稳定同位素比例质谱仪(IRMS)的原理和应用
- 格式:doc
- 大小:48.00 KB
- 文档页数:5
同位素质谱仪随着科技的发展,我们在分析各种物质化学结构和功能方面所获得的知识越来越多,而同位素质谱仪就是在这一领域中最新的一个突破。
同位素质谱仪是一台以质谱技术为基础的精密仪器,可以用来研究各种化学元素的质量,包括金属、有机物质、生物物质等。
质谱技术的使用,有助于我们快速准确的获得某物质的同位素组成信息,从而更加准确的分析和研究物质的功能结构,以及实验室中产品的质量控制。
例如,科学家可以通过同位素质谱仪分析、检测出某种物质含有的同位素,并用此来追溯和鉴定物质的原材料,从而帮助生产者确定产品的质量,保证安全。
同位素质谱仪是现代物质研究的重要工具,是现代物质研究的重要手段之一,现代同位素质谱仪的研究,也被俗称为“分子质谱”,因为它可以将一定的物质分解成各种不同的元素和分子,使我们对它们在某种物质结构中的位置和功能有更深入的了解,从而有助于我们更加准确分析和研究新物质的分子结构,以及其他一些有关于新物质的性质和理论问题,同时也有助于我们更加准确的推断出某种物质的活性机制。
此外,同位素质谱仪还可以用来研究血液中的元素和分子,从而可以检测出某种疾病的特征,以便及早预防和治疗。
在医学上,除了检测血液中的元素和分子之外,同位素质谱仪还可以用来检测某些毒素的含量,从而帮助预防和治疗一些毒性物质的中毒。
同位素质谱仪正在不断发展,使用越来越广泛,因而对人类健康和社会发展有着重要作用。
同位素质谱仪在现代科学中被越来越多地应用,可以说是一个重要的新兴科技。
在未来,将有更多的应用,将会带来更多的发展,使同位素质谱仪有更多的应用,从而服务人类的健康和发展。
总之,随着科技的发展,同位素质谱仪越来越受到重视,将会发挥重要作用。
同位素质谱仪能够帮助科学家们更加准确的研究物质的分子结构,帮助医务人员确定病症,同时也可以帮助生产者更好控制产品的质量,从而保证人们的安全。
希望未来,科技的发展可以让同位素质谱仪发挥更大的作用,促进人类的健康和发展。
稳定同位素比例质谱仪(IRMS)的原理和应用祁彪,崔杰华(中国科学院沈阳应用生态研究所农产品安全与环境质量检测中心,沈阳,110016)同位素质谱最初是伴随着核科学与核工业的发展而发展起来的,同位素质谱是同位素地质学发展的重要实验基础。
当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。
稳定同位素技术的出现加深了生态学家对生态系统过程的进一步了解,使生态学家可以探讨一些其它方法无法研究的问题。
与其它技术相比,稳定同位素技术的优点在于使得这些生态和环境科学问题的研究能够定量化并且是在没有干扰(如没有放射性同位素的环境危害)的情况下进行。
有些问题还只能通过利用稳定同位素技术来解决。
现在,有许多农业研究机构和大学,已经开始使用高精度同位素质谱计从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响以及食品质量控制等多方面的研究工作。
与原子能和地质研究工作相比较,在农业和食品方面应用同位素方法从事科研和检测工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产、改善果实质量以及进行食品质量控制检测的工作前途无限广阔。
一、有关同位素的基本概念1、同位素(Isotope)由于原子核所含有的中子数不同,具有相同质子数的原子具有不同的质量,这些原子被称为同位素。
例如,碳的3个主要同位素分别为12C、13C和14C,它们都有6个质子和6个电子,但中子数则分别为6、7和8。
2、稳定同位素(Stable isotope)同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。
凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素。
无可测放射性的同位素是稳定同位素。
质谱仪技术发展与应用摘要:通过对当前质谱仪领域文献的分析,总结质谱仪发展与应用的特点,在此基础上对其未来的发展趋势进行了讨论。
方法:本文对质谱仪原理进行了介绍,并叙述了质谱仪的发展过程,重点对质谱仪技术在各个领域的应用进行了综述,并对其发展提出了展望。
结论:首先,质谱仪技术不断更新、发展越来越快;其次,其应用领域越来越广泛,几乎关系国计民生的方方面面都离不开质谱仪;第三,与其它技术不断融合,质谱仪技术已经发展为一门融合多学科的交叉科学。
