当前位置:文档之家› 74Ls192

74Ls192

74Ls192
74Ls192

实验四触发器及其功能转换

一、实验目的

1、掌握基本RS、JK、D和T触发器的逻辑功能

2、掌握集成触发器的逻辑功能及使用方法

3、熟悉触发器之间相互转换的方法

二、实验原理

触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。

1、基本RS触发器

图4-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。基本RS触发器具有置“0”、置“1”和“保持”三种功能。通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此种情况发生,表9-1为基本RS触发器的功能表。

基本RS触发器。也可以用两个“或非门”组成,此时为高电平触发有效。

2、JK触发器

在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚功能及逻辑符号如图4-2所示。

JK触发器的状态方程为

Q n+1=J Q n+K Q n

J和K是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成“与”的关系。Q与Q为两个互补输出端。通常把 Q=0、Q=1的状态定为触发器“0”状态;而把Q=1,Q=0定为“1”状态。

图4-2 74LS112双JK触发器引脚排列及逻辑符号

下降沿触发JK触发器的功能如表4-2

表4-2

注:×— 任意态 ↓— 高到低电平跳变 ↑— 低到高电平跳变

Q n (Q n )— 现态 Q n+1(Q n+1 )— 次态 φ— 不定态 JK 触发器常被用作缓冲存储器,移位寄存器和计数器。 3、D 触发器

在输入信号为单端的情况下,D 触发器用起来最为方便,其状态方程为 Q n+1

=D n

,其输出状态的更新发生在CP 脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D 端的状态,D 触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。有很多种型号可供各种用途的需要而选用。如双D 74LS74、四D 74LS175、六D 74LS174等。

图4-3 为双D 74LS74的引脚排列及逻辑符号。功能如表4-3。

图4-3 74LS74引脚排列及逻辑符号

表4-3 表4-4

4、触发器之间的相互转换

在集成触发器的产品中,每一种触发器都有自己固定的逻辑功能。但可以利用转换的方法获得具有其它功能的触发器。例如将JK 触发器的J 、k 两端连在一起,并认它为T 端,就得到所需的T 触发器。如图4-4(a)所示,其状态方程为: Q n+1 =T Q n +T Q n

(a) T 触发器 (b) T'触发器

图4-4 JK 触发器转换为T 、T'触发器

T 触发器的功能如表4-4。

由功能表可见,当T =0时,时钟脉冲作用后,其状态保持不变;当T =1时,时钟脉冲作用后,触发器状态翻转。所以,若将T 触发器的T 端置“1”,如图4-4(b)所示,即得T'触发器。在T'触发器的CP 端每来一个CP 脉冲信号,触发器的状态就翻转一次,故称之为反转触发器,广泛用于计数电路中。 同样,若将D 触发器 端与D 端相连,便转换成T'触发器。如图4-5所示。 JK 触发器也可转换为D 触发器,如图4-6。

图4-5 D 转成T' 图4-6 JK 转成D

Q

5、CMOS 触发器

(1)CMOS 边沿型D 触发器

CC4013是由CMOS 传输门构成的边沿型D 触发器。它是上升沿触发的双D 触 发器,表4-5为其功能表,图4-7为引脚排列。

表4-5

图4-7 双上升沿D 触发器

(2)CMOS 边沿型JK 触发器

CC4027是由CMOS 传输门构成的边沿型JK 触发器,它是上升沿触发的双JK 触发器,表4-6为其功能表,图4-4为引脚排列。

表4-6

图4-8 双上升沿J -K 触发器

CMOS触发器的直接置位、复位输入端S和R是高电平有效,当S=1(或R=1)时,触发器将不受其它输入端所处状态的影响,使触发器直接接置1(或置0)。但直接置位、复位输入端S和R必须遵守RS=0的约束条件。CMOS触发器在按逻辑功能工作时,S和R必须均置0。

三、实验设备与器件

1、+5V直流电源

2、双踪示波器

3、连续脉冲源

4、单次脉冲源

5、逻辑电平开关

6、逻辑电平显示器

7、74LS112(或CC4027)

74LS00(或CC4011)

74LS74(或CC4013)

