勾股定理解决动点构成直角三角形练习题及答案解析
- 格式:pdf
- 大小:370.88 KB
- 文档页数:18
中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。
第04讲勾股定理的应用类型一:勾股定理解决路径问题类型二:勾股定理解决折叠问题类型三:勾股定理解决实际问题类型四:勾股定理探究动点问题中的直角三角形存在问题【类型一:勾股定理解决路径问题】1.(2023春•分宜县期末)如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【分析】当GI最大时,GJ最小,当I运动到点A时,GI最大,根据勾股定理求解即可.【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.2.(2022秋•永州期末)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于D点,AB=12,BD =13,点P是线段BC上的一动点,则PD的最小值是()A.6B.5C.13D.12【分析】过点D作DE⊥BC于点E,则PD的最小值是DE的长,根据角平分线的性质定理可得AD=DE,再由勾股定理求出AD的长,即可求解.【解答】解:如图,过点D作DE⊥BC于点E,则PD的最小值是DE的长,∵∠A=90°,BD平分∠ABC,∴AD=DE,∵AB=12,BD=13,∴,∴DE=5,即PD的最小值是5.故选:B.3.(2023秋•北仑区校级期中)如图,△ABC中,∠C=90°,AC=8,BC=6,线段DE的两个端点D、E 分别在边AC,BC上滑动,且DE=6,若点M、N分别是DE、AB的中点,则MN的最小值为()A.2B.2.5C.3D.3.5【分析】根据勾股定理得到AB=10,根据直角三角形斜边中线的性质求得CN=AB=5,CM==3,由当C、M、N在同一直线上时,MN取最小值,即可求得MN的最小值为2.【解答】解:如图,连接CM、CN,∵∠C=90°,AC=8,BC=6,∴AB==10,∵DE=6,点M、N分别是DE、AB的中点,∴CN=AB=5,CM=DE=3,当C、M、N在同一直线上时,MN取最小值,∴MN的最小值为:5﹣3=2.故选:A.4.(2022秋•绵阳期末)如图,在△ABO中,∠AOB=90°,∠BAO=30°,BO=6,⊙O的面积为12π,点M,N分别在⊙O、线段AB上运动,则MN长度的最小值等于()A.B.C.D.【分析】过点O作OC⊥AB,交⊙O于点P,当点M与点P重合,点N与点C重合时,MN长度的最小即为线段PC的长度,利用含30度角的直角三角形的性质及勾股定理得出,再由等面积法确定,由圆的面积得出,结合图形即可得出结果.【解答】解:过点O作OC⊥AB,交⊙O于点P,当点M与点P重合,点N与点C重合时,MN长度的最小即为线段PC的长度,∵∠AOB=90°,∠BAO=30°,BO=6,∴AB=2BO=12,∴,∴,解得:,∵⊙O的面积为12π,设半径为r,∴πr2=12π,,即MN长度的最小值为,故选:C.5.(2023春•廊坊期末)在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.5B.6C.4D.4.8【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,过A作等腰三角形底边上的高AD,利用三线合一得到D为BC的中点,在直角三角形ADC中,利用勾股定理求出AD 的长,进而利用面积法即可求出此时BP的长.【解答】解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD==4,=BC•AD=BP•AC,又∵S△ABC∴BP===4.8.故选:D.6.(2023秋•桐柏县期中)如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【分析】连接BP,利用等腰三角形的对称性得BP=PC,则PC+PQ=BP+PQ=BQ,当B,P,Q共线时,PC+PQ的值最小,当BQ⊥AC时,BQ的值最小,利用勾股定理列方程即可解决问题.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ的值最小,令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.7.(2023秋•吴中区期中)如图,一支铅笔放在圆柱笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若铅笔长为18cm,则这只铅笔露在笔筒外面的长度h的最小值是3cm.【分析】由勾股定理求出AC=15cm,即可解决问题.【解答】解:如图,由题意可得:AB=12cm,BC=9cm,AB⊥BC,∴∠ABC=90°,在Rt△ABC中,由勾股定理得:AC===15(cm),∴这只铅笔露在笔筒外面的长度h的最小值是:18﹣15=3(cm),故答案为:3cm.8.(2023秋•大冶市期中)如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为2.【分析】过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,利用SAS证明△AFG≌△CEA可求得AE+BF的最小值即为BG的长,再结合等腰直角三角形的性质及勾股定理可求解.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.【类型二:勾股定理解决折叠问题】9.(2023春•息县月考)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.10.(2023春•岳麓区校级期末)如图,△ABC中,∠ACB=90°,AC=4,BC=3,将△ADE沿DE翻折,使点A与点B重合,则AE的长为()A.B.3C.D.【分析】在Rt△BCE中,由BE2=CE2+BC2,得到(8﹣x)2=x2+62,即可求解.【解答】解:设AE=BE=x,则CE=4﹣x,在Rt△BCE中,BE2=CE2+BC2,即x2=(4﹣x)2+32,解得x=,故选:D.11.(2022秋•西峡县期末)如图,在长方形ABCD中,AB=3cm,BC=4cm.将长方形沿对角线AC折叠,点D落在了D′位置,AD′与BC相交于点E.则BE的长等于()A.B.C.D.【分析】设BE=x cm,则EC=(4﹣x)cm,根据题意可证得Rt△ABE≌Rt△CED′,可得BE=ED′=x cm,根据EC2=ED′2+CD′2可得到关于x的方程,求解即可得到答案.【解答】解:设BE=x cm,则EC=(4﹣x)cm.根据图形折叠的性质可知CD=CD′,∠D=∠D′.∵四边形ABCD为长方形,∴AB=CD=3cm,∠B=∠D=90°.∴AB=CD′=3cm,∠B=∠D′=90°.在△ABE和△CED′中∴△ABE≌△CED′(AAS).∴BE=ED′=x cm.在Rt△CED′中EC2=ED′2+CD′2,即(4﹣x)2=x2+32.解得.∴cm.故选:A.12.(2023秋•九台区期末)如图,Rt△ABC中,∠B=90°,AB=4,BC=6,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段CN的长为()A.B.C.3D.【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可求CN的长.【解答】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC﹣CN=6﹣DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6﹣DN)2+4,∴DN=,∴CN=DN=,故选:D.13.(2022秋•东坡区期末)如图,将长方形纸片ABCD的边沿折痕AE折叠,使点D落在BC上的点F处,若AB=5,AD=13,则EF的长为()A.B.C.1D.【分析】先由长方形的性质得到BC=AD=13,∠B=∠C=90°,CD=AB=5,再由折叠的性质得到AF =AD=13,EF=DE,利用勾股定理求出BF=12,则CF=1,设EF=DE=x,则CE=CD﹣DE=5﹣x,利用勾股定理建立方程x2=12+(5﹣x)2,解方程即可得到答案.【解答】解:由长方形的性质可得BC=AD=13,∠B=∠C=90°,CD=AB=5,由折叠的性质可得AF=AD=13,EF=DE,在Rt△ABF中,由勾股定理得,∴CF=BC﹣BF=1,设EF=DE=x,则CE=CD﹣DE=5﹣x,在Rt△CEF中,由勾股定理得EF2=CE2+CF2,∴x2=12+(5﹣x)2,解得,∴,故选:B.14.(2023秋•银川期中)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.15.(2023秋•青岛期中)如图,平面直角坐标系中,点D的坐标为(15,9),过点D作DA⊥y轴,DC⊥x 轴,点E为y轴上一点,将△AED沿直线DE折叠,点A落在边BC上的点F处.(1)请你直接写出点A的坐标;(2)求FC,AE的长;(3)求四边形EOFD的面积.【分析】(1)证明四边形AOCD是矩形,再结合D的坐标即可得出结果;(2)根据折叠的性质得出DF的长,再根据勾股定理求出CF的长,即可得出OF的长,设AE=x,在Rt△OEF中根据勾股定理得出等式求解得出AE的长即可;+S△EFD=S△EOF+S△AED,再根据三角形的面积(3)根据折叠的性质可知,四边形EOFD的面积=S△EOF公式求解即可.【解答】解:(1)∵DA⊥y轴,DC⊥x轴,∠AOC=90°,∴四边形AOCD是矩形,∵D的坐标为(15,9),∴AD=OC=15,CD=AO=9,∴A(0,9);(2)∵将△AED沿直线DE折叠,点A落在边BC上的点F处.∴DF=AD=15,∴CF==12,∴OF=OC﹣CF=15﹣12=3,设AE=x,则EF=x,OE=9﹣x,在Rt△OEF中,由勾股定理得,OE2+OF2=EF2,即(9﹣x)2+32=x2,解得x=5,∴AE=5;(3)由(2)知AE=5,∴OE=9﹣5=4,=S△DFE,由折叠的性质可知,S△AED+S△EFD=S△EOF+S△AED∴四边形EOFD的面积=S△EOF===.【类型三:勾股定理解决实际问题】16.(2022秋•辉县市校级期末)如图1,一棵大树在一次强烈的地震中于离地面5米处折断倒下,树顶落在离树根12米处,图2是这棵大树折断的示意图,则这棵大树在折断之前的高是()A.20米B.18米C.16米D.15米【分析】利用勾股定理进行求解即可.【解答】解:设大树在折断之前的高是x m,由勾股定理得:(x﹣5)2=122+52,解得:x=18或x=﹣8(不符合题意,舍去),∴大树在折断之前的高是18m;故选:B.17.(2022秋•古县期末)如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A,B,C三点,且A,D,E,C四点在同一条直线上,∠C=90°,已测得AB=100m,BC=60m,AD=20m,EC=10m,则池塘的宽度DE是()A.80m B.60m C.50m D.40m【分析】根据已知条件在直角三角形ACB中,利用勾股定理求得AC的长,用AC减去AD、CE求得DE 即可.【解答】解:在Rt△ABC中,∠C=90°,AB=100m,BC=60m,∴AC===80(m),∴DE=AC﹣AD﹣EC=80﹣20﹣10=50(m),∴池塘的宽度DE为50米.故选:C.18.(2022秋•万荣县期末)山西地形较为复杂,境内有山地、丘陵、高原、盆地、台地等多种地貌类型,整个地貌是被黄土广泛覆盖的山地型高原.如图,在A村与B村之间有一座大山,原来从A村到B村,需沿道路A→C→B(∠C=90°)绕过村庄间的大山,打通A,B间的隧道后,就可直接从A村到B村.已知AC=9km,BC=12km,那么打通隧道后从A村到B村比原来减少的路程为()A.7km B.6km C.5km D.2km【分析】由勾股定理求出AB==15(km),因此AC+BC﹣AB=6(km),即可得到答案.【解答】解:∵∠C=90°,AC=9km,BC=12km,∴AB==15(km),∴AC+BC﹣AB=9+12﹣15=6(km),∴从A村到B村比原来减少的路程为6km.故选:B.19.(2023秋•尤溪县期中)如图,一架25m长的梯子AB,斜靠在竖直的墙AC上,这时梯子的底部B到墙底端C的距离为7m.(1)这个梯子的顶端距地面有多高?(2)如果梯子的底部B在水平方向滑动了8m至D,那么梯子的顶端A沿墙垂直也下滑了8m吗?【分析】(1)根据勾股定理即可得到结论;(2)根据勾股定理,求出EC即可解答.【解答】解:(1)根据题意得:AB=25,BC=7,∴AC==24(m),答:这个梯子的顶端距地面有24m;(2)梯子的顶端A沿墙垂直不是下滑了8m,∵BC=7,BD=8,∴CD=15m,∴CE==20(m),∴AE=AC﹣CE=24﹣20=4(m),∴梯子的顶端A沿墙垂直也下滑了4m.20.(2023秋•左权县期中)在学校组织的研学活动中,辰星小组合作搭建帐篷.图是他们搭建帐篷的支架示意图.在△ABC中,两根支架从帐篴顶点A支撑在水平的支架上,一根支架AD⊥BC于点D,另一根支架AE的端点E在线段BD上,且AE=BE.经测量,知BD=1.6m,AD=1.2m,AC=1.5m.根据测量结果,解答下列问题:(1)求AE的长;(2)按照要求,当帐篷支架AB与AC所夹的角度为直角时,帐篷最为稳定.请通过计算说明辰星小组搭建的帐篷是否符合要求.【分析】(1)设AE=x m,则BE=AE=x m,ED=(1.6﹣x)m,在Rt△ADE中,利用勾股定理即可求解;(2)利用勾股定理求出AB与CD的长,从而得出BC的长,再利用勾股定理逆定理得出△ABC是直角三角形,∠BAC=90°,进而得出结论.【解答】解:(1)设AE=x m,则BE=AE=x m,ED=(1.6﹣x)m,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADE中,AD2+ED2=AE2,1.22+(1.6﹣x)2=x2,解得.∴AE的长为;(2)帐篷符合要求.理由如下:在Rt△ABD中,BD=1.6m,AD=1.2m,∴,在Rt△ADC中,AD=1.2m,AC=1.5m,∴,∴BC=BD+CD=2.5m,∵AB2+AC2=22+1.52=6.25,BC2=2.52=6.25,∴AB2+AC2=BC2.∴△ABC是直角三角形,∠BAC=90°.∴帐篷符合要求.21.(2023秋•二道区期末)某实践探究小组在放风筝时想测量风筝离地面的垂直高度,通过勘测,得到如下记录表:测量示意图测量数据边的长度①测得水平距离BC的长为15米.②根据手中剩余线的长度计算出风筝线AB的长为17米.③小明牵线放风筝的手到地面的距离为1.7米.数据处理组得到上面数据以后做了认真分析,他们发现根据勘测组的全部数据就可以计算出风筝离地面的垂直高度AD.请完成以下任务.(1)已知:如图,在Rt△ABC中,∠ACB=90°,BC=15,AB=17.求线段AD的长.(2)如果小明想要风筝沿DA方向再上升12米,BC长度不变,则他应该再放出多少米线?【分析】(1)根据勾股定理求出AC,进而求出AD;(2)先根据勾股定理求出风筝线的长,再根据题意计算,得到答案.【解答】解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AB=17,由勾股定理得:AC===8,则AD=AC+CD=8+1.7=9.7;(2)风筝沿DA方向再上升12米后,风筝的高度为20米,则此时风筝线的长为:=25(米),25﹣17=8(米),答:他应该再放出8米线.【类型四:勾股定理探究动点问题中的直角三角形存在问题】22.(2023秋•新吴区期中)如图,点A是射线BC外一点,连接AB,若AB=5cm,点A到BC的距离为3cm,动点P从点B出发沿射线BC以2cm/s的速度运动.设运动的时间为t秒,当t为()秒时,△ABP 为直角三角形.A.B.C.2或D.2或【分析】过点A作AH⊥BC于点H,由勾股定理求得BH=4cm,当∠APB=90°时,此时点P与点H重合,求出t=2;当∠BAP=90°时,HP=(2t﹣4)cm,由勾股定理得AP2=BP2﹣AB2=AH2+HP2,列出方程,解方程即可.【解答】解:如图1,过点A作AH⊥BC于点H,∵点A到BC的距离为3cm,∴AH=3cm,在Rt△AHB中,由勾股定理得:BH===4(cm),分两种情况:①当∠APB=90°时,此时点P与点H重合,由题意得:2t=4,解得:t=2;②如图2,当∠BAP=90°时,∵AB=5cm,BP=2t cm,AH=3cm,BH=4cm,∴HP=(2t﹣4)cm,由勾股定理得:AP2=BP2﹣AB2=(2t)2﹣25,AP2=AH2+HP2=32+(2t﹣4)2,∴(2t)2﹣25=32+(2t﹣4)2,解得:t=,综上所述,当t为(2或)秒时,△ABP为直角三角形,故选:D.23.(2022秋•泌阳县期末)如图,在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,动点P从点B 出发沿射线BA以2cm/s的速度运动.则当运动时间t=25或16s时,△BPC为直角三角形.【分析】首先根据勾股定理求出斜边AB的长度,利用三角形的面积求出斜边上的高CD,再分两种情况进行讨论:①当∠BCP为直角时,②当∠BPC为直角时,分别求出此时的t值即可.【解答】解:在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,∴AB===50(cm).如图,作AB边上的高CD.=AB•CD=AC•BC,∵S△ABC∴CD===24(cm).①当∠BCP为直角时,点P与点A重合,BP=BA=50cm,∴t=50÷2=25(秒).②当∠BPC为直角时,P与D重合,BP=2t cm,CP=24cm,BC=40cm,在Rt△BCP中,∵BP2+CP2=BC2,∴(2t)2+242=402,解得t=16.综上,当t=25或16秒时,△BPC为直角三角形.故答案为:25或16.24.(2023秋•乐平市期中)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以每秒1cm的速度运动,设运动时间为t秒.当t为6或13或12或10.8时,△ACP是等腰三角形.【分析】分CA=CP、PA=PC、AC=AP、AC=CP四种情况,根据等腰三角形的性质解答.【解答】解:∵∠ACB=90°,AC=6cm,BC=8cm,∴AB==10,当CA=CP时,如图:∴CP=6cm,∴t=6÷1=6;当PA=PC时,如图:∴∠PAC=∠PCA,∵∠PAC+∠B=90°,∠ACP+∠PCB=90°,∴∠PCB=∠PBC∴PA=PC=PB=AB=5cm,∴t=(CB+BP)÷1=13;当AC=AP时,如图:AP=6cm,AB=10cm,∴PB=AB﹣AP=4cm,∴t=(CB+BP)÷1=12;当AC=CP时,如图:作CD⊥AB于点D△ABC的面积=×AC×BC=×AB×CD,即×6×8=×10×CD,解得,CD=4.8,在Rt△ACD中,AD==3.6,∴AP=2AD=7.2,∴BP=AB﹣AP=2.8,∴t=(CB+BP)÷1=10.8;综上所述,当t为6或13或12或10.8时,△ACP是等腰三角形.25.(2023秋•阜宁县期中)如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以2cm/s的速度移动设运动的时间为ts当t=2s或s时,△ABP为直角三角形.【分析】首先根据勾股定理求出BC的长度,再分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可.【解答】解:∵∠C=90°,AB=5cm,AC=3cm,∴BC=4cm.①当∠APB为直角时,点P与点C重合,BP=BC=4cm,∴t=4÷2=2s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,∴52+[32+(2t﹣4)2]=(2t)2,解得t=s.综上,当t=2s或s时,△ABP为直角三角形.故答案为:2s或s.26.(2022秋•南阳期末)如图,在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以1cm/s的速度沿折线A﹣C﹣B﹣A运动.设运动时间为t(t>0)s.当点P运动到恰好到点A和点B的距离相等的位置时,t的值为或19.【分析】设存在点P,使得PA=PB,此时PA=PB=t cm,PC=(8﹣t)cm,根据勾股定理列方程即可得到结论;【解答】解:在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,则由勾股定理得到:AC===8(cm)当点P在AC上时,设存在点P,使得PA=PB,此时PA=PB=t cm,PC=(8﹣t)cm,在Rt△PCB中,PC2+CB2=PB2,即:(8﹣t)2+62=t2,解得:t=,∴当t=时,PA=PB;当点P在AB上时,此时AC+BC+BP=8+6+5=19cm,∴当t=19时,PA=PB;故答案为:或19.27.(2023春•陈仓区期末)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【分析】利用勾股定理求解BC的长,再分3中情况讨论:当AP=BP时,当AB=BP时,当AB=AP 时,分别计算可求解.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.28.(2023春•乳山市期末)如图,在△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以每秒1cm的速度运动,设运动的时间为t秒.(1)若△ABP是以BP为斜边的直角三角形,求t的值;(2)若△ABP是以BP为腰的等腰三角形,求t的值.【分析】(1)依题意,AP=t,利用勾股定理即可求得t的值;(2)分情况讨论:AB=BP时,直接可得t的值;BP=AP时,在Rt△APC中,利用勾股定理求解即可.【解答】解:(1)∵∠ACB=90°,AB=5cm,AC=3cm,∴,∴CP=t﹣4,由∠ACP=∠BAP=90°,可得AP2=t2﹣25=(t﹣4)2+9,解得,所以t的值为;(2)当AB=BP时,t=5.当BP=AP时,∴CP=4﹣t,在Rt△APC中,可得9+(4﹣t)2=t2,。
