 3条 【解析】由已知,得:,IV II III I S S S S -=-,第II ,IV 部分的面积是定值,所以,IVII S S -为定值,即,III I S S -为定值,当直线AB 绕着圆心C 移动时,只可能有一个位置符合题意,即直线 AB 只有一条,故选B 。
【答案】B7.过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长为A.3 B.2 C.6 D.2322224024323x y y x y +-=⇔+-=∴∴⇒解析:(),A(0,2),OA=2,A 到直线ON 的距离是1,ON=弦长【答案】D 二、填空题8.以点(2,1-)为圆心且与直线6x y +=相切的圆的方程是 .【解析】将直线6x y +=化为60x y +-=,圆的半径|216|5112r --==+,所以圆的方程为2225(2)(1)2x y -++=【答案】2225(2)(1)2x y -++=9.设直线1l 的参数方程为113x ty t=+⎧⎨=+⎩(t 为参数),直线2l 的方程为y =3x +4则1l 与2l 的距离为_______【解析】由题直线1l 的普通方程为023=--y x ,故它与与2l 的距离为510310|24|=+。
【答案】510310.若圆422=+y x与圆)0(06222>=-++a ay y x 的公共弦长为32,则a =________.【解析】由已知,两个圆的方程作差可以得到相交弦的直线方程为ay 1=, 利用圆心(0,0)到直线的距离d 1|1|a =为13222=-,解得a =1.【答案】111.若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是 ①15 ②30 ③45 ④60⑤75其中正确答案的序号是 .(写出所有正确答案的序号)【解析】解:两平行线间的距离为211|13|=+-=d ,由图知直线m 与1l 的夹角为o 30,1l 的倾斜角为o 45,所以直线m 的倾斜角等于00754530=+o或00153045=-o 。
【答案】①⑤ 12.已知AC BD 、为圆O:224x y +=的两条相互垂直的弦,垂足为(2M ,则四边形ABCD 的面积的最大值为 。
【解析】设圆心O 到AC BD 、的距离分别为12d d 、,则222123d d OM ==+.四边形ABCD 的面积222212121||||2(4)8()52S AB CD d d d d =⋅=-≤-+=)(4- 【答案】5 13.已知圆O :522=+y x和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于【解析】由题意可直接求出切线方程为y -2=21-(x -1),即x +2y -5=0,从而求出在两坐标轴上的截距分别是5和25,所以所求面积为42552521=⨯⨯。
【答案】 25414.过原点O 作圆x 2+y 2--6x -8y +20=0的两条切线,设切点分别为P 、Q , 则线段PQ 的长为 。
【解析】可得圆方程是22(3)(4)5x y -+-=又由圆的切线性质及在三角形中运用正弦定理得4PQ =.【答案】4 15..设直线系:cos (2)sin 1(02)M x y θθθπ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号). 【解析】因为cos (2)sin 1x y θθ+-=所以点(0,2)P 到M 中每条直线的距离2211cos sin d θθ==+即M 为圆C :22(2)1x y +-=的全体切线组成的集合,从而M 中存在两条平行直线,所以A 错误;又因为(0,2)点不存在任何直线上,所以B 正确; 对任意3n ≥,存在正n 边形使其切圆为圆C ,故C 正确;M 中边能组成两个大小不同的正三角形ABC 和AEF ,故D 错误,故命题中正确的序号是 B,C. 【答案】,B C 三、解答题16.(本小题满分16分)在平面直角坐标系xoy中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=.(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标。
解 (1)设直线l 的方程为:(4)y k x =-,即40kx y k --=由垂径定理,得:圆心1C 到直线l 的距离22234()12d=-=, 结合点到直线距离公式,得:2|314|1,1k k k ---=+化简得:272470,0,,24kk k or k +===-求直线l 的方程为:0y =或7(4)24y x =--,即0y =或724280x y +-= (2) 设点P 坐标为(,)m n ,直线1l 、2l 的方程分别为:1(),()y n k x m y n x m k -=--=--,即:110,0kx y n km x y n m k k-+-=--++=因为直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,两圆半径相等。
由垂径定理,得::圆心1C 到直线1l 与2C 直线2l 的距离相等。
故有:2241|5||31|111n m k n km kk k k --++--+-=++, 化简得:(2)3,(8)5m n km n m n k m n --=---+=+-或关于k 的方程有无穷多解,有:20,30m n m n --=⎧⎧⎨⎨--=⎩⎩m-n+8=0或m+n-5=0 解之得:点P 坐标为313(,)22-或51(,)22-。