四、实验内容

1、测试基本RS触发器的逻辑功能

按图4-1,用两个与非门组成基本RS触发器,输入端R、S接逻辑开关的输出插口,输出端 Q、Q接逻辑电平显示输入插口,按表4-7要求测试,记录之。

2、测试双JK触发器74LS112逻辑功能

、S D的复位、置位功能

(1) 测试R

D

任取一只JK触发器,R

、S D、J、K端接逻辑开关输出插口,CP端接单次

D

,S D(J、K、CP处脉冲源,Q、Q端接至逻辑电平显示输入插口。要求改变R

D

于任意状态),并在R

=0(S D=1)或S D=0(R D=1)作用期间任意改变J、

D

K及CP的状态,观察Q、Q状态。自拟表格并记录之。

(2) 测试JK触发器的逻辑功能

按表4-8的要求改变J、K、CP端状态,观察Q、Q状态变化,观察触发器状态更新是否发生在CP脉冲的下降沿(即CP由1→0),记录之。

(3) 将JK触发器的J、K端连在一起,构成T触发器。

在CP端输入1HZ连续脉冲,观察Q端的变化。

在CP端输入1KHZ连续脉冲,用双踪示波器观察CP、Q、Q端波形,注意相位关系,描绘之。

表4-8

3、测试双D触发器74LS74的逻辑功能

、S D的复位、置位功能

(1) 测试R

D

测试方法同实验内容2、1),自拟表格记录。

(2) 测试D触发器的逻辑功能

按表4-9要求进行测试,并观察触发器状态更新是否发生在CP脉冲的上升沿(即由0→1),记录之。

表4-9

(3) 将D触发器的Q端与D端相连接,构成T'触发器。

测试方法同实验内容2、3),记录之。

4、双相时钟脉冲电路

用JK触发器及与非门构成的双相时钟脉冲电路如图4-9所示,此电路是

用来将时钟脉冲CP转换成两相时钟脉冲CP

A 及CP

B

,其频率相同、相位不同。

分析电路工作原理,并按图4-9接线,用双踪示波器同时观察CP、CP

A

CP、CP

B 及CP

A

、CP

B

波形,并描绘之。

图4-9 双相时钟脉冲电路

5、乒乓球练习电路

电路功能要求:模拟二名动运员在练球时,乒乓球能往返运转。

提示:采用双D触发器74LS74设计实验线路,两个CP端触发脉冲分别由两名运动员操作,两触发器的输出状态用逻辑电平显示器显示。

五、实验预习要求

1、复习有关触发器内容

2、列出各触发器功能测试表格

3、按实验内容

4、5的要求设计线路,拟定实验方案。

六、实验报告

1、列表整理各类触发器的逻辑功能。

2、总结观察到的波形,说明触发器的触发方式。

3、体会触发器的应用。

4、利用普通的机械开关组成的数据开关所产生的信号是否可作为触发器的时钟脉冲信号?为什么?是否可以用作触发器的其它输入端的信号?又是为什么?

实验五集成计数器及其设计应用

一、实验目的

1、学习用集成触发器构成计数器的方法

2、掌握中规模集成计数器的使用及功能测试方法

3、运用集成计数计构成1/N分频器

二、实验原理

计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。

计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等等。目前,无论是TTL 还是CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。

1、用D触发器构成异步二进制加/减计数器

图9-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T'触发器,再由低位触发器的Q端和高一位的CP端相连接。

图9-1 四位二进制异步加法计数器

若将图9-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。

2、中规模十进制计数器

CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图9-2所示。

图9-2 CC40192引脚排列及逻辑符号

图中LD—置数端 CP

U —加计数端 CP

D

—减计数端

CO—非同步进位输出端BO—非同步借位输出端

D

0、D

1

、D

2

、D

3

—计数器输入端

Q

0、Q

1

、Q

2

、Q

3

—数据输出端 CR—清除端

CC40192(同74LS192,二者可互换使用)的功能如表9-1,说明如下:表9-1

当清除端CR 为高电平“1”时,计数器直接清零;CR 置低电平则执行其它功能。

当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器。

当CR 为低电平,LD 为高电平时,执行计数功能。执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CP D 输入,表9-2为8421码十进制加、减计数器的状态转换表。

表9-

2

加法计数

减计数

3、计数器的级联使用

一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。

同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。

图9-3是由CC40192利用进位输出CO 控制高一位的CP U 端构成的加数级联图。

图9-3 CC40192级联电路

4、实现任意进制计数

(1) 用复位法获得任意进制计数器

假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。如图9-4所示为一个由CC40192十进制计数器接成的6进制计数器。

(2) 利用预置功能获M进制计数器

图9-5为用三个CC40192组成的421进制计数器。

外加的由与非门构成的锁存器可以克服器件计数速度的离散性,保证在反馈置“0”信号作用下计数器可靠置“0”。

图9-4 六进制计数器图9-5 421进制计数器

图9-6是一个特殊12进制的计数器电路方案。在数字钟里,对时位的计数序列是1、2、…11,12、1、…是12进制的,且无0数。如图所示,当计数到13时,通过与非门产生一个复位信号,使CC40192(2)〔时十位〕直接置成0000,而CC40192(1),即时的个位直接置成0001,从而实现了1-12计数。

图9-6 特殊12进制计数器

三、实验设备与器件

1、+5V直流电源

2、双踪示波器

3、连续脉冲源

4、单次脉冲源

5、逻辑电平开关

6、逻辑电平显示器

7、译码显示器

8、 CC4013×2(74LS74)

CC40192×3(74LS192)

CC4011(74LS00)

CC4012(74LS20)

四、实验内容

1、用CC4013或74LS74 D触发器构成4位二进制异步加法计数器。

(1) 按图9-1接线,R

D 接至逻辑开关输出插口,将低位CP

端接单次脉

冲源,输出端Q

3、Q

2

、Q

3

、Q

接逻辑电平显示输入插口,各S D接高电平“1”。

(2) 清零后,逐个送入单次脉冲,观察并列表记录 Q 3~Q 0 状态。 (3) 将单次脉冲改为1HZ 的连续脉冲,观察Q 3~Q 0的状态。

(4) 将1Hz 的连续脉冲改为1KHz ,用双踪示波器观察CP 、Q 3、Q 2、Q 1、Q 0 端波形,描绘之。

5) 将图9-1电路中的低位触发器的Q 端与高一位的CP 端相连接,构成减法计数器,按实验内容2),3),4)进行实验,观察并列表记录Q 3~Q 0 的状态。 2、测试CC40192或74LS192同步十进制可逆计数器的逻辑功能