勾股定理专题训练试题精选(八)一.选择题(共29小题)1.如图,△ABC的三边长为5,12,13.设其三条高的交点为H,外心为O,求OH.2.在△ABC中,∠ACB﹣∠B=90°,∠BAC的角平分线交BC于E,△BAC的外角平分线交BC于F,证明:AE=AF.3.如图,以等腰直角△ABC的直角边AC作等边△ACD,CE⊥AD于E,BD、CE交于点F.(1)求∠DFE的度数;(2)求证:AB=2DF.4.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.5.请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(在图甲中画出)(3)以(1)中的AB为边的两个四边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数.(在图乙中画出)7.△ABC中,AB=,BC=,AC=,求这个三角形的面积.(1)小明同学是用构图法解答本题的,建立一个正方形网格(小正方形的边长为1),在网格中画出符合条件的格点三角形ABC,这样不必求△ABC的高而借助网格可得△ABC面积为_________.(2)若△ABC三边长为、、(a>0),请利用图2的正方形网格(小正方形边长为a),画出相应的△ABC,并求出它的面积.8.如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2厘米?(把实际问题转化为几何问题)9.(1)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,过P作PE⊥AC于点E.设P点运动时间为t.①当点P在线段AB上运动时,线段DE的长度是否改变?若不改变,求出DE的值;若改变,请说明理由.下面给出一种解题的思路,你可以按这一思路解题,也可以选择另外的方法解题.解:过Q作QF⊥直线AC于点M∵PE⊥AC于点E,QF⊥直线AC于点M∴∠AEP=∠F=90°(下面请你完成余下的解题过程)②当点P在线段AB的延长线上运动时,(1)中的结论是否还成立?请在图2画出图形并说明理由.(2)若将(1)中的“腰长为10cm的等腰直角△ABC”改为“边长为a的等边△ABC”时(其余条件不变),则线段DE的长度又如何?(直接写出答案,不需要解题过程)(3)若将(2)中的“等边△ABC”改为“△ABC”(其余条件不变),请你做出猜想:当△ABC满足_________条件时,(2)中的结论仍然成立.(直接写出答案,不需要解题过程)10.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)设AC和DE交于点M,若AD=6,BD=8,求ED与AM的长.11.已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO 和∠CDO的角平分线分别交AC于点E和F.(1)求证:AC=2(BE+DF)(2)如图2,当△ABO和△CDO变为两个全等的直角三角形且OA与OC不在同一条直线上时,连接AC与BD 交于点G,其余条件都不变,那么(1)中的结论还成立吗?如果成立请证明,不成立说明你的理由.12.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.13.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=_________.如果,其中b是整数,且0<c<1,那么b= _________,c=_________.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.(1)图1中阴影正方形的面积是多少?并由已求面积求边长AB的长;(2)在图2:3×3正方形方格中,由题(1)的解题思路和方法,设计一个方案画出长为的线段,并说明理由.16.正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图1中的正方形网格中△ABC 是格点三角形,小正方形网格的边长为1(单位长度).(1)△ABC的面积是_________(平方单位);(2)在图2所示的正方形网格中作出格点△A′B′C′和△A″B″C″,使△A′B′C′∽△ABC,△A″B″C″∽△ABC,且AB、A′B′、A″B″中任意两条线段的长度都不相等;(3)在所有与△ABC相似的格点三角形中,是否存在面积为3(平方单位)的格点三角形?如果存在,请在图3中作出,如果不存在,请说明理由.17.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.(1)当x=4时,求四边形ABED的周长;(2)当x为何值时,△BED是等腰三角形?18.已知一个三角形的三边长分别是7厘米,3厘米,第三边长为x厘米.(1)求第三边x的取值范围;(2)在(1)的条件下,取x的偶数值为直角△ABC的两直角边长(AC>BC),此时AB=10厘米,若P为斜边AB上的一个动点,求PC的最小值.19.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为_________;参考小明解决问题的方法,完成下列问题:(2)图2是一个正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积为_________.(3)如图3,已知△ABC,以AB,AC为边向外作正方形ABDE,ACFG,连接EG.若AB=,BC=,AC=,则六边形BCFGED的面积为_________.20.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.21.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组的最大整数解.(1)求a、b、c的长.(2)若AE平分△ABC的周长,求∠BEA的大小.23.如图1,在△ABC,∠A=45°,延长CB至D,使得BD=BC.(1)若∠ACB=90°,求证:BD=AC;(2)如图2,分别过点D和点C作AB所在直线的垂线,垂足分别为E、F,求证:DE=CF;(3)如图3,若将(1)中“∠ACB=90°”改为“∠ACB=m°,并在AB延长线上取点G,使得∠1=∠A”.试探究线段AC、DG的数量与位置关系.24.如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.25.已知:两个等腰直角三角形(△ACB和△BED)边长分别为a和b(a<b)如图放置在一起,连接AD.(1)求△ABD的面积;(2)如果有一个P点正好位于线段CE的中点,连接AP、DP得到△APD,求△APD的面积;(3)(2)中的△APD的面积记为S1,(1)中的△ABD的面积记为S2,则S1与S2的大小关系是_________.A.S1=S2B.S1<S2C.S1>S2D.无法确定.26.如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:(1)当点P运动到AC的中点时,△PBD的周长;(2)△PBD的周长的最小值.27.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A 点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(_________,_________);(2)点Q的坐标是(_________,_________);(3)x为何值时,△APQ是以AP为腰的等腰三角形?28.如图,在直角三角形ABC中∠C=90°.AC=4,BC=3,在直角三角形ABC外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,见图示.请在四个备用图中分别画出与示例图不同的拼接方法,并在图中标明拼接的直角三角形的三边长.29.如图,Rt△ABC中,∠C=90°,AD、BE分别是BC、AC边上的中线,AD=2,BE=5,求AB的长.二.解答题(共1小题)30.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=_________cm;(2)当t为多少时,四边形PQCD成为平行四边形?勾股定理专题训练试题精选(八)参考答案与试题解析一.选择题(共29小题)1.如图,△ABC的三边长为5,12,13.设其三条高的交点为H,外心为O,求OH.就是斜边上的中线,等于斜边的一半是.×.2.在△ABC中,∠ACB﹣∠B=90°,∠BAC的角平分线交BC于E,△BAC的外角平分线交BC于F,证明:AE=AF.(∠(∠BAE=3.如图,以等腰直角△ABC的直角边AC作等边△ACD,CE⊥AD于E,BD、CE交于点F.(1)求∠DFE的度数;(2)求证:AB=2DF.BDC=(=,4.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.5.请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(在图甲中画出)(3)以(1)中的AB为边的两个四边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数.(在图乙中画出)26.已知:如图所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D点到AB的距离为2,求BD的长.DE=2BD=即可求AE=,7.△ABC中,AB=,BC=,AC=,求这个三角形的面积.(1)小明同学是用构图法解答本题的,建立一个正方形网格(小正方形的边长为1),在网格中画出符合条件的格点三角形ABC,这样不必求△ABC的高而借助网格可得△ABC面积为 3.5.(2)若△ABC三边长为、、(a>0),请利用图2的正方形网格(小正方形边长为a),画出相应的△ABC,并求出它的面积.×﹣×××﹣8.如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2厘米?(把实际问题转化为几何问题)PQ=PQ=,.9.(1)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,过P作PE⊥AC于点E.设P点运动时间为t.①当点P在线段AB上运动时,线段DE的长度是否改变?若不改变,求出DE的值;若改变,请说明理由.下面给出一种解题的思路,你可以按这一思路解题,也可以选择另外的方法解题.解:过Q作QF⊥直线AC于点M(下面请你完成余下的解题过程)②当点P在线段AB的延长线上运动时,(1)中的结论是否还成立?请在图2画出图形并说明理由.(2)若将(1)中的“腰长为10cm的等腰直角△ABC”改为“边长为a的等边△ABC”时(其余条件不变),则线段DE的长度又如何?(直接写出答案,不需要解题过程)(3)若将(2)中的“等边△ABC”改为“△ABC”(其余条件不变),请你做出猜想:当△ABC满足∠A=∠ACB条件时,(2)中的结论仍然成立.(直接写出答案,不需要解题过程)AE=CF=EFAC==10=EF=((=AC=5DE=DF=a AC10.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)设AC和DE交于点M,若AD=6,BD=8,求ED与AM的长.=10=,DE=5DG==﹣,==,,MG=AM===,即AM=11.已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO 和∠CDO的角平分线分别交AC于点E和F.(1)求证:AC=2(BE+DF)(2)如图2,当△ABO和△CDO变为两个全等的直角三角形且OA与OC不在同一条直线上时,连接AC与BD 交于点G,其余条件都不变,那么(1)中的结论还成立吗?如果成立请证明,不成立说明你的理由.BE=AO DF=OC12.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.AD==5cm=×13.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=3.如果,其中b是整数,且0<c<1,那么b=4,c=﹣1.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.<)∵<<的整数部分为=b+c=5﹣14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.即EG==5CE=515.观察图1:每个小正方形的边长均是1,我们可以得到小正方形的面积1.(1)图1中阴影正方形的面积是多少?并由已求面积求边长AB的长;(2)在图2:3×3正方形方格中,由题(1)的解题思路和方法,设计一个方案画出长为的线段,并说明理由.×,==16.正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图1中的正方形网格中△ABC 是格点三角形,小正方形网格的边长为1(单位长度).(1)△ABC的面积是5(平方单位);(2)在图2所示的正方形网格中作出格点△A′B′C′和△A″B″C″,使△A′B′C′∽△ABC,△A″B″C″∽△ABC,且AB、A′B′、A″B″中任意两条线段的长度都不相等;(3)在所有与△ABC相似的格点三角形中,是否存在面积为3(平方单位)的格点三角形?如果存在,请在图3中作出,如果不存在,请说明理由.﹣=16,是不可能由格点三角形构成,所以不存在.17.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.(1)当x=4时,求四边形ABED的周长;(2)当x为何值时,△BED是等腰三角形?=或18.已知一个三角形的三边长分别是7厘米,3厘米,第三边长为x厘米.(1)求第三边x的取值范围;(2)在(1)的条件下,取x的偶数值为直角△ABC的两直角边长(AC>BC),此时AB=10厘米,若P为斜边AB上的一个动点,求PC的最小值.厘米,由勾股定理可知,=10由勾股定理可知,=÷19.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为5;参考小明解决问题的方法,完成下列问题:(2)图2是一个正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积为7.(3)如图3,已知△ABC,以AB,AC为边向外作正方形ABDE,ACFG,连接EG.若AB=,BC=,AC=,则六边形BCFGED的面积为22.×﹣×﹣×﹣﹣﹣﹣×﹣﹣3=×﹣×﹣.(+20.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.21.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组的最大整数解.(1)求a、b、c的长.(2)若AE平分△ABC的周长,求∠BEA的大小.)方程组的解为不等式组23.如图1,在△ABC,∠A=45°,延长CB至D,使得BD=BC.(1)若∠ACB=90°,求证:BD=AC;(2)如图2,分别过点D和点C作AB所在直线的垂线,垂足分别为E、F,求证:DE=CF;(3)如图3,若将(1)中“∠ACB=90°”改为“∠ACB=m°,并在AB延长线上取点G,使得∠1=∠A”.试探究线段AC、DG的数量与位置关系.24.如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.25.已知:两个等腰直角三角形(△ACB和△BED)边长分别为a和b(a<b)如图放置在一起,连接AD.(1)求△ABD的面积;(2)如果有一个P点正好位于线段CE的中点,连接AP、DP得到△APD,求△APD的面积;(3)(2)中的△APD的面积记为S1,(1)中的△ABD的面积记为S2,则S1与S2的大小关系是C.A.S1=S2B.S1<S2C.S1>S2D.无法确定.ABBD==××﹣,﹣﹣﹣abab+b(ab=26.如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:(1)当点P运动到AC的中点时,△PBD的周长;(2)△PBD的周长的最小值.BP=DP=BD=),所以BE=2a,,,.的周长的最小值是27.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A 点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(5﹣x,0);(2)点Q的坐标是(2+,4﹣);(3)x为何值时,△APQ是以AP为腰的等腰三角形?=,,x﹣x=2+,﹣=x=;=或秒时,,)x=或28.如图,在直角三角形ABC中∠C=90°.AC=4,BC=3,在直角三角形ABC外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,见图示.请在四个备用图中分别画出与示例图不同的拼接方法,并在图中标明拼接的直角三角形的三边长.的等腰三角形.29.如图,Rt△ABC中,∠C=90°,AD、BE分别是BC、AC边上的中线,AD=2,BE=5,求AB的长.,.二.解答题(共1小题)30.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=12cm;(2)当t为多少时,四边形PQCD成为平行四边形?EC==8cm。