关键词:质谱仪;技术;原理;发展应用质谱分析是先将物质离子化,按离子的质荷比分离,然后测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质量是物质的固有特性之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析;谱峰强度也与它代表的化合物含量有关,利用这一点,可以进行定量分析。
[1]检测原理[2]:质谱分析仪按照质荷比对物质进行分离。
仪器的离子探测系统可以选择出不同种类的气体,根据高稳定的能被测量的质谱可以确定气体混合物的成分[3]。
1 产生与发展1910年,英国剑桥卡文迪许实验室的汤姆逊研制出第一台现代意义上的质谱仪器。
这台质谱仪的诞生,标志着科学研究的一个新领域一质谱学的开创。
1934年诞生的双聚焦质谱仪是质谱学发展的又一个里程碑。
在此期间创立的离子光学理论为仪器的研制提供了理论依据。
双聚焦仪器大大提高了仪器的分辨率,为精确原子量测定奠定了基础。
2 应用领域最近30年质谱学在各个方面都获得了极大的发展。
新的离子化方法如场致电离(FI)、场解吸电离F(D)、化学电离(CI)、激光离子化、等离子体法等不断出现。
复杂的、高性能的商品仪器不断推出,如离子探针质谱仪、磁场型的串联质谱仪、离子回旋共振一傅立叶变换质谱仪等。
液相色谱与质谱的联用在近10年来有突破性进展,己进入实用阶段。
另一方面,低价位、简易型仪器的推出,对扩大和普及质谱分析的应用起了很大的作用。
质谱的方法原理及应用1. 原理质谱(mass spectrometry)是一种分析技术,用于确定样品中化合物的分子质量和结构,以及分析样品中各种物质的相对丰度。
质谱的原理基于离子化和分离分析。
质谱仪由离子源、质量分离器和离子探测器组成。
样品通常需要被离子化,可以通过多种方法实现,例如电离、电子轰击和激光脱附等。
离子化后的样品离子被引入质量分离器,其中离子将按照其质量/电荷比(m/z)值分离,并到达离子探测器进行检测。
根据离子信号的强度和m/z值,可以确定化合物的分子质量和相对丰度。
质谱方法原理的核心是根据不同离子的m/z值进行分析和识别。
根据离子的m/z值,可以得到化合物的分子质量,进而推导出其可能的化学结构。
2. 应用质谱技术在许多领域都有广泛的应用。
以下是质谱在不同领域中的应用举例:a. 化学分析•质谱可用于化合物的结构鉴定。
通过比较质谱图上的峰值与数据库的对应数据,可以确定化合物的分子式和结构。
•质谱在分析环境中的化学物质时也非常有用。
例如,可以使用质谱来检测空气中的有害气体或水中的污染物。
b. 生物医学•质谱在药物开发中发挥重要作用。
通过质谱可以确定药物的分子结构,帮助药物设计和合成。
•在生物医学领域中,质谱被广泛用于研究蛋白质和代谢产物。
质谱可以用来分析蛋白质的氨基酸序列,研究蛋白质组学和代谢组学。
c. 环境科学•质谱在环境科学领域中被用于监测和检测有机污染物。
通过质谱技术,可以识别和定量分析环境样品中的各种有机化合物,如农药、有机溶剂和石油产品。
d. 食品安全•质谱在食品安全检测中有着重要的应用。
可以使用质谱来检测食品中的农药残留、毒素和添加剂等成分,确保食品的质量安全。
e. 能源与材料•质谱在能源和材料研究中也发挥着重要作用。
可以使用质谱技术来研究新型能源材料的组成和性质,从而提高能源的利用效率。
3. 结论质谱是一种重要的分析技术,具有广泛的应用领域。
通过离子化和分离分析,质谱可以确定化合物的分子质量和结构,进而支持化学、生物医学、环境科学、食品安全以及能源与材料等领域的研究和应用。
稳定同位素比例质谱仪(IRMS)的原理和应用祁彪,崔杰华(中国科学院沈阳应用生态研究所农产品安全与环境质量检测中心,沈阳,110016)同位素质谱最初是伴随着核科学与核工业的发展而发展起来的,同位素质谱是同位素地质学发展的重要实验基础。
当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。
稳定同位素技术的出现加深了生态学家对生态系统过程的进一步了解,使生态学家可以探讨一些其它方法无法研究的问题。
与其它技术相比,稳定同位素技术的优点在于使得这些生态和环境科学问题的研究能够定量化并且是在没有干扰(如没有放射性同位素的环境危害)的情况下进行。
有些问题还只能通过利用稳定同位素技术来解决。
现在,有许多农业研究机构和大学,已经开始使用高精度同位素质谱计从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响以及食品质量控制等多方面的研究工作。