计数脉冲由单次脉冲源提供,清除端CR 、置数端LD 、数据输入端D 3 、D 2、D 1、D 0 分别接逻辑开关,输出端 Q 3、Q 2、Q 1、Q 0接实验设备的一个译码显示输入相应插口A 、B 、C 、D ;CO 和BO 接逻辑电平显示插口。按表9-1逐项测试并判断该集成块的功能是否正常。 (1) 清除

令CR=1,其它输入为任意态,这时Q 3Q 2Q 1Q 0=0000,译码数字显示为0。清除功能完成后,置CR =0 (2) 置数

CR =0,CP U ,CP D 任意,数据输入端输入任意一组二进制数,令LD = 0,观察计数译码显示输出,予置功能是否完成,此后置LD =1。 (3) 加计数

CR =0,LD =CP D =1,CP U 接单次脉冲源。清零后送入10个单次脉冲,观察译码数字显示是否按8421码十进制状态转换表进行;输出状态变化是否发生在CP U 的上升沿。 (4) 减计数

CR =0,LD =CP U =1,CP D 接单次脉冲源。参照3)进行实验。 3、图9-3所示,用两片CC40192组成两位十进制加法计数器,输入1Hz 连续计数脉冲,进行由00—99累加计数,记录之。

4、将两位十进制加法计数器改为两位十进制减法计数器,实现由99—00递减计数,记录之。

5、按图9-4电路进行实验,记录之。

6、按图9-5,或图9-6进行实验,记录之。

7、设计一个数字钟移位60进制计数器并进行实验。

五、实验预习要求

1、复习有关计数器部分内容

2、绘出各实验内容的详细线路图

3、拟出各实验内容所需的测试记录表格

4、查手册,给出并熟悉实验所用各集成块的引脚排列图

六、实验报告

1、画出实验线路图,记录、整理实验现象及实验所得的有关波形。对实验结果进行分析。

2、总结使用集成计数器的体会。

实验六集成移位寄存器

一、实验目的

1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。

二、实验原理

1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图10-1所示。

图10-1 CC40194的逻辑符号及引脚功能

其中 D

0、D

1

、D

2

、D

3

为并行输入端;Q

、Q

1

、Q

2

、Q

3

为并行输出端;S

R

右移串行输入端,S

L 为左移串行输入端;S

1

、S

为操作模式控制端;R C为直

接无条件清零端;CP为时钟脉冲输入端。

CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q

0→Q

3

),左

移(方向由Q

3→Q

),保持及清零。

S 1、S

和R C端的控制作用如表10-1。

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。

(1)环形计数器

把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,

如图10-2所示,把输出端 Q

3和右移串行输入端S

R

相连接,设初始状态

Q

0Q

1

Q

2

Q

3

=1000,则在时钟脉冲作用下Q

Q

1

Q

2

Q

3

将依次变为0100→0010→0001→

1000→……,如表10-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图10-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。

图 10-2环形计数器

如果将输出Q

O 与左移串行输入端S

L

相连接,即可达左移循环移位。

(2)实现数据串、并行转换

①串行/并行转换器

串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。图10-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。

图10-3 七位串行 / 并行转换器

电路中S

0端接高电平1,S

1

受Q

7

控制,二片寄存器连接成串行输入右移工作

模式。Q

7是转换结束标志。当Q

7

=1时,S

1

为0,使之成为S

1

S

=01的串入右移工

作方式,当Q

7=0时,S

1

=1,有S

1

S

=10,则串行送数结束,标志着串行输入

的数据已转换成并行输出了。

串行/并行转换的具体过程如下:

转换前,R C端加低电平,使1、2两片寄存器的内容清0,此时S

1S

=11,

寄存器执行并行输入工作方式。当第一个CP脉冲到来后,寄存器的输出状态

Q 0~Q

7

为01111111,与此同时S

1

S

变为01,转换电路变为执行串入右移工作方

式,串行输入数据由1片的S

R

端加入。随着CP脉冲的依次加入,输出状态的变化可列成表10-3所示。

表10-3

由表10-3可见,右移操作七次之后,Q 7变为0,S 1S 0又变为11,说明串行输入结束。这时,串行输入的数码已经转换成了并行输出了。

当再来一个CP 脉冲时,电路又重新执行一次并行输入,为第二组串行数码转换作好了准备。

② 并行/串行转换器

并行/串行转换器是指并行输入的数码经转换电路之后,换成串行输出。 图10-4是用两片CC40194(74LS194)组成的七位并行/串行转换电路,它比图10-3多了两只与非门G 1和G 2,电路工作方式同样为右移。

图10-4 七位并行 / 串行转换器

74LS373详细资料精心整理

74LS373 引脚图、内部结构、参数、典型应用电路 【功能简介】 74LS373是一款常用的地址锁存器芯片,由八个并行的、带三态缓冲输出的D触发器构成。在单片机系统中为了扩展外部存储器,通常需要一块74LS373芯片。本文将介绍74LS373的工作原理,内容涵盖引脚图、内部结构、主要参数以及在单片机扩展系统中的典型应用电路。 【内部逻辑结构图】 74LS373地址锁存器的内部逻辑结构如图一所示。 图1

【74LS373的真值表(功能表)】 G—与8031/8051的ALE相连,控制八个D型锁存器的导通与截止:高电平时,八个D型锁存器正常运行(导通),即锁存器的输出端 与输入端D的反相信号始终同步;低电平时锁存器截止,D锁存器输出 端的状态保持不变。 OE(Output Enable = Output Control)—使能端,接地时锁存 【74LS373引脚排列图】