勾股定理练习题及答案勾股定理练习题及答案勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
下面小编给大家带来勾股定理练习题及答案,欢迎大家阅读。
勾股定理练习题:1、在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为__________2、已知直角三角形两边的长为3和4,则此三角形的周长为__________.3、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要 __________元.4、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B 下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m5、将一根24cm的.筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm6、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1。
4m,BC=30米,请帮助小明计算出树高AB.(取1。
732,结果保留三个有效数字)◆典例分析如图1,一个梯子AB长2。
5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1。
5m,梯子滑动后停在DE的位置上,如图2,测得BD长为0。
5m,求梯子顶端A下落了多少米.解法指导:直角三角形中,已知一直角边和斜边是勾股定理的重要应用之一.勾股定理:a2+b2=c2的各种变式:a2=c2-b2,b2=c2-a2.应牢固掌握,灵活应用.分析:先利用勾股定理求出AC与CE的长,则梯子顶端A下落的距离为AE=AC-CF.解:在Rt△ABC中,AB2=AC2+BC2∴2.52=AC2+1。
第一章勾股定理分节练习第1节探索勾股定理一、求边长问题. ★★★题型一:已知直角三角形的两边,求第三边.1、【基础题】求出下列两个直角三角形中x和y边的长度.、【基础题】(1)求斜边长为17 cm,一条直角边长为15 cm的直角三角形的面积.(2)已知一个Rt△的两边长分别为3和4,则第三边长的平方是________.、【综合Ⅰ】已知一个等腰三角形的两腰长为5 cm,底边长6 cm,求这个等腰三角形的面积.、【综合Ⅰ】如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米、【综合Ⅰ】强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,求旗杆折断之前有多高、【综合Ⅱ】如图,某储藏室入口的截面是一个半径为 m的半圆形,一个长、宽、高分别是 m、1 m、 m的箱子能放进储藏室吗题型二:用“勾股定理 + 方程”来求边长.2、【综合Ⅱ】一个直角三角形的斜边为20 cm,且两直角边的长度比为3∶4,求两直角边的长.【综合Ⅱ】 如图,小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,下端刚好接触地面,求旗杆AC 的高度.、【综合Ⅱ】在我国古代数学著作《九章算术》中记载了一个有趣的问趣,这个问题的意思是:如左下图,有一个边长是10尺的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边中点的水面,请问这个水池的深度和这根芦苇的长度各是多少【综合Ⅲ】如右上图,有一块直角三角形纸片,两直角边AC =6 cm ,BC =8 cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 的长.【提高题】(2011年北京市竞赛题)两张大小相同的纸片,每张都分成7个大小相同的矩形,放置如图所示,重合的顶点记作A ,顶点C 在另一张纸的分隔线上,若BC =28,则AB 的长是 ______ .类型三: “方程 + 等面积” 求直角三角形斜边上的高.3、 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B ) (C )1320 (D )1360二、面积问题. ★4、【基础题】求出左下图中A 、B 字母所代表的正方形的面积.、【综合Ⅰ】如右上图,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干图形,使它们的面积之和等于最大正方形1的面积,尝试给出两种方案.、【综合Ⅰ】如左下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2.、【综合题】如右上图2,以Rt△ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为( ).(A )9 (B )3 (C )49 (D )295、【综合Ⅲ】如图,在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则1S +2S +3S +4S =________三、证明问题6、【综合Ⅲ】1876年,美国总统加菲尔德利用右图验证了勾股定理,你能利用左下图验证勾股定理吗说一说这个方法和本节的探索方法的联系.7、【提高题】 如右上图,在Rt △ABC 中,∠A = 90,D 为斜边BC 的中点,DE ⊥DF ,求证:222CF BE EF +=.8、【提高题】 如图,AD 是△ABC 的中线,证明:)+(=+22222CD AD AC AB第2节 一定是直角三角形吗9、【基础题】一个零件的形状如图所示,按规定这个零件中∠A 和∠DBC 都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗并求出四边形ABCD 的面积.、【综合Ⅰ】如左下图,6个三角形分别标号,哪些三角形是直角三角形,哪些不是,请说明理由.、【综合Ⅰ】如右上图,在正方形ABCD 中,4=AB ,2=AE ,1=DF ,图中有几个直角三角形,说明理由.10、【基础题】下列各组中,不能构成直角三角形三边长度的是 ( )(A )9,12,15 (B )15,32,39 (C )16,30,34 (D )9,40,41、【基础题】(1)如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形吗(2)下表中第一列每组数都是勾股数,补全下表,这些勾股数的2倍、3倍、4倍、10倍还是勾股数吗任意正整数倍呢说说你的理由。
勾股定理基础练习题(含答案与解析)勾股定理勾股定理基础练习题(含答案与解析)第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共15小题)1.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20 B.22 C.24 D.263.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算5.如图,在△ABC中,AD⊥BC于D,AB=17,BD=15,DC=6,则AC的长为()A.11 B.10 C.9 D.86.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.97.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()A.4 B.6 C.8 D.108.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()勾股定理基础练习题(含答案与解析)A.5m B.6m C.7m D.8m9.如图,已知,CD是Rt△ABC斜边上的高,∠ACB=90°,AC=4m,BC=3m,则线段CD的长为()A.5m B.C.D.10.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2 C.3cm2 D.4cm211.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A.8 B.9 C.10 D.1112.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.13.用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm14.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定15.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5勾股定理基础练习题(含答案与解析)第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共13小题)16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S 的边长为cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.18.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于,小于或等于)1米.19.如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=.勾股定理基础练习题(含答案与解析)20.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是.21.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.22.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为,整理后即为.23.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.勾股定理基础练习题(含答案与解析)24.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.25.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.26.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.27.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.勾股定理基础练习题(含答案与解析)28.一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3).评卷人得分三.解答题(共5小题)29.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?30.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.勾股定理基础练习题(含答案与解析)31.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.32.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?33.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?勾股定理基础练习题(含答案与解析)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
练习:勾股定理与等腰三角形综合学生姓名:年级:科目:得分:练习内容1.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s 的速度向终点A运动,设点D的运动时间为t0.(1)AB=50 cm,AB边上的高为24 cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.【分析】(1)在Rt△ABC中,由勾股定理即可求出AB;由直角三角形的面积即可求出斜边上的高;(2)分三种情况:①当BD=BC=30cm时,得出2t=30,即可得出结果;②当CD=CB=30cm时,作CE⊥AB于E,则BE=DE=BD=t,由(1)得出CE=24,由勾股定理求出BE,即可得出结果;③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB=AB,即可得出结果.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB•CE=AC•BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.【点评】本题考查了勾股定理、等腰三角形的判定与性质、三角形面积的计算;本题综合性强,有一定难度,特别是(2)中,需要进行分类讨论,运用勾股定理和等腰三角形的性质才能得出结果.2.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)由题意得出BQ=BP,即2t=8﹣t,解方程即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(图2),则BC+CQ=12,易求得t;③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE===4.8(cm)∴CE==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.3.如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.(1)请在6×8的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.【分析】(1)根据点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,和运动时间t为2秒,分别求出PE、QE,再利用勾股定理即可求出PQ其长度.(2)设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得PQ=BQ,然后根据勾股定理列出关于t的方程,解得t即可.【解答】解:(1)∵点Q的运动速度为每秒1个单位,和运动时间t为2秒,运动时间t为2秒,∴由图中可知PQ的位置如下图2,则由已知条件可得PD=4,AQ=2,QE=2,PE=6,∴PQ===2,(2)能.设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得PQ=BQ(2t﹣t)2+62=(8﹣t)2解得t=.答:(1)PQ的长为2;(2)能,运动时间t为.【点评】此题主要考查勾股定理和等腰三角形的性质等知识点,此题涉及到动点问题,有一定的拔高难度,属于难题.4.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连结AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D做DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)根动点运动过程中形成三种等腰三角形,分情况即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.【解答】解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.【分析】(1)①先根据∠B=∠C,BD=CE,AB=DC,判定△ABD≌DCE,得出AB=DC,进而得到△ADE 为等腰三角形;②根据△ABD≌△DCE,得出∠BAD=∠CDE,再根据∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,得到∠ADE=∠B=60°,最后判定等腰△ADE为等边三角形;(2)分三种情况讨论:∠CPD为直角顶点;∠PCD是直角顶点;∠PDC是直角顶点,分别进行画图即可.第一种情况:使得AP=BD,BP=AC;第二种情况:使得AC=AB,CE=AP,BD=AE;第三种情况:使得BD=AB,DF=BP,AC=BF.【解答】解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:2.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为2cm/s和lcm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当运动时间t为多少秒时,△PBQ为直角三角形。
类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
解析:延长AD、BC交于E。
