第六章_数理方程勒让德多项式
- 格式:ppt
- 大小:473.00 KB
- 文档页数:33
勒让德多项式递推公式证明以勒让德多项式是数学中一类重要的特殊函数,其递推公式是证明其性质的关键。
本文将通过介绍以勒让德多项式的定义、性质和递推公式的证明,来解释这一标题。
以勒让德多项式是数学中的一类正交多项式,它们是解决物理和工程问题中的常微分方程的重要工具。
以勒让德多项式的定义如下:$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n\right]$$其中,$n$为非负整数,$P_n(x)$表示以勒让德多项式的第$n$阶,$x$为自变量。
以勒让德多项式具有一系列重要的性质,如正交性、归一性等,这些性质使其在数学和物理学中得到广泛应用。
以勒让德多项式的递推公式是证明其性质的关键。
递推公式的形式如下:$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$下面我们来证明这个递推公式。
我们将以勒让德多项式的定义代入递推公式中,得到:$$(n+1)\left(\frac{1}{2^{n+1} (n+1)!} \frac{d^{n+1}}{dx^{n+1}} \left[(x^2 - 1)^{n+1}\right]\right) = (2n+1)x\left(\frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n\right]\right) - n\left(\frac{1}{2^{n-1} (n-1)!} \frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]\right) $$化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} \frac{d^{n+1}}{dx^{n+1}} \left[(x^2 - 1)^{n+1}\right] = \frac{2n+1}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]$$我们将上式中的$n+1$分布到第一项中,并利用导数的链式法则进行化简,得到:$$\frac{1}{2^{n+1} (n+1)!} \frac{d}{dx}\left[(2n+1)x(x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$继续化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]$$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$继续化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$通过以上推导,我们证明了以勒让德多项式的递推公式。
《数学物理方法》第六章_勒让德函数勒让德函数(Legendre functions)是数学物理方法中的一种重要函数,它在数学物理领域中具有广泛的应用。
勒让德函数以法国数学家阿道夫·勒让德(Adrien-Marie Legendre)的名字命名,是勒让德微分方程的解。
勒让德函数是圆轴对尔雅多多\n(cylinder functions)和球贝塞尔函数(spherical Bessel functions)的特殊情况。
勒让德函数可以通过勒让德微分方程来定义,勒让德微分方程是一个著名的二阶微分方程,它可以用来描述线性介质中电场的分布、地球引力场势能和量子力学中的角动量问题等。
勒让德微分方程如下所示:$$(1-x^2)y'' - 2xy' + \lambda(\lambda + 1)y = 0$$其中,$y$是未知函数,$x$是自变量,$\lambda$是常数。
这个方程的解称为勒让德函数$P_\lambda(x)$。
勒让德函数具有许多重要的性质和关系,其中最重要的性质之一是正交性。
如果$\lambda_1 \neq \lambda_2$,则勒让德函数$P_{\lambda_1}(x)$和$P_{\lambda_2}(x)$在区间$[-1,1]$上是正交的,即满足下面的正交关系:$$\int_{-1}^{1}P_{\lambda_1}(x)P_{\lambda_2}(x)dx = 0$$另外,勒让德函数还具有归一化的性质,即满足下面的归一化条件:$$\int_{-1}^{1}(P_{\lambda}(x))^2 dx = \frac{2}{2\lambda + 1} $$勒让德函数在数学物理中的应用非常广泛,下面以一些具体的例子来说明。
首先是球坐标系中的边界条件问题。
在球坐标系中,勒让德函数可以用来描述径向部分的波函数。
例如,在氢原子中,电子的波函数可以表示为勒让德函数的线性组合,其中不同的勒让德函数对应不同的能级和角动量量子数。
勒让德多项式是一类具有重要性质的正交函数,它们在数学和工程领域中有着广泛的应用。
本文将介绍勒让德多项式的定义、性质、正交关系以及其在实际问题中的应用。
一、勒让德多项式的定义勒让德多项式是勒让德微分方程的解,该微分方程形式如下:\[ (1-x^2)y''-2xy'+n(n+1)y=0 \]其中n为非负整数。
根据其定义,勒让德多项式可以通过勒让德微分方程的解出来。
勒让德多项式的具体形式可以表示为:\[ P_n(x)= \frac{1}{2^n n!} \frac{d^n}{dx^n}(x^2-1)^n \]其中n为非负整数,P_n(x)表示第n阶的勒让德多项式。
二、勒让德多项式的性质勒让德多项式具有许多重要的性质,例如:1. 勒让德多项式是正交的,即对于不同的n和m,有以下正交性质成立:\[ \int_{-1}^{1}P_n(x)P_m(x)dx=0, \quad(n\neq m) \]2. 勒让德多项式满足勒让德微分方程,这也是它的定义所在。
3. 勒让德多项式具有递推关系,即通过递推关系可以方便地计算高阶的勒让德多项式。
三、勒让德多项式的正交关系及应用勒让德多项式的正交性质在数学和工程领域中有着重要的应用。
在数学分析中,勒让德多项式的正交性质可以用来进行函数的展开和逼近,例如在傅立叶级数、泰勒级数及函数的插值逼近中。
在数值计算和数值分析中,勒让德多项式的正交特性也被广泛应用,例如在数值积分方法中,通过勒让德多项式的正交性质可以得到高效的数值积分算法。
勒让德多项式还具有广泛的物理应用,例如在量子力学中,勒让德多项式常常用来描述原子轨道的形状。
在实际问题中,勒让德多项式的正交性质为我们提供了一种简便而有效的数学工具,通过利用勒让德多项式的正交性质,我们可以更加方便地解决各种数学和工程问题。
勒让德多项式作为一类重要的正交函数,在数学和工程领域中具有着广泛的应用。
通过深入研究勒让德多项式的定义、性质、正交关系及其应用,我们可以更好地理解和运用这一类特殊的函数,从而为解决各种实际问题提供更加有效的数学工具。
第六章 勒让德多项式在这一章,我们将通过在球坐标系中对Laplace 方程进行分离变量,引出§2.6中曾指出过的勒让德方程,并讨论这个方程的解法及解的有关性质。
勒让德方程在区间[1,1]-上的有界解构成了另一类正交函数系-勒让德多项式。
§6.1 勒让德方程的引出现在对球坐标系中的Laplace 方程进行分离变量,在球坐标系中Laplace 方程为2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂ (6.1) 令 (,,)()()()u r R r θϕθϕ=ΘΦ, 代入(6.1)得2222222111()(sin )0sin sin d dR d d d r R R r dr dr r d d r d θθθθθϕΘΦΘΦ+Φ+Θ= 以2r R ΦΘ乘上式各项得 2222111()(sin )0sin sin d dR d d d r R dr dr d d d θθθθθϕΘΦ++=ΘΦ 或2222111()(sin )sin sin d dR d d d r R dr dr d d d θθθθθϕΘΦ=--ΘΦ 上式左端只与r 有关,右端只与θ,ϕ有关,要它们相等只有当它们都是常数时才有可能。
为了以后的需要,我们把这个常数写成(1)n n +的形式(这是可以做到的,因为任何一个实数总可以写成这种形式,这里的n 可能为实数,也有可能为复数),则得21()(1)d dRr n n R dr dr=+ (6.2)22211(sin )(1)sin sin d d d n n d d d θθθθθϕΘΦ+=-+ΘΦ (6.3) 将方程(6.2)左端的导数计算出来,即有2222(1)0d R dRr r n n R dr dr+-+= 这是一个欧拉方程,它的通解为(1)12()n n R r A r A r -+=+其中12,A A 为任意常数。