【74LS373电气参数】 拖动图片放大! 74ls373推荐工作条件 【74LS373在单片机扩展系统中的典型应用电路】 当74LS373用作地址锁存器时,应使OE为低电平,此时锁存使能端G为高电平时,输出Q0-Q7的状态与输入端D1-D7状态相同;当G发生负的跳变时,输入端D0-D7 数据锁入Q0-Q7。51单片机的ALE信号可以直接与74LS373的G 连接。在MCS-51单片机系统中,其连接方法如下图所示。其中输入端1D-8D接

至单片机的P0口,输出端提供的是低8位地址,G端接至单片机的地址锁存允 许信号ALE。输出允许端OE接地,表示三态输出门一直导通,可以送出地址信 号。 1D-8D为8个输入端。 1Q-8Q为8个输出端。 【说明】基础比较好的同学请直接忽略。 G是数据锁存控制端;当G=1时,锁存器输出端同输入端;当G由“1”变为“0”时,数据输入锁存器中。 OE为输出允许端;当OE=“0”时,三态门打开;当OE=“1”时,三态门关闭,输出呈高阻状态。 (1).1脚是输出使能(OE),是低电平有效,当1脚是高电平时,不管输入3、4、7、8、13、14、17、18如何,也不管11脚(锁存控制端,G)如何,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)全部呈现高阻状态(或者叫浮空状态); (2).当1脚是低电平时,只要11脚(锁存控制端,G)上出现一个下降沿,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)立即呈现输入脚3、4、7、8、13、14、17、18的状态. 锁存端LE 由高变低时,输出端8 位信息被锁存,直到LE 端再次有效。当三态门使能信号OE为低电平时,三态门导通,允许Q0~Q7输出,OE为高电平时,输出悬空。

74Ls192

实验四触发器及其功能转换 一、实验目的 1、掌握基本RS、JK、D和T触发器的逻辑功能 2、掌握集成触发器的逻辑功能及使用方法 3、熟悉触发器之间相互转换的方法 二、实验原理 触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 图4-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。基本RS触发器具有置“0”、置“1”和“保持”三种功能。通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此种情况发生,表9-1为基本RS触发器的功能表。 基本RS触发器。也可以用两个“或非门”组成,此时为高电平触发有效。

2、JK触发器 在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚功能及逻辑符号如图4-2所示。 JK触发器的状态方程为 Q n+1=J Q n+K Q n J和K是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成“与”的关系。Q与Q为两个互补输出端。通常把 Q=0、Q=1的状态定为触发器“0”状态;而把Q=1,Q=0定为“1”状态。 图4-2 74LS112双JK触发器引脚排列及逻辑符号 下降沿触发JK触发器的功能如表4-2 表4-2

74LS系列芯片引脚图资料大全

74系列芯片引脚图资料大全 作者:佚名来源:本站原创点击数:57276 更新时间:2007年07月26日【字体:大中小】 为了方便大家我收集了下列74系列芯片的引脚图资料,如还有需要请上电子论坛https://www.doczj.com/doc/047521849.html,/b bs/ 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373

反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门 74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门74LS125 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND

74系列芯片引脚图

74系列芯片引脚图、功能、名称、资料大全(含74LS、74HC等),特别推荐为了方便大家,我收集了下列74系列芯片的引脚图资料。 说明:本资料分3部分:(一)、TXT文档,(二)、图片,(三)、功能、名称、资料。 (一)、TXT文档 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门 LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373

反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门 74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘

1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门 74LS125 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴—┴—┴—┴—┴—┴—┴—┴—┴—┴┐ 8位总线驱动器 74LS245 │20 19 18 17 16 15 14 13 12 11│ )│ DIR=1 A=>B │ 1 2 3 4 5 6 7 8 9 10│ DIR=0 B=>A └┬—┬—┬—┬—┬—┬—┬—┬—┬—┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND

74ls373引脚图管脚功能表

74ls373引脚图管脚功能表 74ls373是常用的地址锁存器芯片,它实质是一个是带三态缓冲输出的8D触发器,在单片机系统中为了扩展外部存储器,通常需要一块74ls373芯片, (1).1脚是输出使能(OE),是低电平有效,当1脚是高电平时,不管输入3、4、7、8、13、14、17、18如何,也不管11脚(锁存控制端,G)如何,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)全部呈现高阻状态(或者叫浮空状态); (2).当1脚是低电平时,只要11脚(锁存控制端,G)上出现一个下降沿,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)立即呈现输入脚3、4、7、8、13、14、17、18的状态. 锁存端LE 由高变低时,输出端8 位信息被锁存,直到LE 端再次有效。当三态门使能信号OE为低电平时,三态门导通,允许Q0~Q7输出,OE为高电平时,输出悬空。当74LS373用作地址锁存器时,应使OE为低电平,此时锁存使能端C为高电平时,输出Q0~Q7 状态与输入端D1~D7状态相同;当C发生负的跳变时,输入端D0~D7 数据锁入Q0~Q7。51单片机的ALE信号可以直接与74LS373的C连接。74ls373与单片机接口:

1D~8D为8个输入端。1Q~8Q为8个输出端。 G是数据锁存控制端;当G=1时,锁存器输出端同输入端;当G由“1”变为“0”时,数据输入锁存器中。 OE为输出允许端;当OE=“0”时,三态门打开;当OE=“1”时,三态门关闭,输出呈高阻状态。 在MCS-51单片机系统中,常采用74LS373作为地址锁存器使用,其连接方法如上图所示。其中输入端1D~8D接至单片机的P0口,输出端提供的是低8位地址,G端接至单片机的地址锁存允许信号ALE。输出允许端OE接地,表示输出三态门一直打开

74系列元件引脚图

反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS24 5 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373 反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门 74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│

Y =A+C )│四总线三态门74LS125 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴—┴—┴—┴—┴—┴—┴—┴—┴—┴┐ 8位总线驱动器74LS245 │20 19 18 17 16 15 14 13 12 11│ )│ DIR=1 A=>B │1 2 3 4 5 6 7 8 9 10│ DIR=0 B=>A └┬—┬—┬—┬—┬—┬—┬—┬—┬—┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器 正逻辑与门,与非门: Vcc 4B 4A 4Y 3B 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = AB )│ 2输入四正与门74LS08 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 4B 4A 4Y 3B 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ __ │14 13 12 11 10 9 8│ Y = AB )│ 2输入四正与非门74LS00 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 1C 1Y 3C 3B 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ ___ │14 13 12 11 10 9 8│ Y = ABC )│ 3输入三正与非门74LS10 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1B 2A 2B 2C 2Y GND

74ls系列芯片引脚

74 系列芯片的引脚图 [日期:2008-12-29 ] [来源:net 作者:佚名] [字体:大中小] (投递新闻) 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373 反相器: Vcc 6A6Y5A5Y4A4Y六非门74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A)│ │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A1Y2A2Y3A3Y GND 驱动器: Vcc 6A6Y5A5Y4A4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A)│六驱动器(OC高压输出) 74LS07 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A1Y2A2Y3A3Y GND Vcc -4C 4A4Y -3C 3A3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门74LS125 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘

-1C 1A1Y -2C 2A2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴—┴—┴—┴—┴—┴—┴—┴—┴—┴┐8位总线驱动器74LS245 │20 19 18 17 16 15 14 13 12 11│ )│DIR=1 A=>B │ 1 2 3 4 5 6 7 8 9 10│DIR=0 B=>A └┬—┬—┬—┬—┬—┬—┬—┬—┬—┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器 正逻辑与门,与非门: Vcc 4B 4A4Y3B 3A3Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = AB )│2输入四正与门74LS08 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A1B 1Y2A2B 2Y GND Vcc 4B 4A4Y3B 3A3Y ┌┴—┴—┴—┴—┴—┴—┴┐ __ │14 13 12 11 10 9 8│ Y = AB )│2输入四正与非门74LS00 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A1B 1Y2A2B 2Y GND Vcc 1C 1Y3C 3B 3A3Y ┌┴—┴—┴—┴—┴—┴—┴┐ ___ │14 13 12 11 10 9 8│ Y = ABC )│3输入三正与非门74LS10 │1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A1B 2A2B 2C 2Y GND Vcc H G Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ )│8输入与非门74LS30 │1 2 3 4 5 6 7│________

常用芯片引脚图[1]

您的数字ID 是:463099 您的密码是:1.8667 附录三 常用芯片引脚图 一、单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时的地址/数据复用口。P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为通用I/O 接口,第二功能作为为单片机的控制信号。 ALE/PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :内部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 XTAL1、XTAL2:内部振荡器反相器输 P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS

74LS373应用介绍

74ls373是常用的地址锁存器芯片,它实质是一个是带三态缓冲输出的8D触发器,在单片机系统中为了扩展外部存储器,通常需要一块74ls373芯片.本文将介绍74ls373的工作原理,引脚图(管脚图),内结构图、主要参数及在单片机系统中的典型应用电路. 74ls373工作原理简述: (1).1脚是输出使能(OE),是低电平有效,当1脚是高电平时,不管输入3、4、7、8、13、14、17、18如何,也不管11脚(锁存控制端,G)如何,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)全部呈现高阻状态(或者叫浮空状态); (2).当1脚是低电平时,只要11脚(锁存控制端,G)上出现一个下降沿,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)立即呈现输入脚3、4、7、8、13、14、17、18的状态. 锁存端LE 由高变低时,输出端8 位信息被锁存,直到LE 端再次有效。当三态门使能信号OE为低电平时,三态门导通,允许Q0~Q7输出,OE为高电平时,输出悬空。 74ls373内部逻辑结构图

74LS373的真值表(功能表),表中: L——低电平; H——高电平; X——不定态; Q0——建立稳态前Q的电平;

G——输入端,与8031ALE连高电平:畅通无阻低电平:关门锁存。图中OE——使能端,接地。 当G=“1”时,74LS373输出端1Q—8Q与输入端1D—8D相同; 当G为下降沿时,将输入数据锁存。 E G 功能 0 0 直通Qi = Di 0 1 保持(Qi保持不变) 1 X 输出高阻 74ls373引脚(管脚)排列图:

74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表 优先编码器是当多个输入端同时有信号时,电路只对其中优先级别最高的输入信号进行编码。常用的集成优先编码器IC有10线-4线、8线-3线两种。10线-4线优先编码器常见的型号为54/74147、54/74LS147,8线-3线优先编码器常见的型号为54/74148、54/74LS148。 下面我们以TTL中规模集成电路74LS147为例介绍8421→BCD码优先编码器的功能。 10线-4线8421 BCD码优先编码器74LS147的真值表见表3.5。74LS147的引脚图如图3.5所示,其中第9脚NC为空。74LS147优先编码器有9个输入端和4个输出端。某个输入端为0,代表输入某一个十进制数。当9个输入端全为1时,代表输入的是十进制数0。4个输出端反映输入十进制数的BCD 码编码输出。 74LS147优先编码器的输入端和输出端都是低电平有效,即当某一个输入端低电平0时,4个输出端就以低电平0的输出其对应的8421 BCD编码。当9个输入全为1时,4个输入出也全为1,代表输入十进制数0的8421 BCD编码输出。 表3.5 74LS147的真值表

数字电路CD4511的原理(引脚及功能) CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。可直接驱动LED显示器。 CD4511 是一片 CMOS BCD—锁存/7 段译码/驱动器,引脚排列如图 2 所示。其中a b c d 为 BCD 码输入,a为最低位。LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平。另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。LE是锁存控制端,高电平时锁存,低电平时传输数据。a~g是 7 段输出,可驱动共阴LED数码管。另外,CD4511显示数“6”时,a段消隐;显示数“9”时,d段消隐,所以显示6、9这两个数时,字形不太美观图3是 CD4511和CD4518配合而成一位计数显示电路,若要多位计数,只需将计数器级联,每级输出接一只 CD4511 和 LED 数码管即可。所谓共阴 LED 数码管是指 7 段 LED 的阴极是连在一起的,在应用中应接地。限流电阻要根据电源电压来选取,电源电压5V时可使用300Ω的限流电阻。 用CD4511实现LED与单片机的并行接口方法如下图:

常用IC引脚图

附录五、常用IC引脚图 1、STC89C51单片机 2、8255并行I/O接口 T2/P1.0 -- 1 40 -- VCC PA3-- 1 40 --PA4 T2EX/P1.1-- 2 39 -- P0.0/AD0 PA2-- 2 39 --PA5 P1.2 -- 3 38 -- P0.1/AD1 PA1-- 3 38 --PA6 P1.3 -- 4 37 -- P0.2/AD2 PA0-- 4 37 --PA7 P1.4 -- 5 36 -- P0.3/AD3 RD -- 5 36 --WR P1.5 -- 6 35 -- P0.4/AD4 CS -- 6 35 --RESET P1.6-- 7 34 -- P0.5/AD5 GND-- 7 34 --D0 P1.7 -- 8 33 -- P0.6/AD6 A1 -- 8 33 --D1 RST -- 9 32 -- P0.7/AD7 A0 -- 9 32 --D2 RXD/P3.0-- 10 31 –EA(EA)PC7 -- 10 31 --D3 TXD/P3.1-- 11 30 --ALE/PROG PC6 -- 11 30 --D4 INT0/P3.2-- 12 29 --PSEN PC5 -- 12 29 --D5 INT1/P3.3-- 13 28 -- P2.7/A15 PC4 -- 13 28 --D6 T0/P3.4 -- 14 27 -- P2.6/A14 PC0 -- 14 27 --D7 T1/P3.5 -- 15 26 -- P2.5/A13 PC1 -- 15 26 --VCC WR/P3.6 -- 16 25 -- P2.4/A12 PC2 -- 16 25 --PB7 RD/P3.7 -- 17 24 -- P2.3/A11 PC -- 17 24 --PB6 XTAL2 -- 18 23 -- P2.2/A10 PB0 -- 18 23 --PB5 XTAL1 -- 19 22 -- P2.1/A9 PB1 -- 19 22 --PB4 VSS -- 20 21 -- P2.0/A8 PB2 -- 20 21 --PB3 注:STC89C51芯片的第31脚在用外接存储器时接低(地)电位,而在使用片内存储器时接高电位。 3、74LS373 八D锁存器 4、LED七段码显示器(共阴极型、单字) CE - 1 20 –VCC g f G a b 1Q - 2 19 –8Q 1D - 3 18 –8D a 2D -- 4 17 –7D f b 2Q -- 5 16 –7Q g 3Q -- 6 15 –6Q e c

常用芯片引脚图

附录三 常用芯片引脚图 一、 单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O 接口,第二功能作为为单片机的控 制信号。 ALE/ PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :内部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 12345678910111213141516171819204039383736353433323130292827262524232221P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS V CC P0.0/AD 0P0.1/AD 1 P0.2/AD 2P0.3/AD 3P0.4/AD 4P0.5/AD 5P0.6/AD 6P0.7/AD 7 EA/V PP ALE/PROG PSEN P2.7/A 15P2.6/A 14P2.5/A 13 P2.4/A 12P2.3/A 11P2.2/A 10P2.1/A 9P2.0/A 8803180518751

采用74LS192设计的4、7进制计数器

《电子设计基础》课程报告 设计题目:4/7进制计数器设计 学生班级:通信0902 学生学号:20095972 学生姓名: 指导教师: 时间:2011. 6.24 西南科技大学 信息工程学院