直角三角形与勾股定理练习题含参考答案(第3 题)直角三角形与勾股定理练习题含参考答案选择题1、(浙江杭州模拟14)如图折叠直角三角形纸片的直角,使点 C 落在斜边AB 上的点 E 处.已知AB= ,∠B=30°,则DE的长是(). A.6B.4C. D.2答案:B 2.(湖北崇阳县城关中学模拟)直角三角形两直角边和为7,面积为6,则斜边长为()A.5B.C.7D.答案:A3 .(年杭州市上城区一模)梯形ABCD 中AB ∥ CD ,∠ ADC +∠ BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1 、S2 、S3 ,且S 1 + S 3 =4 S 2 ,则CD =()A.2.5 ABB.3 ABC.3.5 ABD.4 AB 答案:B4.(年浙江省杭州市模2)直角三角形两直角边和为7,面3 83 4 3 积为6,则斜边长为()A.5B.C.7D.答案:A填空题1、(年北京四中三模)如图是一个艺术窗的一部分,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为5cm,则正方形A、B、C、D 的面积和是.答案:25cm22.(2010-学年度河北省三河市九年级数学第一次教学质量检测试题)如图是两个全等的三角形纸片,其三边长之比为3:4:5,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为S A ,S B ,已知S A +S B =13,则纸片的面积是. B A C D答案:36 3、(浙江杭州模拟15)如图,将含30°角的直角三角尺ABC绕点B 顺时针旋转150°后得到△EBD,连结CD.若AB=4cm.则△BCD 的面积为.答案:4.(年宁夏银川)将一副三角尺如图所示叠放在一起,若=14cm ,则阴影部分的面积_________cm2 .答案:5.(浙江省杭州市8 模)如图1,是我国古代著名的“赵爽弦图”的示意图,它是由四全等的直角三角形围成的,若AC =6,BC =5,将四个直角三角形中边长为6 的直角边分别向外延长一倍,得到图 2 所示的“数学风车”,则这个风车的外围周长是__________;23cmAB249第2 题图S AS B第4 题图A C E D B F 30°45°图2 A B C 图1 A B C(第5 题图)答案:76 6、(年浙江杭州二模)如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2 米,BP=1.8 米,PD=12 米,那么该古城墙的高度是米. 答案:87、(年浙江杭州八模)如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12 米,若两次日照的光线互相垂直,则树的高度为_____米. . 答案:6AB PDC第6 题图(第7 题)A 时B 时图2 A BC 图1 A B C第8 题图8、(年浙江杭州八模)如图1,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC =6,BC=5,将四个直角三角形中边长为6 的直角边分别向外延长一倍,得到图2 所示的“数学风车”,则这个风车的外围周长是__________;答案:76 9 9 .(浙江省杭州市党山镇中年中考数学模拟试卷)如图,将边长为的等边△ ABC 折叠,折痕为DE ,点B 与点F 重合,EF 和DF 分别交于点M 、N ,DF AB ,垂足为D ,AD=1,则重叠部分的面积为. 答案:B B 组1.(年杭州三月月考)将一副三角板按如图1 位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB = AC =8cm,将△ MED 绕点 A ( M )逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是▲cm2答案:3 3AC 3 934 4+3 16 48__A图2图1A(M)__BA(M)(第1 题)2.(年重庆江津区七校联考一模)一元二次方程的两根恰好是一直角三角形的两边长,则该直角三角形的面积为。
勾股定理精选题一、选择题1.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为a,较短的直角边为b,且a:b=4:3,则大正方形面积与小正方形面积之比为()A.25:9 B.25:1 C.4:3 D.16:92.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m3.下列结沦中,错误的有()①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c,若a2+b2=c2,则∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy.A.0个B.1个C.2个D.3个4.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4πC.8πD.85.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:256.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)27.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,等腰△ABC中,AB=AC=10cm,BC=12cm,D为BC上一点,连接AD,E为AD上一点,连接BE,若∠ABE=∠BAE═∠BAC,则DE的长为()A.cm B.cm C.cm D.1cm9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.满足下列条件的△ABC不是直角三角形的是()A.AC=3,BC=5,AB=4 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:5二、填空题11.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.12.如图所示,一棵36m高的树被风刮断了,树顶落在离树根24m处,则折断处的高度AB是m.13.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.14.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.15.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.t=时△ABP为直角三角形.16.已知等腰△ABC中,AB=AC=5,BC=6,则△ABC的面积为.17.已知△ABC中,AB=10,BC=21,CA=17,则△ABC的面积等于.18.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.19.已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.20.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.三、解答题21.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?22.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.B'=3.将纸片沿某条直线折叠,使点B落在点B' 23.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,C处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.24.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.26.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.27.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P 运动几秒时,P点与顶点A的连线PA与腰垂直.28.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.29.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.30.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B 方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.勾股定理精选题(参考答案)一、选择题1.【答案】【解析】解:∵a:b=4:3,∴大正方形面积与小正方形面积之比为(a2+b2):(a﹣b)2=b2:b2=25:1.故选:B.2.【答案】【解析】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.3.【答案】【解析】C4.【答案】【解析】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.5.【答案】【解析】解:(A)当∠A=90°时,此时a2=b2+c2,故A能成立.(B)∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故B能成立.(C)设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴x=15°,∴∠C=75°,故C不能成立.当∠C=90°,∴a2+b2=c2,故D能成立,故选:C.6.【答案】【解析】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:D.7.【答案】【解析】解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.8.【答案】【分析】根据条件得出AE=BE,再使用勾股定理计算.【解析】解:∵AB=AC,∠BAE═∠BAC,∴AD⊥BC,∴∠BDE=90°,BD=BC=6,∵AB=10,∴AD==8,∵∠ABE=∠BAE,∴AE=BE,设DE=x,则AE=BE=8﹣x,在Rt△BDE中,BE2=DE2+BD2,∴(8﹣x)2=x2+62,解得:x=,即DE=cm,故选:C.9.【答案】【解析】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故选:D.10.【答案】【解析】解:A、∵32+42=52∴满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.二、填空题11.【答案】【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.12.【答案】【解析】根据题意构造直角三角形,设AB=x米,则AC=(36﹣x)米,BC=24米,由勾股定理得出方程,解方程即可.解:由勾股定理得:x2+242=(36﹣x)2,解得:x=10;即折断处的高度AB是10m;故答案为:10.13.【答案】【解析】解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:2414.【答案】【解析】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.15.【答案】【解析】解:在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm,由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即2t=4,t=2;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(2t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=2或t=,故答案为:2s或s16.【答案】【解析】解:如图,过点A作AD⊥BC,垂足为点D,∵AB=AC=5,BC=6,∴BD=CD=BC=×6=3,∵AD2+BD2=AB2,∴AD==4,∴S△ABC=BC•AD=×4×6=12,故答案为:12.17.【答案】【解析】解:过点A作AD⊥BC.设BD=x,则CD=21﹣x,在Rt△ABD中,AD2=102﹣x2,在Rt△ADC中,AD2=172﹣(21﹣x)2,∴102﹣x2=172﹣(21﹣x)2,100﹣x2=289﹣441+42x﹣x2,解得x=6,∴CD=15,在Rt△ACD中,AD==8,∴△ABC的面积=×BC•AD=×21×8=84.故答案为:84.18.【答案】3.6或4.32或4.8【解析】19.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.20.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.三、解答题21.【答案】【解析】解:设运动x 秒时,它们相距15cm ,则CP =xcm ,CQ =(21﹣x )cm ,依题意有 x 2+(21﹣x )2=152,解得x 1=9,x 2=12.故运动9秒或12秒时,它们相距15cm .22.【答案】【解析】因为a 2+b 2+c 2+50=6a+8b+10c ,所以a 2+b 2+c 2-6a-8b-10c+50=0,即a 2-6a+9+b 2-8b+16+c 2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a 2+b 2=c 2,所以三角形为直角三角形.23.【答案】 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.24.【答案】【解析】设EC=xcm ,则DE=(8-x )cm ,由折叠可知,EF=DE ,AD=AF ,在直角△ABF 中,由勾股定理得AB 2+BF 2=AF 2,即82+BF 2=102,所以BF=6cm ,所以FC=10-6=4(cm ).在直角△EFC 中,由勾股定理得FC 2+CE 2=EF 2,即42+x 2=(8-x )2,解之得x=3,即EC 的长度为3cm.25.【答案】【解析】过D 作DE ⊥AB ,垂足为E ,因为∠1=∠2,所以CD=DE=15,在Rt △BDE 中,BE 2=BD 2-DE 2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD ,所以Rt △ACD ≌Rt △AED ,又因为AB 2=AC 2+BC 2,即(AC+20)2=AC 2+(15+25)2,解得AC=30.26.【答案】【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=, 故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.27.【答案】【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.28.【答案】【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,所以AF=13,所以AE=AF=6.5.29.【答案】【解析】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.30.【答案】【解析】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。
勾股定理时间:100分钟总分:100题号一二三四总分得分一、选择题(本大题共8小题,共32.0分)1.直角三角形的斜边为20cm,两直角边比为3:4,那这个直角三角形的周长为()A. 27cmB. 30cmC. 40cmD. 48cm2.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()A. 8B. 9C. 10D. 113.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45∘;③a=2,b=2,c=2√2;④∠A=38∘,∠B=52∘.A. 1个B. 2个C. 3个D. 4个4.以下列各组数为一个三角形的三边长,能构成直角三角形的是()A. 2,3,4B. 4,6,5C. 14,13,12D. 7,25,245.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=( )A. 5B. 4C. 6D. 、106.在△ABC中,已知AB=15,AC=13,BC边上的高AD=12,则△ABC的周长为()A. 14B. 42C. 32D. 42或327.△ABC的三边为a、b、c且满足a2(a−b)+b2(a−b)=c2(a−b),则△ABC是()A. 等腰三角形或直角三角形B. 等腰直角三角形C. 等腰三角形D. 直角三角形8.如图,在四边形ABCD中,AD//BC,∠ABC=90∘,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A. CE=√3DEB. CE=√2DEC. CE=3DED. CE=2DE二、填空题(本大题共7小题,共28.0分)9.如图,有一块田地的形状和尺寸如图所示,则它的面积为______ .10.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______ 元钱.11.在Rt△ABC中,已知两边长为5、12,则第三边的长为______ .12.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍______放入(填“能”或“不能”).13.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=______cm.14.如图,Rt△ABC中,∠ACB=90∘,CD⊥AB于D,若AC=4,BC=3,则AD=______ .15.如图,在△ABC中,∠A=30∘,∠B=45∘,AC=2,则BC=______ .三、计算题(本大题共4小题,共24.0分)16.已知如图,四边形ABCD中,∠B=90∘,AB=4,BC=3,CD=12,AD=13,求这个四边形的面积.17.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.18.公园里有一块形如四边形ABCD的草地,测得BC=CD=20米,∠A=45∘,∠B=∠C=120∘,请求出这块草地面积.19.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60∘,∠C=45∘.(1)求∠BAC的度数.(2)若AC=2,求AB的长.四、解答题(本大题共2小题,共16.0分)20.如图,等腰直角△ABC中,∠ABC=90∘,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90∘后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3时,求PQ的大小;(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.21.如图,Rt△ABC中,∠B=90∘,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为______cm/s(用含x的代数式表示).(2)求点P原来的速度.答案和解析【答案】1. D2. C3. C4. D5. C6. D7. A8. B9. 2410. 61211. 13或√11912. 能13. 414. 16515. √216. 解:连接AC,如图所示:∵∠B=90∘,∴△ABC为直角三角形,又AB=4,BC=3,∴根据勾股定理得:AC=√AB2+BC2=5,又AD=13,CD=12,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90∘,则S四边形ABCD =S△ABC+S△ACD=12AB⋅BC+12AC⋅CD=12×3×4+12×12×5=36.17. 解:延长AD到E使AD=DE,连接CE,在△ABD和△ECD中{AD=DE∠ADB=∠EDC BD=DC,∴△ABD≌△ECD,∴AB=CE=5,AD=DE=6,AE=12,在△AEC中,AC=13,AE=12,CE=5,∴AC2=AE2+CE2,∴∠E=90∘,由勾股定理得:CD=√DE2+CE2=√61,∴BC=2CD=2√61,答:BC的长是2√61.18. 解:连接BD,过C作CE⊥BD于E,如图所示:∵BC=DC=20,∠ABC=∠BCD=120∘,∴∠1=∠2=30∘,∴∠ABD=90∘.∴CE=12CD=10,∴BE=10√3,∵∠A=45∘,∴AB=BD=2BE=20√3,∴S四边形ABCD =S△ABD+S△BCD=12AB⋅BD+12BD⋅CE =12×20√3×20√3+12×20√3×10=(600+100√3)m2.19. 