与原子能和地质研究工作相比较,在农业和食品方面应用同位素方法从事科研和检测工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产、改善果实质量以及进行食品质量控制检测的工作前途无限广阔。
一、有关同位素的基本概念1、同位素(Isotope)由于原子核所含有的中子数不同,具有相同质子数的原子具有不同的质量,这些原子被称为同位素。
例如,碳的3个主要同位素分别为12C、13C和14C,它们都有6个质子和6个电子,但中子数则分别为6、7和8。
2、稳定同位素(Stable isotope)同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。
凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素。
无可测放射性的同位素是稳定同位素。
其中一部分是放射性同位素衰变的最终稳定产物。
例如206Pb 和87Sr等。
另一大部分是天然的稳定同位素,即自核合成以来就保持稳定的同位素,例如12C和13C、18O 和16O等。
与质子相比,含有太多或太少中子均会导致同位素的不稳定性,如14C。
这些不稳定的“放射性同位素”将会衰变成稳定同位素。
3、同位素丰度(Isotope abundance)①绝对丰度:指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H =1012)或28Si(28Si=106)的比值表示。
这种丰度一般是由太阳光谱和陨石的实测结果给出元素组成,结合各元素的同位素组成计算的。
②相对丰度:指同一元素各同位素的相对含量。
例如12C=98.892%,13C=1.108%。
大多数元素由两种或两种以上同位素组成,少数元素为单同位素元素,例如19F=100%。
4、 R值和δ值①一般定义同位素比值R为某一元素的重同位素原子丰度与轻同位素原子丰度之比. 例如 D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且冗长繁琐不便于比较,故在实际工作中通常采用样品的δ值来表示样品的同位素成分。
②样品(sq)的同位素比值Rsq与一标准物质(st)的同位素比值(Rst)比较,比较结果称为样品的δ值。
其定义为:δ(‰)=(Rsq/Rst -1)×1000即样品的同位素比值相对于标准物质同位素比值的千分差。
5、同位素标准(Isotope standard)δ值的大小显然与所采用的标准有关,所以在作同位素分析时首先要选择合适的标准,不同的样品间的比较也必须采用同一标准才有意义。
对同位素标准物质的一般要求是:(a)组成均一性质稳定;(b)数量较多,以便长期使用;(c)化学制备和同位素测量的手续简便;(d)大致为天然同位素比值变化范围的中值,便用于绝大多数样品的测定;(e)可以做为世界范围的零点。
目前国际通用的同位素标准是由国际原子能委员会(IAEA)和美国国家标准和技术研究所(NIST)颁布的,其主要的分析标准和数据报道如下:(a)氢同位素:分析结果均以标准平均大洋水(Standard Mean Ocean Water,即SMOW)为标准报导,这是一个假象的标准,以它作为世界范围比较的基点,其D/H SMOW =(155.76±0.10)×10-6。
事实上并不存在SMOW这样一种无知,它是根据NBS-1定义的,NBS-1是由NBS分发的一个水样,它是用Potome河水制成的蒸馏水,相对于SMOW,其氢同位素比值为:δD NBS-1=-47.6‰。
后来IAEA分发了两个用作同位素标准的水样V-SMOW和SLAP,其氢同位素比值分别为δD VSMOW=0‰。
δD SLAP=-428‰。
(b)碳同位素:标准物质为美国南卡罗来纳州白垩纪皮狄组层位中的拟箭石化石(Peedee Belemnite,即PDB),其13C/12C =(11237.2±90)×10-6,定义其δ13C=0‰。
(c)氧同位素:大部分氧同位素分析结果均以SMOW标准报导,它是根据水样NBS-1定义的,18O/16O SMOW=(2005.2±0.43)×10-6,17O/16O SMOW=(373±15)×10-6;而在碳酸盐样品氧同位素分析中则经常采用PDB标准,其18O/16O=2067.1×10-6,它与SMOW标准之间存在转换关系。
相对于SMOW,NBS-1的样同位素比值为:δ18ONBS-1=-7.94‰。
两个IAEA标准水样VSMOW和SLAP的氧同位素比值分别为:δ18OVSMOW=0‰。