一.设计题目及要求 1、题目:4/7进制计数器设计:采用74LS192(40192)。 2、要求:a、数码管显示状态。 b、用开关切换两种进制。 c、计数脉冲由外部提供。 二.题目分析与方案选择 由题目及其要求分析可知,首先要使用74LS192或40192设计一个4进制计数器和一个7进制计数器,然后通过数码管来显示状态。两种进制间的切换可以通过一个单刀双掷开关来实现。其重点和难点在于设计一个4进制计数器和一个7进制计数器。 通过分析74LS192和40192的特点,发现可以使用清零法来设计一个4进制计数器,而7进制则不能直接通过置数或者清零获得。因此我选择采用置数法将74LS192或40192设计的从0到7的8进制计数器改装为从1到7的计数器,然后再通过一个减法器使从1到7的计数器变为从0到6的7进制计数器。而减法器可以使用集成加法器和四个异或门来实现。 三.主要元器件介绍 在本课程设计中,主要用到了74LS192计数器、7447译码器、74LS00与非门、7408与门、74LS136异或门、74283加法器、七段数码显示器和一个单刀双掷开关等元器件。 一、十进制同步可逆计数器74LS192 功能如下: 1.异步清零。74LS192的输入端异步清零信号CR,高电平有效。仅当CR=1时,计数器输出清零,与其他控制状态无关。 2.异步置数控制。LD非为异步置数控制端,低电平有效。当CR=0,LD 非=0时,D1D2D3D4被置数,不受CP控制。 3.加法计数器,当CR和LD非均无有效输入时,即当CR=0、LD非=1,而减数计数器输入端CPd为高电平,计数脉冲从加法计数端CPu输入时,进行加法计数;当CPd和CPu条件互换时,则进行减法计数。 4.保持。当CR=0、LD非=1(无有效输入),且当CRd=CPu=1时,计数器处于保持状态。 5.进行加计数,并在Q3、Q0均为1、CPu=0时,即在计数状态为1001时,给出一进位信号。进行减计数,当Q3Q2Q1Q0=0000,且CPd=0时,BO非给出一错位信号。这就是十进制的技术规律。 在设计过程中,我主要利用74LS192的计数功能,通过置数法和清零法将其改造为一个4进制计数器和一个7进制计数器。

74ls373引脚图

74ls373引脚图,内部结构,参数,应用电路(74ls373中文资料) 74ls373功能简介: 74ls373是常用的地址锁存器芯片,它实质是一个是带三态缓冲输出的8D触发器,在单片机系统中为了扩展外部存储器,通常需要一块74ls373芯片.本文将介绍74ls373的工作原理,引脚图(管脚图),内结构图、主要参数及在单片机系统中的典型应用电路. 74ls373工作原理简述: 74ls373内部逻辑结构图 74LS373的真值表(功能表),表中:

L——低电平; H——高电平; X——不定态; Q0——建立稳态前Q的电平; G——输入端,与8031ALE连高电平:畅通无阻低电平:关门锁存。图中OE——使能端,接地。 当G=“1”时,74LS373输出端1Q—8Q与输入端1D—8D相同;

74ls373电气特性 74ls373推荐工作条件 74ls373在单片机系统中的应用电路图: 当74LS373用作地址锁存器时,应使OE为低电平,此时锁存使能端C为高电平时,输出Q0~Q7 状态与输入端D1~D7状态相同;当C发生负的跳变时,输入端D0~D7 数据锁入Q0~Q7。51单片机的ALE信号可以直接与74LS373的C连接。在MCS-51单片机系统中,常采用74LS373作为地址锁存器使用,其连接方法如上图所示。其中输入端1D~8D接至单片机的P0口,输出端提供的是低8位地址,G

端接至单片机的地址锁存允许信号ALE。输出允许端OE接地,表示输出三态门一直打开。 1D~8D为8个输入端。 1Q~8Q为8个输出端。 G是数据锁存控制端;当G=1时,锁存器输出端同输入端;当G由“1”变为“0”时,数据输入锁存器中。 OE为输出允许端;当OE=“0”时,三态门打开;当OE=“1”时,三态门关闭,输出呈高阻状态。 (1).1脚是输出使能(OE),是低电平有效,当1脚是高电平时,不管输入3、4、7、8、13、14、17、18如何,也不管11脚(锁存控制端,G)如何,输出2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)全部呈现高阻状态(或者叫浮空状态); (2).当1脚是低电平时,只要11脚(锁存控制端,G)上出现一个下降沿,输出 2(Q0)、5(Q1)、6(Q2)、9(Q3)、12(Q4)、15(Q5)、16(Q6)、19(Q7)立即呈现输入脚3、4、7、8、13、14、17、18的状态. 锁存端LE 由高变低时,输出端8 位信息被锁存,直到LE 端再次有效。当三态门使能信号OE为低电平时,三态门导通,允许Q0~Q7输出,OE为高电平时,输出悬空。

LS系列芯片引脚图 大全

74系列芯片引脚图资料大全 反相器驱动器LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门LS02 LS32 LS51 LS64 LS65 异或门比较器LS86 译码器LS138 LS139 寄存器LS74 LS175 LS373 反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门 74LS04 ┌┴—┴—┴—┴—┴—┴—┴┐六非门(OC门) 74LS05 _ │14 13 12 11 10 9 8 │六非门(OC高压输出) 74LS06 Y = A ││ │ 1 2 3 4 5 6 7 │ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1Y 2A 2Y 3A 3Y GND