解:(1)∠BAC=180∘−60∘−45∘=75∘.(2)∵AC=2,∴AD=AC⋅sin∠C=2×sin45∘=√2;∴AB=ADsin∠B =√2sin60∘=2√63.20. 解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45∘,∠ABP=∠CPQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90∘,∠ABP+∠PBC=∠CPQ+∠PBC=90∘,∴△BPQ是等腰直角三角形,△PCQ是直角三角形.(2)当AB=4,AP:PC=1:3时,有AC=4√2,AP=√2,PC=3√2,∴PQ=√PC2+CQ2=2√5.(3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴PQ=√2PB,∵AP=CQ,∴PQ2=PC2+CQ2=PA2+PC2,故有2PB2=PA2+PC2.21. 43x【解析】1. 解:根据题意设直角边分别为3xcm与4xcm,由斜边为20cm,根据勾股定理得:(3x)2+(4x)2=202,整理得:x2=16,解得:x=4,∴两直角边分别为12cm,16cm,则这个直角三角形的周长为12+16+20=48cm.故选D根据两直角边之比,设出两直角边,再由已知的斜边,利用勾股定理求出两直角边,即可得到三角形的周长.此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理是解本题的关键.2. 解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90∘;∵∠ACB+∠DCE=∠ACB+∠BAC=90∘,即∠BAC=∠DCE,在△ABC和△CED中,{∠ABC=∠DEC=90∘∠ACB=∠CDEAC=DC,∴△ACB≌△DCE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.此题主要考查对全等三角形和勾股定理的综合运用,关键是证明△ACB≌△DCE.3. 解:①a=3,b=4,c=5,∵32+42=25=52,∴满足①的三角形为直角三角形;②a=6,∠A=45∘,只此两个条件不能断定三角形为直角三角形;③a=2,b=2,c=2√2,∵22+22=8=(2√2)2,∴满足③的三角形为直角三角形;④∵∠A=38∘,∠B=52∘,∴∠C=180∘−∠A−∠B=90∘,∴满足④的三角形为直角三角形.综上可知:满足①③④的三角形均为直角三角形.故选C.根据勾股定理的逆定理以及直角三角形的定义,验证四组条件中数据是否满足“较小两边平方的和等于最大边的平方”或“有一个角是直角”,由此即可得出结论.本题考查了勾股定理的逆定理以及直角三角形的定义,解题的关键是根据勾股定理的逆定理和直角三角形的定义验证四组条件.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方(或寻找三角形中是否有一个角为直角)”是关键.4. 解:∵72+242=49+576=625=252.∴如果这组数为一个三角形的三边长,能构成直角三角形.故选:D.根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.此题主要考查学生对勾股定理的逆定理的理解和掌握.此题难度不大,属于基础题.5. 解:如图,∵图中的四边形为正方形,∴∠ABD=90∘,AB=DB,∴∠ABC+∠DBE=90∘,∵∠ABC+∠CAB=90∘,∴∠CAB=∠DBE,∵在△ABC和△BDE中,{∠ACB=∠BED ∠CAB=∠EBD AB=BD,∴△ABC≌△BDE(AAS),∴AC=BE,∵DE2+BE2=BD2,∴ED2+AC2=BD2,∵S1=AC2,S2=DE2,BD2=1,∴S1+S2=1,同理可得S2+S3=2,S3+S4=3,∴S1+2S2+2S3+S4=1+2+3=6.故选C.先根据正方形的性质得到∠ABD=90∘,AB=DB,再根据等角的余角相等得到∠CAB=∠DBE,则可根据“AAS”判断△ABC≌△BDE,于是有AC=BE,然后利用勾股定理得到DE2+BE2=BD2,代换后有ED2+AC2=BD2,根据正方形的面积公式得到S1= AC2,S2=DE2,BD2=1,所以S1+S2=1,利用同样方法可得到S2+S3=2,S3+S4= 3,通过计算可得到S1+2S2+2S3+S4=1+2+3=6.本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了勾股定理和正方形的性质.6. 解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=5+9=14.∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=9−5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选D.本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.7. 解:∵a2(a−b)+b2(a−b)=c2(a−b),∴(a−b)(a2+b2−c2)=0,∴a=b或a2+b2=c2.当只有a−b=0成立时,是等腰三角形.当只有a2+b2−c2=0成立时,是直角三角形.当两个条件同时成立时:是等腰直角三角形.故选:A.因为a,b,c为三边,根据a2(a−b)+b2(a−b)=c2(a−b),可找到这三边的数量关系.本题考查勾股定理的逆定理的应用,以及对三角形形状的掌握.8. 解:过点D作DH⊥BC,∵AD=1,BC=2,∴CH=1,DH=AB=√CD2−CH2=√32−12=2√2,∵AD//BC,∠ABC=90∘,∴∠A=90∘,∵DE⊥CE,∴∠AED+∠BEC=90∘,∵∠AED+∠ADE=90∘,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴ADBE =AEBC=DECE,设BE=x,则AE=2√2−x,即1x =2√2−x2,解得x=√2,∴ADBE =DECE=1√2,∴CE=√2DE,故选:B.过点D作DH⊥BC,利用勾股定理可得AB的长,利用相似三角形的判定定理可得△ADE∽△BEC,设BE=x,由相似三角形的性质可解得x,易得CE,DE的关系.本题主要考查了相似三角形的性质及判定,构建直角三角形,利用方程思想是解答此题的关键.9. 解:作辅助线:连接AB,因为△ABD是直角三角形,所以AB=√AD2+BD2=√32+42=5,因为52+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即12×12×5−12×3×4=30−6=24.先连接AB,求出AB的长,再判断出△ABC的形状即可解答.巧妙构造辅助线,问题即迎刃而解.综合运用勾股定理及其逆定理.10. 解:由勾股定理,AC=√AB2−BC2=√132−52=12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.本题考查了勾股定理的应用,正确理解地毯的长度的计算是解题的关键.11. 解:①若12为直角边,可得5为直角边,第三边为斜边,根据勾股定理得第三边为√52+122=13;②若12为斜边,5和第三边都为直角边,根据勾股定理得第三边为√122−52=√119,则第三边长为13或√119;故答案为:13或√119.分两种情况考虑:若12为直角边,可得出5也为直角边,第三边为斜边,利用勾股定理求出斜边,即为第三边;若12为斜边,可得5和第三边都为直角边,利用勾股定理即可求出第三边.此题主要考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键.12. 解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案是:能.在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较.本题考查了勾股定理的应用.解题的关键是求出木箱内木棒的最大长度.13. 【分析】本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【解答】解:根据等腰三角形的三线合一可得:BD=12BC=12×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD=√AB2−BD2=√52−32=4cm.故答案为4.14. 解:∵AC=4,BC=3,∴AB=5,∵S△ABC=12×3×4=12×5×CD,∴CD=125.∴AD=√AC2−CD2=√16−14425=165,故答案为:165.根据勾股定理求得AB的长,再根据三角形的面积公式求得CD,然后再利用勾股定理计算出AD长即可.此题主要考查了直角三角形面积及勾股定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.15. 解:如图,过点C作CD⊥AB于点D,在Rt△ACD中,∵AC=2,∠A=30∘,∴CD=12AC=1,∵在Rt△BCD中,∠B=45∘,∴CD=BD=1,则BC=√CD2+BD2=√2,故答案为:√2.作CD⊥AB,由AC=2、∠A=30∘知CD=1,由∠B=45∘知CD=BD=1,最后由勾股定理可得答案.本题主要考查勾股定理、直角三角形的性质,熟练掌握直角三角形的性质和勾股定理是解题的关键.16. 连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握定理及逆定理是解本题的关键.17. 延长AD到E使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=90∘,根据勾股定理求出CD即可.本题综合考查了勾股定理、勾股定理的逆定理、全等三角形的性质和判定、三角形的中线等知识点的应用,关键是正确地作辅助线,把已知条件转化成一个直角三角形,题型较好.18. 易得∠CDB的度数,连接BD可得一个等腰三角形和一个直角三角形,作出等腰三角形底边上的高,利用∠CDB的正弦值可得等腰三角形底边上的高,进而求得两个三角形的面积,让它们相加即可.本题考查解直角三角形在实际生活中的应用;把四边形问题整理为三角形问题是解决本题的突破点,作等腰三角形底边上的高,是常用的辅助性方法.19. (1)根据三角形的内角和是180∘,用180∘减去∠B、∠C的度数,求出∠BAC的度数是多少即可.(2)首先根据AC=2,AD=AC⋅sin∠C,求出AD的长度是多少;然后在Rt△ABD中,求出AB的长是多少即可.此题主要考查了勾股定理的应用,以及直角三角形的性质和应用,要熟练掌握.20. (1)由于∠PCB=∠BCQ=45∘,故有∠PCQ=90∘.(2)由等腰直角三角形的性质知,AC=4√2,根据已知条件,可求得AP,PC的值,再由勾股定理求得PQ的值.(3)由于△PBQ也是等腰直角三角形,故有PQ2=2PB2=PA2+PC2.本题利用了旋转的性质,等腰直角三角形的性质,勾股定理求解.21. 解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=43x,故答案为:43x;(2)AC=√AB2+BC2=√32+42=5,CD=5−1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得3+14x3=4+4x+2,解得:x=65(cm/s),答:点P原来的速度为65cm/s.(1)设点Q的速度为ycm/s,根据题意得方程即可得到结论;(2)根据勾股定理得到AC=√AB2+BC2=√32+42=5,求得CD=5−1=4,列方程即可得到结论.本题考查了分式方程的应用,勾股定理,正确的理解题意是解题的关键.。
八年级上数学专题训练一《勾股定理》典型题练习答案解析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 )常用勾股数口诀记忆常见勾股数3,4,5 :勾三股四弦五5,12,13 : 我要爱一生 6,8,10: 连续的偶数 7,24,25 : 企鹅是二百五 8,15,17 : 八月十五在一起 特殊勾股数连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,104、最短距离问题:主要运用的依据是两点之间线段最短。
二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A.S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1S 3S 2S 1【类型题总结】(a)如图(1)分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用表示 S1、S2、S3则它们有S2+S3=S1关系.(b)如图(2)分别以直角三角形ABC三边向外作三个正方形,其面积表示S1、S2、S3.则它们有S2+S3=S1关系.(c)如图(3)分别以直角三角形ABC三边向外作三个正三角形,面积表示S1、S2、S3,则它们有S2+S3=S1关系.并选择其中一个命题证明.考点:勾股定理.专题:计算题.分析:(a)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(b)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(c)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.解答:解:(1)S3=81πAC2,S2=81πBC2S1=81AB2∴S2+S3=S1.(2)S2+S3=S1…(4分)由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,…(8分)∵三角形ABC是直角三角形,又∵AC2+BC2=AB2…(10分)∴S2+S3=S1.(3)S1=43AB2S2=43BC2 S3=43AC2∴S2+S3=S1.点评:此题主要涉及的知识点:三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式,难度一般.4、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。
勾股定理练习题及答案解析一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形 11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.ACB2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?AECDB15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角. 8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.小汽车小汽车观测点10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5. 答案:cm 5. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s . 15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h . 答案:这辆小汽车超速了. 附:如何掌握好每学期应掌握的知识如何掌握好每学期应掌握的知识,每学期对知识归纳总结是打好基础的好方式, 可以遵循以下方式进行:一、地毯式扫荡。
勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
②如果k 是大于1的奇数,那么k, ,是一组勾股数。
212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。
122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。
勾股定理11111111一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣52.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个3.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()74.(2016•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或105.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.46.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1697.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,78.(2016•绵阳)如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A.180m B.260m C.(260﹣80)m D.(260﹣80)m9.(2016•达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.10.(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0二.填空题(共10小题)11.(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是.12.(2016•枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).13.(2016•哈尔滨)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.14.(2016•江西三模)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD ∥BC,且AB=5,BC=12,则AD的长为.15.(2016•南岗区模拟)在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为.16.(2016•道外区一模)如图,在△ABC中,∠ACB=90°,AC=BC,P为三角形内部一点,且PC=3,PA=5,PB=7,则△PAB的面积为.17.(2016•余干县二模)如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.18.(2016•通州区一模)在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为.19.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.20.(2016•南陵县一模)如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.三.解答题(共10小题)21.(2016春•周口期末)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.22.(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.23.