δ18OSLAP=-55.50‰。
(d)硫同位素:标准物质选用Canyon Diablo铁陨石中的陨硫铁(Troilite),简称CDT。
34S/32S CDT =0.0450045±93,定义CDT的δ34S=0‰。
(e)氮同位素:选空气中氮气为标准。
15N/14N=(3.676.5±8.1)×10-6,定义其δ15N=0‰。
(f)硅同位素:硅同位素组成常以30Si/28Si比值表示,标准是石英砂NBS-28,定义其δ30Si =0‰。
(g)硼同位素:采用SRM951硼酸做为标准,NBS推荐的11B/10B比值为4.04362±0.00137,定义其δ11B=0‰。
二、稳定同位素比例质谱仪(IRMS)工作原理简介质谱是按照原子(分子)质量的顺序排列的图谱。
利用光谱法、核感应法或微波吸收法都可以构成试验装置,进行质谱研究;而历史上把基于电磁学原理设计而成的仪器叫做质谱仪(mass spectrometer 或mass spectrograph)。
因此种仪器中采用的质量分析器只能对带电粒子起分离作用,所以,要求将被研究的原子(分子)转变成离子,而仪器所获得的信息则是离子的质量m与电荷e之比m/e。
近百年来,人们利用质谱仪进行了原子量测定、同位素分离与分析、有机物结构分析和其它科学实验,形成质谱法(mass spetromettry或mass spetroscopy),其在现代分离、分析研究领域中占有重要地位。
质谱仪器的主要特点有:①擅长同位素分析;②可以进行多种形态样品(气体、液体、固体、常温、高温、常量、微量……)分析;③可以同时(或顺序)检测多种成分;④可以连续(或间歇)进样、连续分析;⑤可以提供丰富的结构信息;⑥可以进行快速分析与实时检测;⑦即可进行定性分析,也可定量分析;⑧样品用量少,灵敏度很高;⑨测量准确度与精密度较高;⑩仪器结构复杂,造价较高。
同位素比例质谱仪是利用离子光学和电磁原理,按照质荷比(m/e)进行分离从而测定同位素质量和相对含量的科学实验仪器。
1、 IRMS 的基本测量过程在稳定同位素分析中均以气体形式进行质谱分析,因此常有气体质谱仪之称。
同位素质谱分析仪的测量过程可归纳为以下步骤:① 将被分析的样品以气体形式送入离子源;② 把被分析的元素转变为电荷为e 的阳离子,应用纵电场将离子束准直成为一定能量的平行离子束;③ 利用电、磁分析器将离子束分解为不同m/e 比值的组分;④ 记录并测定离子束每一组分的强度;⑤ 应用计算机程序将离子束强度转化为同位素丰度;⑥ 将待测样品与工作标准相比较,得到相对于国际标准的同位素比值。
2、 IRMS 的基本原理:同位素比例质谱仪的原理是首先将样品转化成气体(如CO 2,N 2,SO 2或H 2),在离子源中将气体分子离子化(从每个分子中剥离一个电子,导致每个分子带有一个正电荷),接着将离子化气体打入飞行管中。
飞行管是弯曲的,磁铁置于其上方,带电分子依质量不同而分离,含有重同位素的分子弯曲程度小于含轻同位素的分子。
在飞行管的末端有一个法拉第收集器,用以测量经过磁体分离之后,具有特定质量的离子束强度。
由于它是把样品转化成气体才能测定,所以又叫气体同位素比例质谱仪。
以CO 2为例,需要有三个法拉第收集器来收集质量分别为44、45和46的离子束。
不同质量离子同时收集,从而可以精确测定不同质量离子之间的比率。
带电粒子在磁场中运动时发生偏转,偏转程度与粒子的质荷比m/e 成反比。
带电离子携带电荷e',通过电场时获得能量e'V ,它应与该离子冬动能相等:1/2m' v' 2=e' V (1)式中m'和 v'分别为粒子的质量和速度,e'为粒子电荷,V 为电压。
带电粒子沿垂直磁力线方向进入磁场时,受到洛仑兹力作用,此力垂直于磁场方向和运动方向,力的大小为:F=e ' VB/c (2)式中B 为磁场强度,c 为光速。
合并(1)和(2)式,得到:F =/m e'c2V e'm c V2e' e' B B = (3) 显然,F 为粒子质量的函数,确切来说是荷质比/m e'的函数。
据此,带电粒子在磁场中运动时因洛仑兹力而偏转,导致不同质量同位素的分离,重同位素偏转半径大,轻同位素偏转半径小。
实际测定中,不是直接测定同位素的绝对含量,因为这一点很难做到;而是测定两种同位素的比值,例如18O/16O 或34S/32S 等。
用作稳定同位素分析的质谱仪是将样品和标准的同位素比值作对比进行测量。
3、 IRMS 的基本结构同位素比例质谱仪与其它质谱仪一样,其结构主要可分为进样系统、离子源、质量分析器和检测器四部分,此外还有电气系统和真空系统支持。
(a ) 进样系统:即把待测气体导入质谱仪的系统。