2005—2008年高考题一、选择题1.等腰三角形两腰所在直线的方程分别为20x y +-=与x-7y-4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为( ).A .3B .2C .13-D .12-答案 A 解析 1,02:11-==-+k y x l ,71,047:22==--k y x l ,设底边为kx y l =:3 由题意,3l 到1l 所成的角等于2l 到3l 所成的角于是有371711112211+-=-+⇒+-=+-k k k k k k k k k k k 再将A 、B 、C 、D 代入验证得正确答案 是A 。
2.原点到直线052=-+y x 的距离为 ( )A .1B .3C .2D .5答案 D解析 52152=+-=d 。
3.将直线3y x =绕原点逆时针旋转090,再向右平移1个单位长度,所得到的直线为( ) A.1133y x =-+B.113y x =-+C.33y x =-D.113y x =+答案 A4.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( )A.B .C .D .答案 D5.若直线与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )A .-3或3B.3C.-2或2D.2答案 A 6. “2a=”是“直线20ax y +=平行于直线1x y +=”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C 7.圆1)3()1(22=++-y x 的切线方程中有一个是 ( )A.x -y =0B.x +y =0C.x =0D.y =0答案 C 8.设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、 B 的值,则所得不同直线的条数是( )A .20B .19C .18D .16答案 C9.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是工( )A.1±B.21±C.33±D.3±答案 C 10.若直线2=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( ) A .8或-2 B .6或-4 C .4或-6 D .2或-8答案 A 11. “m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件 答案 B 二、填空题12.已知圆C 的圆心与点(2,1)P -关于直线y=x+1对称,直线3x+4y-11=0与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为_______.答案 22(1)18xy ++=13.已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为_______.答案 214.经过圆2220xx y ++=的圆心C ,且与直线0x y +=垂直的直线程是 . 答案 10x y -+=15.如图,A B ,是直线l 上的两点,且2=AB .两个半径相等的动圆分别与相切于点,是这两个圆的公共点,则圆弧AC ,CB 与线段AB 围成图形面积S 的取值围是 .答案 ⎥⎦⎤ ⎝⎛-22,0π16.圆心为(11),且与直线4x y +=相切的圆的方程是 .答案 (x-1)2+(y-1)2=217.已知变量x,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z=ax+y(其中a >0)仅在点(3,1)处取得最大值,则a 的取值围为___.答案 a >118.设实数x,y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤-≥-+≤-- .答案23 第二部分 三年联考汇编2009年联考题一、选择题1. “a = 3”是“直线210ax y --=与直线640x y c -+=平行”的( )条件A .充要B .充分而不必要C .必要而不充分D .既不充分也不必要 答案 C 2.直线x+y+1=0与圆()2122=+-y x 的位置关系是 ( )A.相交B.相离C.相切D.不能确定 答案 C 3.两圆32cos 3cos 42sin 3sin x x y y θθθθ=-+=⎧⎧⎨⎨=+=⎩⎩与的位置关系是 ( )A .切 B .外切 C .相离 D .含 答案 B4.已知点P (x ,y )是直线kx +y +4 = 0(k > 0)上一动点,PA 、PB 是圆C :2220x y y +-=的两条切线,A 、B 是切点,若四边形PACB的最小面积是2,则k 的值为 ( )A .3BC.D .2 答案 D5.已知实系数方程x 2+ax+2b=0,的一个根大于0且小于1,另一根大于1且小于2,则21b a --的取值围是 ( )A .(14,1)B .(12,1)C.(-12,14) D.(0,13) 答案 A6.点(4,)t 到直线431x y -=的距离不大于3,则t 的取值围是 ()A .13133t ≤≤B .100t<< C .100t ≤≤D .0t <或10t > 答案 C7.已知圆的方程为22680xy x y +--=,设圆中过点(2,5)的最长弦与最短弦分别为AB 、CD ,则直线AB 与CD 的斜率之( ) A.1- B.0 C. 1 D.2- 答案 B8.直线)1(1:-=-x k y l 和圆0222=-+y y x 的关系是( )A.相离B.相切或相交C.相交D.相切答案 C9.过点)2,1(M 的直线l 将圆(x-2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是 ( )A .1=xB .1=y C .01=+-y x D .032=+-y x答案 D 二、填空题10.从圆(x-1)2+(y-1)2=1外一点(2,3)P 向这个圆引切线,则切线长为 .答案 211.直线032=-+y x 与直线04=++b y ax 关于点)0,1(A 对称,则b =___________。