(2016•安徽模拟)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.24.(2016•陕西校级模拟)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)25.(2016•丹东模拟)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载,某中学九年级数学活动小组进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点A,在公路1上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米.已知本路段对校车限速是50千米/时,测得某校车从B到C匀速行驶用时10秒.(1)求CD的长.(结果保留根号)(2)问这辆车在本路段是否超速?请说明理由(参考数据:=1.414,=1.73)26.(2016•长春模拟)探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角△ABD和等腰直角△ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由.应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.27.(2016•东明县一模)如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.28.(2016•安徽模拟)如图,在Rt△ABC中,∠C=90°,AC=BC,点D在AB的垂直平分线上,∠DAB=15°且AD=10cm,求BC的长.29.(2016春•丰城市期末)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.30.(2016春•柳江县期末)如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?勾股定理11111111参考答案与试题解析一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5【考点】勾股定理.【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理和其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.2.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个【考点】勾股定理;等腰三角形的性质.【专题】分类讨论.【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴点D的个数共有3个,故选:C.【点评】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.3.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【考点】勾股定理.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以和规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.4.(2016•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【考点】勾股定理.【分析】分两种情况考虑,如图所示,分别在直角三角形ABC与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.5.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【考点】勾股定理.【专题】计算题;推理填空题.【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以和正方形的面积的求法,要熟练掌握.6.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【考点】勾股定理的证明.【专题】数学建模思想;构造法;等腰三角形与直角三角形.【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【点评】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.7.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【考点】勾股定理的逆定理.【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.8.(2016•绵阳)如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A.180m B.260m C.(260﹣80)m D.(260﹣80)m【考点】勾股定理的应用.【分析】先根据三角形外角的性质求出∠E的度数,再根据锐角三角函数的定义可求BE,再根据线段的和差故选即可得出结论.【解答】解:在△BDE中,∵∠ABD是△BDE的外角,∠ABD=150°,∠D=60°,∴∠E=150°﹣60°=90°,∵BD=520m,∵sin60°==,∴DE=520•sin60°=260(m),公路CE段的长度为260﹣80(m).答:公路CE段的长度为(260﹣80)m.故选:C.【点评】本题考查的是解直角三角形的应用,熟知三角形外角的性质和锐角三角函数的定义是解答此题的关键.9.(2016•达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.【考点】勾股定理的应用.【分析】从点A,B,C,D中任取三点,找出所有的可能,以和能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点A,B,C,D中任取三点能组成三角形的一共有4种可能,其中△ABD,△ADC,△ABC是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选D.【点评】此题考查了列表法与树状图法,以和三角形的三边关系和勾股定理的逆定理运用,用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.10.(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【考点】等腰直角三角形;等腰三角形的性质.【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.二.填空题(共10小题)11.(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【考点】勾股定理;四点共圆.【分析】①正确.由ADO≌△CEO,推出DO=OE,∠AOD=∠COE,由此即可判断.②正确.由D、C、E、O四点共圆,即可证明.③正确.由S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC即可解决问题.④正确.由D、C、E、O四点共圆,得OP•PC=DP•PE,所以2OP2+2DP•PE=2OP2+2OP•PC=2OP (OP+PC)=2OP•OC,由△OPE∽△OEC,得到=,即可得到2OP2+2DP•PE=2OE2=DE2=CD2+CE2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.【点评】本题考查勾股定理、四点共圆、全等三角形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,学会利用四点共圆解决问题,题目比较难,用到的知识点比较多.12.(2016•枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 2.9米(结果精确到0.1米,参考数据:=1.41,=1.73).【考点】勾股定理的应用.【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米),故答案为:2.9.【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.13.(2016•哈尔滨)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.【点评】本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.14.(2016•江西三模)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD ∥BC,且AB=5,BC=12,则AD的长为.【考点】勾股定理;线段垂直平分线的性质.【分析】连接AE,根据垂直平分线的性质可得AE=EC,然后在直角△ABE中利用勾股定理即可列方程求得EC的长,然后证明△AOD≌△COE,即可求得.【解答】解:连接AE.∵DE是线段AC的垂直平分线,∴AE=EC.设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,∵在直角△ABE中,AE2=AB2+BE2,∴x2=52+(12﹣x)2,解得:x=.即EC=.∵AD∥BC,∴∠D=∠OEC,在△AOD和△COE中,,∴△AOD≌△COE,∴AD=EC=.故答案是:.【点评】本题考查了线段的垂直平分线的性质以和全等三角形的判定与性质,正确列方程求得EC的长是关键.15.(2016•南岗区模拟)在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为或.【考点】勾股定理;线段垂直平分线的性质.【分析】在△ABC中,已知两边和其中一边的对角,符合题意的三角形有两个,画出△ABC 与△ABC′.作AD⊥BC于D,根据等腰三角形三线合一的性质得出C′D=CD.由EF为AB 的垂直平分线求出AE和BE长,根据勾股定理和解直角三角形求出AD、CD、BD、BF,即可求出答案.【解答】解:如图,作AD⊥BC于D,∵AC=AC′=2,AD⊥BC于D,∴C′D=CD,∵EF为AB垂直平分线,∴AE=BE=AB=4,EF⊥AB,∵∠ABC=30°,∴EF=BE×tan30°=,BF=2EF=,在Rt△ABD中,∵∠ADB=90°,∠ABD=30°,∴AD=AB=4,由勾股定理得:CD==2,BD==4,即F在C和D之间,∵BC=BD﹣CD=4﹣2=2,∴CF=BF﹣BC=﹣2=,C′F=BC′﹣BF=4+2﹣=,故答案为:或.【点评】本题考查了含30度角的直角三角形,线段垂直平分线的性质,等腰三角形三线合一的性质,勾股定理的应用,根据题意画出图形进行分类讨论是解题的关键.16.(2016•道外区一模)如图,在△ABC中,∠ACB=90°,AC=BC,P为三角形内部一点,且PC=3,PA=5,PB=7,则△PAB的面积为14.【考点】勾股定理;等腰直角三角形.【分析】过P作PD⊥AC于D,PE⊥BC于E,根据四边形CDPE是矩形,得到CD=PE=y,CE=PD=x,设PD=x,PE=y,AC=BC=a,列方程组即可得到结论.【解答】解:过P作PD⊥AC于D,PE⊥BC于E,则四边形CDPE是矩形,设PD=x,PE=y,AC=BC=a,∴CD=PE=y,CE=PD=x,∴,∴,∴a2﹣ay﹣ax=28,∴S△APB=S△ABC﹣S△APC﹣S△BCP=a2﹣ax﹣ay=14.故答案为:14.【点评】本题考查了勾股定理,等腰直角三角形的性质,熟记各性质是解题的关键.17.(2016•余干县二模)如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【考点】勾股定理.【专题】分类讨论.【分析】利用分类讨论,当∠APB=90°时,分两种情况讨论,情况一:如图1,易得∠PBA=30°,利用直角三角形斜边的中线等于斜边的一半得出结论;情况二:利用锐角三角函数得AP的长;如图2,当∠BAP=90°时,如图3,利用锐角三角函数得AP的长.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,利用分类讨论,数形结合是解答此题的关键.18.(2016•通州区一模)在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为110.【考点】勾股定理的证明.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.∵∠CBF=90°,∴∠ABC+∠OBF=90°,又∵直角△ABC中,∠ABC+∠ACB=90°,∴∠OBF=∠ACB,在△OBF和△ACB中,∴△OBF≌△ACB(AAS),∴AC=OB,同理:△ACB≌△PGC,∴PC=AB,∴OA=AP,∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴KL=3+7=10,LM=4+7=11,∴矩形KLMJ的面积为10×11=110.【点评】本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.19.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm.【考点】勾股定理的应用.【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.20.(2016•南陵县一模)如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过4米.【考点】勾股定理的应用.【分析】如图,先设平板手推车的长度不能超过x米,则得出x为最大值时,平板手推车所形成的三角形CBP为等腰直角三角形.连接PO,与BC交于点G,利用△CBP为等腰直角三角形即可求得平板手推车的长度不能超过多少米.【解答】解:设平板手推车的长度不能超过x米则x为最大值,且此时平板手推车所形成的三角形CBP为等腰直角三角形.连接PO,与BC交于点N.∵直角走廊的宽为2m,∴PO=4m,∴GP=PO﹣OG=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CG=2GP=4(m).故答案为:4【点评】本题主要考查了勾股定理的应用以和等腰三角形知识,解答的关键是由题意得出要想顺利通过直角走廊,此时平板手推车所形成的三角形为等腰直角三角形.三.解答题(共10小题)21.(2016春•周口期末)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【考点】勾股定理;等边三角形的判定与性质.【分析】如图,连接BD,构建等边△ABD、直角△CDB.利用等边三角形的性质求得BD=8;然后利用勾股定理来求线段BC、CD的长度.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.【点评】本题考查了勾股定理、等边三角形的判定与性质.根据已知条件推知△CDB是解题关键.22.(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【考点】勾股定理.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.23.(2016•安徽模拟)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.【考点】勾股定理.【专题】新定义.【分析】(1)直接根据“勾股三角形”的定义,判断得出即可;(2)利用已知得出等量量关系组成方程组,进而求出x+y的值;(3)过B作BH⊥AC于H,设AH=x,利用勾股定理首先得出AH=BH=,HC=1,进而得出∠A=45°,∠C=60°,∠B=75°,即可得出结论.【解答】(1)解:“直角三角形是勾股三角形”是假命题;理由如下:∵对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形,∴无法得到,所有直角三角形是勾股三角形,故是假命题;(2)解:由题意可得:,解得:x+y=102;(3)证明:过B作BH⊥AC于H,如图所示:设AH=xRt△ABH中,BH=,Rt△CBH中,()2+(1+﹣x)2=4,解得:x=,∴AH=BH=,HC=1,∴∠A=∠ABH=45°,∴tan∠HBC===,∴∠HBC=30°,∴∠BCH=60°,∠B=75°,∴452+602=752∴△ABC是勾股三角形.【点评】此题主要考查了新定义、多元方程组解法、勾股定理和锐角三角函数关系,利用勾股定理得出AH,HC的长是解题关键.24.(2016•陕西校级模拟)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)【考点】勾股定理的应用.【分析】首先利用两个直角三角形求得AB的长,然后除以时间即可得到速度.【解答】解:由题意知:PO=100米,∠APO=60°,∠BPO=45°,在直角三角形BPO中,∵∠BPO=45°,∴BO=PO=100m在直角三角形APO中,∵∠APO=60°,∴AO=PO•tan60°=100∴AB=AO﹣BO=(100﹣100)≈73米,∵从A处行驶到B处所用的时间为3秒,∴速度为73÷3≈24.3米/秒=87.6千米/时>80千米/时,∴此车超过每小时80千米的限制速度.【点评】本题考查了解直角三角形的应用,从复杂的实际问题中整理出直角三角形并求解是解决此类题目的关键.25.(2016•丹东模拟)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载,某中学九年级数学活动小组进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点A,在公路1上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米.已知本路段对校车限速是50千米/时,测得某校车从B到C匀速行驶用时10秒.(1)求CD的长.(结果保留根号)(2)问这辆车在本路段是否超速?请说明理由(参考数据:=1.414,=1.73)。