Vcc -4C 4A 4Y -3C 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ _ │14 13 12 11 10 9 8│ Y =A+C )│四总线三态门74LS125 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴—┴—┴—┴—┴—┴—┴—┴—┴—┴┐ 8位总线驱动器74LS245 │20 19 18 17 16 15 14 13 12 11│ )│ DIR=1 A=>B │ 1 2 3 4 5 6 7 8 9 10│ DIR=0 B=>A └┬—┬—┬—┬—┬—┬—┬—┬—┬—┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器正逻辑与门,与非门: Vcc 4B 4A 4Y 3B 3A 3Y ┌┴—┴—┴—┴—┴—┴—┴┐ │14 13 12 11 10 9 8│ Y = AB )│ 2输入四正与门74LS08 │ 1 2 3 4 5 6 7│ └┬—┬—┬—┬—┬—┬—┬┘ 1A 1B 1Y 2A 2B 2Y GND

8255引脚图及引脚功能

8255引脚图及引脚功能 单片机系统中常用的地址锁存器芯片74LS373以及coms的 74hc373。是带三态缓冲输出的8D触发器,其引脚图与结构原理图、电路连接图如下: <74LS373引脚图内部结构原理图电路连接图> E G 功 能 0 0 直通Qi = Di 0 1 保持(Qi保持不变) 1 X 输出高阻 <74LS373功能表> E G D Q

L H H H L H L L L L X Q 上表是74LS373的真值表,表中: L——低电平; H——高电平; X——不定态; Q0——建立稳态前Q的电平; G——输入端,与8031ALE连高电平:畅通无阻低电平:关门锁存。图中OE——使能端,接地。 当G=“1”时,74LS373输出端1Q—8Q与输入端1D—8D相同; 当G为下降沿时,将输入数据锁存。 8255A(2) 7.2 可编程并行接口 由于我们现在常用的微机系统均以并行方式处理数据,所以,

并行接口也是最常用的接口电路。并行接口有以下几方面的特点:(1)并行接口是在多根数据线上,以数据字节(字)为单位与输入/输出设备或被控对象传送信息的,如打印机接口、A/D、D /A转换器接口、IEEE-488接口、开关量接口、控制设备接口等。在实际应用中,凡在CPU与外设之间同时需要两位以上信息传送时,就要采用并行口。 并行口适用于近距离传送的场合。由于各种I/O设备和被控对象多为并行数据线连接,CPU用并行口来组成应用系统很方便,故使用十分普遍。 (2)并行传送的信息,不要求固定的格式,这与串行传送的信息有数据格式的要求不同。例如,异步串行通信的格式是一个数据,它包括起始位、数据位、校验位和停止位。 (3)从并行接口的电路结构来看,并行口有硬线连接接口和可编程接口之分。硬线连接接口的工作方式及功能用硬线连接来设定,用软件编程序的方法不能加以改变;如果接口的工作方式及功能可以用软件编程序的方法加以改变,则就叫可编程接口。 7.2.1 可编程并行接口芯片8255A 所谓可编程,实际上就是具有可选择性。例如,选择芯片中的哪一个或哪几个数据端口与外设连接;选择端口中的哪一位或哪几位作输入,哪一位或哪几位作输出;选择端口与CPU之间采用哪种方式传送数据等,均可由用户在程序中写入方式字或控制字来进行指定。

常用芯片引脚图(1)

附录三 常用芯片引脚图 一、单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O接口 无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时 传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O接口,第二功能作为为单片机的控 制信号。 ALE/ PROG:地址锁存允许/编程脉冲输入信号线(输出信号) PSEN:片外程序存储器开发信号引脚(输出信号) EA/Vpp:片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD:复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc:主电源引脚(+5V) Vss:数字电路地引脚(0V) Vpd:内部RAM备用电源引脚(+5V) V REF:A/D转换器基准电源引脚(+5V)P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST INT0/P3.2 INT1/P3.3 WR/P3.6 RD/P3.7 XTAL2 XTAL1 V SS

74LS373的布线问题

74LS373的布线问题 盛祥华 一次,笔者在电子论坛上看到一位网友抱怨:三态门的8D锁存器74LS373的引脚排列不合理,给PCB的布线工作带来极大的麻烦。其实,对于类似74LS373这样的芯片而言,完全可以灵活地改变引脚的连接关系,使得PCB的布线变得较为简洁。 让我们首先来看一看,按照普通的做法,74LS373引脚的不合理排列,会给PCB的布线工作带来多大的麻烦。 如图S1.Sch所示是笔者用Protel99se绘制的单片机DS80C320的最小系统(读者可以通过放大图片察看),图中的74LS373是作为地址锁存器使用。由于单片机的双向接口P0口是低8位地

址信息输出和外部存储器数据输入的通道,必须使用74LS373锁存器将CPU发出的低8位地址信息保存起来,才能分时合用P0口。 将电路原理图S1.Sch生成网络表(见图https://www.doczj.com/doc/047521849.html,),再打开Protel99se的PCB编辑器,设置好元件的布置参数、板层参数、布线参数,将所需的PCB元件库载入PCB设计系统,最后载入网络表https://www.doczj.com/doc/047521849.html,,接下来你会发现无论元件如何排放,其中的预拉线相互交叉甚多,如图PCB1.PCB所示,这样的后果是导致布线十分凌乱,必须使用许多过孔。据说,一个过孔会产生约10PF 的分布电容,这对单片机系统的稳定工作会带来极大的麻烦。另外,过孔太多会增加PCB的制作难度和成本,还会影响PCB的结实性。因此必须解决这个问题。 其实,从CPU发出地址信号的引脚到存储器进入地址信号的引脚之间只要符合如下对应关系,系统的工作就能正常进行。 而74LS373(U2)的输入脚与输出脚的对应关系是:

相关主题
文本预览
相关文档 最新文档