专题01 用勾股定理解三角形一、单选题1.如图,在ABC 中,90C ∠=︒,13AB =,5AC =,D 、E 分别是AC 、AB 的中点,则DE 的长是( )A .6.5B .6C .5.5D 【答案】B【分析】 根据勾股定理可先求出BC ,然后结合中位线定理得出结论.【解析】由勾股定理得:12BC =,∵D 、E 分别是AC 、AB 的中点,∵DE 是ABC 的中位线, 则162DE BC ==, 故选:B .【小结】本题考主要考查三角形的中位线定理,熟记并灵活运用基本定理是解题关键.2.直角三角形的直角边长分别为3,4,则直角三角形的周长为( )A .5B .12C .12或7+D .7+【答案】B【分析】先根据勾股定理求出直角三角形的斜边,继而即可求出三角形的周长.【解析】根据勾股定理可知:斜边=5,∵三角形周长=3+4+5=12,故选:B.【小结】本题考查的是勾股定理的应用,难度适中,解题关键是根据勾股定理求出斜边的长.3.如图,在∵ABC中,∵ACB=90°,CD是高,∵A=30°,AB=4,则下列结论中不正确的是()A.BC=2B.BD=1C.AD=3D.CD=2【答案】D【分析】根据含30°角的直角三角形的性质及勾股定理求出各线段的长度,即可判断.【解析】∵∵ACB=90°,∵A=30°,∵BC=12AB=2,∵B=60°,∵CD∵AB,∵∵CDB=∵CDA=90°,∵BCD=30°,∵BD=12BC=1,∵AD=AB-BD=4-1=3,CD==∵不正确的是D.故选:D.【小结】本题考查的是直角三角形的性质,勾股定理,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.4.如图是2002年8月在北京召开的国际数学大会的会标,它是由四个相同的直角三角形与中间一个小正方形拼成的一个大正方形,若大正方形的边长是13cm,每个直角三角形较短的一条直角边的长是5cm,则小正方形的边长为()A.4cm B.5cm C.6cm D.7cm【答案】D【分析】先设直角三角形的两直角边分别是a cm、b cm(a>b),斜边是c cm,于是有a2+b2=c2,即a2+52=132,易得a=12 cm,a-b即可得小正方形的边长.【解析】设大直角三角形的两直角边分别是a cm、b cm(a>b),斜边是c cm,那么有a2+b2=c2,∵大正方形的边长是13cm,每个直角三角形较短的一条直角边的长是5cm,∵a2+52=132,解得a= 12(舍去负值),即a=12 cm,∵小正方形的边长为:a-b=12-5=7 cm.故选:D.【小结】本题考查了勾股定理,解题的关键是知道小正方形的边长等于直角三角形较长直角边减去较小直角边.5.已知一个直角三角形三边的平方和为800,则这个直角三角形的斜边长为()A.20B.40C.80D.100【答案】A【分析】直角三角形中两直角边的平方和等于斜边的平方,已知三边的平方和可以求出斜边的平方,根据斜边的平方可以求出斜边长.【解析】∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为800,则斜边的平方为三边平方和的一半,即斜边的平方为,800÷2=400,∵斜边长,故选:A .【小结】本题考查了勾股定理在直角三角形中的灵活应用,考查了勾股定理的定义,本题中正确计算斜边长的平方是解题的关键.6.如图,O 的直径AB 垂直于弦,CD 垂足为,22.5,2E A OC ∠=︒=,则CD 的长为( )AB .2 .4【答案】C【分析】 由垂径定理可得出CD=2CE ,∵COE=45°,进而可得出∵CEO的长(或通过解直角三角形求出CE 的长),结合CD=2CE 可求出CD 【解析】∵∵O 的直径AB 垂直于弦CD ,∵CD=2CE ,∵CEO=90°,又∵∵COE=2∵A=45°,∵∵CEO 为等腰直角三角形,∵CE=2∵CD=2CE= 故选:C .【小结】本题考查了圆周角定理、垂径定理以及等腰直角三角形,利用等腰直角三角形的性质求出CE的长是解题的关键.7.菱形的边长是5cm,一条对角线的长为6cm,则另一条对角线的长为()A.6cm B.C.8cm D.10cm【答案】C【分析】根据菱形性质得出OB=OD=3cm,OA=OC,AC∵BD,由勾股定理求出OA,即可得出答案.【解析】如图所示:∵四边形ABCD是菱形,∵AB=5cm,OB=OD=12BD=3cm,AC∵BD,∵∵AOB=90°,由勾股定理得:OA∵AC=2OA=8cm,故选:C.【小结】本题考查了菱形的性质和勾股定理,熟练掌握菱形的对角线互相垂直平分是解题的关键.8.若直角三角形中,斜边的长为17,一条直角边长为15,则另一条直角边长为()A.7B.8C.20D.65【答案】B【分析】根据勾股定理解答即可.【解析】∵直角三角形中,斜边的长为17,一条直角边长为15,∵另一条直角边222171456=-=,∵另外一边为8.故选:B .【小结】此题主要考查了勾股定理,正确把握勾股定理是解题关键.9.边长为2的正方形的对角线长是( )AB .2C .D .4【答案】C【分析】根据勾股定理,可得对角线的长,根据开方运算,可得答案.【解析】对角线平方的长是8,边长为2的正方形的对角线长是故选:C .【小结】10.如图,菱形ABCD 的周长为32,60ABC ∠=,点E 、F 分别为AO 、AB 的中点,则EF 的长度为( )A .B .3CD .4【答案】A【分析】 首先根据菱形的性质得出8,,AB AC BD =⊥1302ABO ABC =∠=∠︒,然后利用含30°的直角三角形的性质和勾股定理求出BO 的长度,最后利用三角形中位线的性质求解即可.【解析】∵菱形ABCD 的周长为32,60ABC ∠=︒8,,AB AC BD ∴=⊥1302ABO ABC =∠=∠︒. 142AO AB ∴==,BO ∴==.∵点E 、F 分别为AO 、AB 的中点,12EF BO ∴== 故选:A .【小结】本题主要考查菱形的性质,含30°的直角三角形的性质和三角形中位线的性质,熟练掌握这些性质是关键.11.若直角三角形两边长分别是6,8,则它的斜边为( )A .8B .10 .以上都不正确【答案】C【分析】分两种情况:∵6和88是斜边,从而可确定答案.【解析】∵6和8∵8是斜边,综上所述,斜边为8或10,故选:C .【小结】本题主要考查勾股定理,分情况讨论是关键.12.如图,长为12cm 的橡皮筋放置在水平面上,固定两端A 和B ,然后把中点C 垂直向上拉升4.5cm 至点D ,则拉升后橡皮筋伸长了( )A .2cmB .3cmC .4cmD .5cm【答案】B【分析】根据勾股定理,可求出AD、BD的长,则AD BD+即为拉长后橡皮筋的长,从而减去原来的长度即可得到答案.【解析】Rt△ACD中,16cm2AC AB==, 4.5cmCD=;根据勾股定理,得:7.5cmAD==;215cmAD BD AD∴+==;15123cm∴-=;故选:B.【小结】此题主要考查了等腰三角形的性质以及勾股定理的应用.关键是根据勾股定理,可求出AD、BD的长.13.如图,AB为∵O的直径,点C为∵O上一点,连接CO,作AD//OC,若CO=52,AC=2,则AD=()A.3B.C.72D.175【答案】D【分析】根据题意,作出合适的辅助线,然后可以求得OG的长,再利用勾股定理即可得到AG的长,从而可以得到AD的长.【解析】作AE∵OC于点E,作OF∵CA于点F,作OG∵AD于点G,则EA∵OG,∵AD∵OC,∵四边形OEAG是矩形,∵OG=EA,∵OF ∵AC ,OA =OC =52,AC =2, ∵CF =1, ∵OF2=, ∵22AC OF OC AE ⋅⋅=,∵522222AE ⋅=,解得5AE =, ∵OG, ∵OG ∵AD ,∵AG=∵AD =2AG =175, 故选:D .【小结】本题考查圆的性质,矩形的判定与性质,勾股定理,面积等积式,掌握圆的性质,矩形的判定与性质,勾股定理,面积等积式是解题关键.14.如图,在正方形网格中,以格点为顶点的ABC 的面积等于3,则点A 到边BC 的距离为( )A B .C .4 D .3【答案】D【分析】根据勾股定理表示出BC 的长,再根据三角形的面积为3,求出BC ,即可求出点A 到边BC 的距离.【解析】设单位方格的边长为a ,BC a ==,ABC 的面积等于3,()211222322a a a a a ∴-⨯⨯⨯-⨯⨯=,解得a =,2BC ===, ∴点A 到边BC 的距离为2632ABC S BC ==. 故答案为:D .【小结】此题考查了三角形的面积勾股定理的运用,关键是根据图形列出求三角形面积的算式.15.等腰三角形底边上的高为4cm ,周长为16cm ,三角形的面积为( )A .214cmB .212cmC .210cmD .28cm【答案】B【分析】设等腰三角形的底边长为2x ,则有腰长为8-x ,然后根据勾股定理可得()22248x x +=-,进而问题可求解.【解析】如图,由题意得:AD =4cm ,设等腰三角形的底边长为2x cm ,由周长为16cm 可得()8cm AB x =-,∵在Rt ∵ADB 中,由勾股定理得()22248x x +=-,解得:3x =,∵6BC cm =, ∵21122ABC S BC AD cm =⋅=; 故选B .【小结】本题主要考查等腰三角形的性质及勾股定理,熟练掌握等腰三角形的性质及勾股定理是解题的关键. 16.在ABC 中,AB =AC =5,BC =6,M 是BC 的中点,MN ∵AC 于点N .则MN =( )A .125B .61C .6D .11【答案】A【分析】连接AM ,根据等腰三角形三线合一的性质得到AM ∵BC ,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长.【解析】如图,连接AM ,∵AB =AC ,点M 为BC 中点,∵AM ∵CM ,BM =CM =12BC =3, 在Rt ∵ABM 中,AB =5,BM =3,∵AM 4= ,又∵S ∵AMC =12MN •AC =12 AM •MC , ∵MN =AM CM AC=125 故选:A .【小结】本题考查三角形的面积,等腰三角形的性质,勾股定理,掌握相关性质定理正确推理计算是解题关键.17.两个直角三角形拼成如图所示的图形,则2x的值为()A B.3C D.5【答案】B【分析】可设直角边都是1的直角三角形的斜边为y,根据勾股定理可求出y2=2,则再利用勾股定理可求出2x的值.【解析】在直角边都是1的直角三角形中,设斜边为y,则由勾股定理得:y2=12+12=2,同理可得:x2=y2+12=2+1=3.故选:B.【小结】此题考查了勾股定理,掌握勾股定理的应用条件及方法是解题的关键.18.一直角三角形的斜边长比其中一直角边长大3,另一直角边长为9,则斜边长为()A.15B.12C.10D.9【答案】A【分析】设斜边长为x,则一直角边长为x-3,再根据勾股定理求出x的值即可.【解析】设斜边长为x,则一直角边长为x-3,根据勾股定理得92+(x-3)2=x2,解得x=15.故选:A.【小结】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.19.如图,在Rt ABC △中,90C ∠=︒,D 为AC 上一点.若12DA DB ==,ABD △的面积为60,则CD 的长是( )A .5B .C .8D .10【答案】B【分析】 根据Rt ∵ABC 中,∵C =90°,可证BC 是∵DAB 的高,然后利用三角形面积公式求出BC 的长,再利用勾股定理即可求出DC 的长.【解析】∵∵C =90°,DA =12,∵S ∵DAB =12DA BC ⋅=60, ∵BC =10,在Rt ∵BCD 中,CD ²+BC ²=BD ²,即CD ²+10²=12²,解得:CD =,故选:B .【小结】本题主要考查勾股定理,解题的关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.一等腰三角形底边长为10cm ,腰长为13cm ,则腰上的高为( )A .12cmB .60cm 13C .12013cmD .13cm 5【答案】C【分析】过点A 作AD ∵BC 于D ,过点B 作BE ∵AC 于E ,根据勾股定理求出AD ,根据三角形的面积公式计算即可.【解析】如下图,在等腰三角形ABC 中,底边长为BC =10cm ,腰长为AB =13cm ,过点A作AD∵BC于D,过点B作BE∵AC于E,∵AD∵BC于D,∵BD=DC,∵BC=10cm,∵BD=DC=5cm,在Rt∵ABD中,12AD=cm,由于1122BC AD AC BE⋅=⋅,∵10121201313BE⨯==cm,故选:C.【小结】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.如图,在长方形ABCD中,AB=3,BC=6,对角线AC的垂直平分线分别交AD、AC于点M,N,连接CM,则CM的长为()A.154B.153C.-154D.-153【答案】A【分析】由线段垂直平分线的性质求出AM=CM,在Rt∵DMC中,由勾股定理得出DM2+DC2=CM2,得出方程(6-CM)2+32=CM2,求出CM即可.【解析】∵四边形ABCD是矩形,∵∵D=∵B=90°,AD=BC=6,AB=DC=3,∵MN是AC的垂直平分线,∵AM=CM,∵DM=AD-AM=AD-CM=6-CM,在Rt∵DMC中,由勾股定理得:DM2+DC2=CM2,(6-CM)2+32=CM2,解得:CM=154,故选:A.【小结】本题考查了矩形性质,勾股定理,线段垂直平分线性质的应用,关键是能得出关于CM的方程.22.如图,已知∵ABC中,∵ABC=90°,AB=BC,过∵ABC的顶点B作直线l,且点A到l的距离为2,点C到l的距离为3,则AC的长是()A B.C D.5【答案】C【分析】分别过A、C作AD∵l于D,CE∵l于E,根据锐角互余可得∵ABD=∵BCE,∵DAB=∵CBE,利用ASA可证明∵ABD∵∵CBE,即可得BD=CE,根据勾股定理可求出AB的长,再利用勾股定理求出AC的长即可.【解析】作AD∵l于点D,作CE∵l于点E,∵∵ABC=90°,∵∵ABD+∵CBE=90°,又∵DAB+∵ABD=90°,∵∵BAD=∵CBE,在∵ABD 和∵BCE 中,ADB BEC BAD CBE AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∵∵ABD ∵∵BCE (AAS ),∵BE =AD =2,DB =CE =3,在Rt ∵BCE 中,根据勾股定理,得BC在Rt ∵ABC 中,根据勾股定理,得AC=.故选:C .【小结】本题考查全等三角形的判定与性质及勾股定理,根据三角形全等得出BD =CE 是解题关键.23.如图1,点P 从ABC 的顶点A 出发,沿A B C →→匀速运动到点,C 图2是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则ABC 的边AB 的长度为( )A .12B .8C .10D .13【答案】C【分析】 根据图2中的曲线可得,当点P 在∵ABC 的顶点A 处,运动到点B 处时,图1中的AC =BC =13,当点P 运动到AB 中点时,此时CP ∵AB ,根据图2点Q 为曲线部分的最低点,可得CP =12,根据勾股定理可得AP =5,再根据等腰三角形三线合一可得AB 的长.【解析】根据图2中的曲线可知:当点P 在∵ABC 的顶点A 处,运动到点B 处时,图1中的AC =BC =13,当点P 运动到AB 中点时,此时CP ∵AB ,根据图2点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP 5.所以AB =2AP =10.故选:C .【小结】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.24.如图,在ABC 中,90C ∠=︒,D 是边BC 上一点,ADC 2B ∠=∠,5AD =,4AC =,则AB 的长为( )A .B .C .6D .8【答案】A【分析】 根据勾股定理求出CD ,根据三角形的外角的性质得到∵B =∵BAD ,求出BD ,计算即可.【解析】∵∵C =90°,AC =4,AD =5,∵CD =3,∵∵ADC =2∵B ,∵ADC =∵B +∵BAD ,∵∵B =∵BAD ,∵DB =AD =5,∵BC =BD +CD =8,在Rt∵ABC 中,∵C =90°,AC =4,BC =8,∵AB ====故选:A .【小结】本题考查的是勾股定理、等腰三角形判定的应用,掌握如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2是解题的关键.25.菱形CD AB 的边20AB =,面积为320,D 90∠BA <,∵O 与边AB 、D A 都相切,10AO =,则∵O 的半径长等于( )A .5B .6C .D .【答案】C【分析】如图作DH∵AB 于H ,连接BD DH ,再利用勾股定理求出AH ,BD ,由∵AOF∵∵DBH 【解析】如图作DH∵AB 于H ,连接BD∵菱形ABCD 的边AB=20,面积为320,∵AB•DH=320,∵DH=16,在Rt∵ADH 中,12=,∵HB=AB -AH=8,在Rt∵BDH 中,=设∵O 与AB 相切于F ,与AD 相切于J ,连接OF ,OJ ,则OF∵AB ,OJ∵AD ,OF=OJ ,∵OA 平分∵DAB ,∵AD=AB ,∵AE∵BD ,∵∵OAF+∵ABE=90°,∵ABE+∵BDH=90°,∵∵OAF=∵BDH ,∵∵AFO=∵DHB=90°,∵∵AOF∵∵DBH , ∵=OA OF BD BH,8OF =,∵OF=故选:C .【小结】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.如图,在Rt ABC △中,90C ∠=︒,BD 平分,5cm,3cm ABC AB BC ∠==,则AD 的长等于( )A .2.5cmB .2cmC .1.5cmD .3cm【答案】A【分析】 如图(见解析),先根据角平分线的性质可得CD DE =,再根据直角三角形全等的判定定理与性质可得3cm BE BC ==,从而可得2cm AE =,然后利用勾股定理可得4cm AC =,最后在Rt ADE △中,利用勾股定理即可得.【解析】如图,过点D 作DE AB ⊥于点E ,BD 平分ABC ∠,90C ∠=︒,DE AB ⊥,CD DE ∴=,在Rt BCD 和Rt BED 中,CD DE BD BD =⎧⎨=⎩, ()Rt BCD Rt BED HL ∴≅,3cm BE BC ∴==,5cm AB =,2cm AE AB BE ∴=-=,在Rt ABC 中,90,5cm,3cm C AB BC ∠=︒==,4cm AC ∴==,设cm AD x =,则(4)cm DE CD AC AD x ==-=-,则在Rt ADE △中,222AE DE AD +=,即2222(4)x x +-=,解得 2.5(cm)x =,即 2.5cm AD =,故选:A .【小结】本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,通过作辅助线,利用到角平分线的性质是解题关键.27.如图,∵ABCD 的对角线AC 与BD 相交于点O ,AB ∵AC ,若AB =4,AC =6,则BO 的长为( )A.5B.8C.10D.11【答案】A【分析】根据平行四边形的性质可得AO=CO=12AC=3,再利用勾股定理可得BO的长.【解析】∵四边形ABCD是平行四边形,∵AO=CO=12AC=3,∵AB∵AC,AB=4,∵BO5=,故选:A.【小结】此题主要考查了平行四边形的性质和勾股定理,解题关键是掌握平行四边形的对角线互相平分.28.如图,在矩形ABCD中,AB=5,AD=12,对角线BD的垂直平分线分别与AD,BC边交于点E、F,则四边形BFDE的面积为()A.84524B.84512C.16912D.82513【答案】A【分析】根据矩形的性质和菱形的判定得出四边形BEDF是菱形,进而利用勾股定理和菱形的面积公式解答即可.【解析】∵四边形ABCD是矩形,∵AD∵BC,∵∵DEO=∵BFO,∵EDO=∵FBO,∵对角线BD的垂直平分线分别与AD,BC边交于点E、F,∵BO=DO,EF∵BD,∵∵DEO∵∵BFO(AAS),∵EO=FO,∵BO=DO,∵四边形BEDF是平行四边形,∵EF∵BD,∵平行四边形BEDF是菱形,∵BE=DE,∵AB=5,AD=12,∵A=90°,∵BD=13,设DE=x,则AE=12﹣x,在Rt∵AEB中,AB2+AE2=BE2,即52+(12﹣x)2=x2,∵x169 24 =,∵BE=DE169 24 =,在Rt∵BEO中,OE6524 ===,∵EF=2EO65 12 =,∵菱形BEDF的面积116584513 221224 BD EF=⋅⋅=⨯⨯=,故选:A.【小结】此题考查矩形的性质、菱形的性质和判定以及勾股定理,关键是根据矩形的性质和菱形的判定和性质解答. 29.如图,D 是ABC 内一点,BD CD ⊥,6AD =,4BD =,3CD =,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A .7B .9C .10D .11【答案】D【分析】 先根据勾股定理求出线段BC 的长度,再根据三角形中位线的性质定理求出 2.5EF HG ==,3EH GF ==,即可求出四边形的周长.【解析】∵BD CD ⊥,4BD =,3CD =,由勾股定理得:5BC ==,∵E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点, ∵12HG BC EF ==,12EH FG AD ==, ∵6AD =,∵ 2.5EF HG ==,3EH GF ==,∵四边形EFGH 的周长是()2 2.5311EF FG HG EH +++=⨯+=.故选:D .【小结】此题考查勾股定理的应用,三角形中位线的性质定理,熟记定理并正确应用是解题的关键.30.如图,在∵ABC 中,∵ACB =90°,AC =3、BC =4、P 、Q 两点分别在AC 和AB 上.且CP =BQ =1,在平面上找一点M .以A 、P 、Q 、M 为顶点画平行四边形,这个平行四边形的周长的最大值为( )A .12B .4+C .6D .8+ 【答案】D【分析】 先依据勾股定理以及相似三角形的性质,即可得到PQ 的长,再分三种情况,即可得到以A 、P 、Q 、M 为顶点的平行四边形的周长,进而得出周长的最大值.【解析】由勾股定定理得:5AB =,则4AQ =;过点Q 作QN AC ⊥,垂足为N ,则//QN BC ,则::4AN NC AQ QB ==, 则125AN =, 122255PN ∴=-=, 由::NQ BC AQ AB =,得165NQ =,再由勾股定理得:PQ =如图1:周长2()4PA PQ =+= 如图2:周长2()12PA PM =+=;如图3:周长2()8AQ PQ =+=∵8488即814.412>>,故周长的最大值是8故选:D .【小结】 本题主要考查了平行四边形的性质以及勾股定理的运用,关键是作辅助线构造直角三角形,利用勾股定理计算得到PQ 的长.31.如图,在Rt ABC ∆中,90,BAC BA CA ∠=︒==D 为BC 边的中点,点E 是CA 延长线上一点,把CDE ∆沿DE 翻折,点C 落在C '处,EC '与AB 交于点F ,连接BC '.当43FA EA =时,BC '的长为( )AB ..【答案】D【分析】如图,连接CC ′,过点C ′作C ′H ∵EC 于H .设AB 交DE 于N ,过点N 作NT ∵EF 于N ,过点D 作DM ∵EC 于M .证明∵CC ′B =90°,求出CC ′,BC 即可解决问题.【解析】如图,连接CC ′,过点C ′作C ′H ∵EC 于H .设AB 交DE 于N ,过点N 作NT ∵EF 于N ,过点D 作DM ∵EC 于M .∵∵F AE=∵CAB=90°,43 FAAE=,∵EF:AF:AE=5:4:3,∵C′H∵AF,∵∵EAF∵∵EHC′,∵EC′:C′H:EH=EF:AF:AE=5:4:3,设EH=3k,C′H=4k,EC′=EC=5k,则CH=EC=EH=2k,由翻折可知,∵AEN=∵TEN,∵NA∵EA,NT∵ET,∵∵NAE=∵NTE,∵NE=NE,∵∵NEA∵∵NET(AAS),∵AN=NT,EA=ET,设AE=3m,AF=4m,EF=5m,AN=NT=x,则AE=ET=3m,TF=2m,在Rt∵FNT中,∵FN2=NT2+FT2,∵(4m-x)2=x2+(2m)2,解得x=32 m,∵AC=AB,∵CAB=90°,∵BCAC∵CD=BD∵DM∵CM,∵DCM=45°,∵CM=DM,∵AN∵DM,∵AN EA DM EM=,∵31232mAN DMEA EM m===,∵EM,∵EC =5k ,∵k =,∵55CH C H '==,∵CC '===, ∵DC =DC ′=DB ,∵∵CC ′B =90°,∵BC '===故选:D .【小结】 本题考查翻折变换,解直角三角形,等腰直角三角形的性质,相似三角形的性质,全等三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题. 32.如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∵DAM =45°,点F 在射线AM 上,且AFBE ,CF 与AD 相交于点G ,连接EC 、EF 、EG .则下列结论:∵∵ECF =45°;∵∵AEG 的周长为a ;∵BE 2+DG 2=EG 2;∵∵EAF 的面积的最大值是a 2;∵当BE=a 时,G 是线段AD 的中点.其中正确的结论是( )A .∵∵∵B .∵∵∵C .∵∵∵D .∵∵∵【答案】D【分析】 ∵正确:如图1中,在BC 上截取BH=BE ,连接EH .证明∵FAE∵∵EHC (SAS ),即可解决问题; ∵∵错误:如图2中,延长AD 到H ,使得DH=BE ,则∵CBE∵∵CDH (SAS ),再证明∵GCE∵∵GCH (SAS ),即可解决问题;∵正确:设BE=x,则AE=a-x,,构建二次函数,利用二次函数的性质解决最值问题;∵正确:当BE=13a时,设DG=x,则EG=x13+a,利用勾股定理构建方程可得x2a=,即可解决问题.【解析】如图1中,在BC上截取BH=BE,连接EH,∵BE=BH,∵EBH=90°,∵EH=,∵AF=,∵AF=EH,∵∵DAM=∵EHB=45°,∵BAD=90°,∵∵FAE=∵EHC=135°,∵BA=BC,BE=BH,∵AE=HC,∵∵FAE∵∵EHC(SAS),∵EF=EC,∵AEF=∵ECH,∵∵ECH+∵CEB=90°,∵∵AEF+∵CEB=90°,∵∵FEC=90°,∵∵ECF=∵EFC=45°,故∵正确,如图2中,延长AD到H,使得DH=BE,则∵CBE∵∵CDH(SAS),∵∵ECB =∵DCH ,∵∵ECH =∵BCD =90°,∵∵ECG =∵GCH =45°,∵CG =CG ,CE =CH ,∵∵GCE∵∵GCH (SAS ),∵EG =GH ,∵GH =DG+DH ,DH =BE ,∵EG =BE+DG ,故∵错误,∵∵AEG 的周长=AE+EG+AG =AB+AD =2a ,故∵错误,设BE =x ,则AE =a ﹣x ,AF =∵S ∵AEF =12•(a ﹣x )×x=1-2x 2+12(x 1-2a )218+a 2, ∵12-<0, ∵x=12a 时,∵AEF 的面积的最大值为218a ,故∵正确, 当BE=13a 时,设DG =x ,则EG =x 13+a , 在Rt∵AEG 中,则有(x 13+a )2=(a ﹣x )2+(23a )2, 解得x 2a =, ∵AG =GD ,故∵正确,综上,∵∵∵正确,故选:D .【小结】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,熟练掌握并灵活运用是解题的关键.33.如图,在ABC 中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于E ,BD AE ⊥于D ,DM AC ⊥交AC 的延长线于M ,连接CD ,给出四个结论:∵45ADC ∠=︒;∵12BD AE =;∵AC BE AB +=;∵2AB BC MC -=;其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【分析】 过E 作EQ ∵AB 于Q ,作∵ACN =∵BCD ,交AD 于N ,过D 作DH ∵AB 于H ,根据角平分线性质求出CE =EQ ,DM =DH ,根据勾股定理求出AC =AQ ,AM =AH ,根据等腰三角形的性质和判定求出BQ =QE ,进而可判断∵;根据三角形外角性质求出∵CND =45°,证∵ACN ∵∵BCD ,推出CD =CN ,进而可判断∵∵;证∵DCM ∵∵DBH ,得到CM =BH ,进一步变形即可判断∵,于是可得答案.【解析】如图,过E 作EQ ∵AB 于Q ,∵∵ACB =90°,AE 平分∵CAB ,∵CE =EQ ,∵∵ACB =90°,AC =BC ,∵∵CBA =∵CAB =45°,∵EQ ∵AB ,∵∵EQA =∵EQB =90°,由勾股定理得:AC =AQ ,∵∵QEB =45°=∵CBA ,∵EQ =BQ ,∵AB =AQ +BQ =AC +CE ,∵BE >EQ=CE ,∵∵错误;作∵ACN=∵BCD,交AD于N,∵∵CAD=12∵CAB=22.5°=∵BAD,∵∵ABD=90°﹣22.5°=67.5°,∵∵DBC=67.5°﹣45°=22.5°=∵CAD,∵∵DBC=∵CAD,∵AC=BC,∵ACN=∵BCD,∵∵ACN∵∵BCD(ASA),∵CN=CD,AN=BD,∵∵ACN+∵NCE=90°,∵∵NCB+∵BCD=90°,∵∵CND=∵CDA=45°,∵∵ACN=45°﹣22.5°=22.5°=∵CAN,∵AN=CN,∵∵NCE=∵AEC=67.5°,∵CN=NE,∵DCB=90°-67.5°=22.5°,∵BD=AN=EN=12AE,∵ADC=180°-∵DAC-∵ACD=180°-22.5°-112.5°=45°,∵∵正确,∵正确;过D作DH∵AB于H,∵∵MCD =∵CAD +∵CDA =67.5°,∵DBA =67.5°,∵∵MCD =∵DBA ,∵AE 平分∵CAB ,DM ∵AC ,DH ∵AB ,∵DM =DH ,在∵DCM 和∵DBH 中90M DHB MCD DBA DM DH ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∵∵DCM ∵∵DBH ,∵BH =CM ,由勾股定理得:AM =AH , ∵AC AB AC AH BH AC AM CM AM AM AM +++++=== 2AM AM=2, ∵AC +AB =2AM ,即AC +AB =2AC +2CM ,∵AB ﹣AC =2CM ,∵AC =CB ,∵AB ﹣CB =2CM ,∵∵正确.综上,正确的有3个.故选:C .【小结】本题主要考查了等腰直角三角形的判定和性质、三角形的外角性质、三角形的内角和定理、等腰三角形的性质和判定、全等三角形的性质和判定以及勾股定理等知识,正确添加辅助线、能综合运用所学知识进行推理是解此题的关键.34.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D 12BC AB =+ 【答案】B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【解析】如图,连接BD 、AD ,过点D 作DM∵BC 于M ,DN∵CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∵60BAC ∠=︒.故此选项说法正确;B 、∵DM∵BC ,DN∵CA∵∵DNC =∵DMC =90°,∵CD 平分∵ACB ,∵∵DCN =∵DCM =45°.∵∵DCN =∵CDN =45°.∵CN=DN .则∵CDN 是等腰直角三角形.同理可证:∵CDM 也是等腰直角三角形,=.,∵DM=DN= CM=CN ,∵MDN =90°.∵DE 垂直平分AB ,∵BD=AD ,AB=2BE .∵Rt∵BDM∵∵ADN ,∵∵BDM=∵AND .∵∵BDM+∵ADM =∵AND+∵ADM =∵MDN .∵∵ADB=90°.=.即AD .∵在Rt∵AND 中,AD 是斜边,DN 是直角边,∵AD >DN .∵2BE >CD .故此选项说法错误.C 、∵BD=AD ,∵ADB=90°,∵∵ABD 是等腰直角三角形. ∵DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∵AC=12AB . ∵DE=AC .故此选项说法正确.D 、∵Rt∵BDM∵∵ADN ,∵BM=AN .∵CN=AC+AN=AC+BM=CM .∵BC=BM+CM=AC+2BM .,CD=2CN=2AC+2BM=AC+2BM+AC . ∵AC=12AB ,CD=12AB+BC .故此选项说法正确. 故选:B .【小结】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.35.如图,在平面直角坐标系中,O 为坐标原点,直线y x =-+x 轴交于B 点,与y 轴交于A 点,点C D ,在线段 AB 上,且22CD AC BD ==,若点P 在坐标轴上,则满足7PC PD +=的点P 的个数是( )A .4B .3C .2D .1【答案】A【分析】作点C 关于y 轴的对称点'C y 轴交于A 点,求出A ,B 两点的坐标,然后利用勾股定理求得'P 在x 轴上,使得7PC PD +=的点P 的个数是两个;作点D 关于x 在y 轴上,使得7PC PD +=的点P 的个数是两个,据此求解即可.【解析】如图示,作点C 关于y 轴的对称点'C ,直线y 则当x 当y =∵OA ∵AB =∵22CD AC BD ==,AB CD AC BD =++∵4CD =,2==AC BD ,由勾股定理可得:CE AE =,DF AF ==∵OE =OF =∵C 点坐标是:,,D 点坐标是:(),则'C 点坐标是:(,,∵'CD∵'7CD<, 即:'P D P C C D <+,∵如下图示,点P 在y 轴上,使得7PC PD +=的点P 的个数是两个,如图示,作点D 关于x 轴的对称点'D ,同理可以求得'CD =即:'P D P C C D <+,∵点P 在y 轴上,使得7PC PD +=的点P 的个数是两个,综上所述,点P 在坐标轴上,满足7PC PD +=的点P 的个数是4个,故选:A .【小结】本题考查了一次函数的应用、轴对称的性质、勾股定理的应用,熟悉相关性质是解题的关键.36.在∵ABC 中,∵BAC =90°,点D 在边BC 上,AD =AB ( )A .若AC =2AB ,则∵C =30°B .若AC =2AB ,则3BD =2CDC .若∵B =2∵C ,则AC =2ABD .若∵B =2∵C ,则S ∵ABD =2∵ACD【答案】B【分析】根据直角三角形30°角所对边是斜边的一半,可得BC =2AB >AC ,从而可判断选项A 、C ;作AE∵BC ,根据勾股定理和等面积法克求得BC 、BD 和DC ,从而得出BD 和CD 的关系,可判断选项B ; 可先得出AD 为中线,根据三角形中线平分三角形的面积可判断选项D .【解析】由题,∵BAC=90°,点D 在BC 边上,AD=AB ,A.若AC =2AB ,则BC ==,若∵C=30°,BC=2AB ,故A 错误;B. 若AC =2AB ,则BC , 作AE∵BC ,则1122ABC S AB AC BC AE =⋅=⋅,可得5AB AC AE AB BC ⋅===, ∵AD=AB ,∵BE DE AB ===,∵,BD AB DC BC AB AB==-=,∵3BD=2CD,故B正确;C. 若∵B=2∵C,∵∵BAC=90°,∵∵B+∵C=90°,∵∵C=30°,∵B=60°,∵BC=2AB,AC<2AB,故C错误;D. 若∵B=2∵C,由选项C可得∵C=30°,∵B=60°,∵AD=AB,∵∵ABD为等边三角形,∵∵ADB=60°,∵∵DAC=∵ADB-∵C=30°=∵C,∵AD=DC=BD,即AD为∵ABC的中线,∵S∵ABD=S∵ACD,故D错误.故选:B.【小结】本题考查等边三角形的性质和判定,勾股定理,含30°角的直角三角形.熟练掌握这些定理,能借助已知条件,选择合适的定理分析是解题关键.37.在Rt∵ABC中,∵C=90°,点P在边AB上.BC=6,AC=8,( )A.若∵ACP=45°,则CP=5B.若∵ACP=∵B,则CP=5C.若∵ACP=45°,则CP=245D.若∵ACP=∵B,则CP=245【答案】D【分析】四个选项,A、C选项CP为顶角的平分线,B、D选项CP为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D选项.【解析】∵∵C=90°,点P在边AB上.BC=6,AC=8,∵10AB===,当CP为AB的中线时,152CP AB==,若∵ACP=45°,如图1,则CP为直角∵ACB的平分线,∵BC≠AC,∵CP与中线、高线不重合,不等于5,故A选项错误;若∵ACP=∵B,如图2∵∵ACB=90°,∵∵A+∵B=90°,∵∵A+∵ACP =90°,∵∵APC=90°,即CP为AB的高线,∵BC≠AC,∵CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC⨯⨯=⨯⋅,解得245PC=,故D选项正确,C选项错误.故选:D .【小结】本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.38.如图,在等腰Rt ABC 中,90ACB ∠=︒,点P 是ABC 内一点,且1CP =,BP =2AP =,以CP 为直角边,点C 为直角顶点,作等腰Rt DCP ,下列结论:∵点A 与点D ;∵AP PC ⊥;∵AB =∵2APB S =,其中正确结论有是( )A .∵∵∵B .∵∵C .∵∵D .∵∵∵ 【答案】C【分析】连结AD ,由等腰Rt ABC ,可得AC=BC ,等腰Rt DCP ,可得CD=CP ,由余角性质可∵DCA=∵PCB ,可证∵ADC∵∵BPC (SAS )AD BP ==∵,由勾股定理22222AD +DP =+=4=AP ,可证∵ADP 为等腰直角三角形,可判断∵,由PB 与PD 可求,由勾股定理∵,由面积112122APB SPB AD ===可判断∵即可 【解析】连结AD ,在等腰Rt ABC 中,90ACB ∠=︒,∵AC=BC , ∵Rt DCP 是等腰三角形,∵CD=CP ,∵∵ACD+ACP=90°,∵ACP+∵PCB=90°,∵∵DCA=∵PCB ,在∵ADC 和∵BPC 中,AC=BC ,∵DCA=∵PCB ,DC=PC ,∵∵ADC∵∵BPC (SAS ),∵AD BP ==∵点A 与点D 正确,在Rt∵DCP 中,由勾股定理在∵ADP 中,22222AD +DP =+=4=AP ,∵∵ADP 为等腰直角三角形,∵AD∵DP ,∵AP PC ⊥正确;,在Rt∵ADB 中,由勾股定理,∵AB =112122APB S PB AD ===, ∵2APBS =不正确. 故选择:C .【小结】本题考查等腰直角三角形的性质与判定,三角形全等的判定与性质,三角形面积,勾股定理的应用,掌握等腰直角三角形的性质与判定,三角形全等的判定与性质,三角形面积,勾股定理的应用是解题关键.二、填空题39.已知甲往东走了3km ,乙往南走了4km ,这时甲、乙两人相距____km .【答案】5【分析】因为甲向东走,乙向南走,其刚好构成一个直角.两人走的距离分别是两直角边,则根据勾股定理可求得斜边即两人的距离.【解析】如图,∵∵AOB=90°,OA=4km ,OB=3km ,∵5AB km ==,故答案为5.【小结】本题考查勾股定理的应用.能结合题述正确画出图形是解题关键.40.在Rt ABC △中,Rt C ∠=∠,3AB =,2BC =,则线段AC 的长为________.【分析】根据勾股定理即可得出答案【解析】∵Rt C ∠=∠,3AB =,2BC =,∵AC =【小结】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.。
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。