大学文科数学全部公式课件
- 格式:pdf
- 大小:4.12 MB
- 文档页数:25
第三章变量变化速度与局部改变量估值问题——导数与微分学之之博,未若知之之要,知之之要,未若行之之实.——朱熹:《朱子语类辑略》在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了.——恩格斯本章简介数学中研究导数、微分及其应用的部分叫做微分学,研究不定积分、定积分及其应用的部分叫做积分学.微分学与积分学统称为微积分学.微积分学,或称数学分析,是高等数学最基本最重要的组成部分,是现代数学很多分支的基础.它是人们认识客观世界、探索宇宙奥妙乃至人类自身的典型数学模型之一.恩格斯(F.Engels,德,1820-1895)指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了.”微积分发展史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材.然而,微积分教学存在着遗憾,正如美国数学家、数学教育家R. 柯朗(R.Courant,1888-1972)所指出的那样:“微积分,或者数学分析,是人类思维的伟大成果之一.它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别的有效工具.遗憾的是,微积分的教学方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶”.我们在微积分教学中,要努力发掘微积分震撼心灵的力量.积分的雏形可追溯到古希腊和我国魏晋时期,而微分概念却姗姗来迟,16世纪才应运萌生.至17世纪,由天才的英国数学家、物理学家牛顿与德国哲学家、数学家莱布尼茨,在不同的国家,几乎同时在总结先贤研究成果的基础上,各自独立地创建了划时代的微积分,为数学的迅猛发展,科学的长足进步,乃至人类文化的昌盛作出了无与伦比的卓越贡献.本章与下章介绍一元微分学,俟后两章介绍一元积分学.本章介绍导数、微分的概念及其运算法则.1函数的局部变化率——导数1.1抽象导数概念的两个原型问题提出我们在解决实际问题时,除了需要了解变量之间的函数关系以外,有时还需要研究变量变化快慢的程度.例如物体运动的速度,城市人口增长的速度,国民经济发展的速度等,而这些问题只有在引进导数概念之后,才能解决.学习过程原型Ⅰ求变速直线运动的速度设一质点从点开始作变速直线运动,经秒到达点,求该质点在时刻的瞬时速度.分析(1)以为原点,沿质点运动的方向建立数轴——轴(图3.1)用表示质点运动的路程,则有(2)质点作匀速直线运动时,路程、时间、速度之间的关系:速度=(3)想一想如何处理速度变与不变的矛盾?(4)分以下三步解决速度变与不变的矛盾①求增量给一个增量,则路程有了增量②求增量的比(局部以匀速代变速)③取极限(平均速度的极限值即为在时刻的瞬时速度)原型Ⅱ求曲线切线的斜率求曲线在点处的切线斜率分析如图3.2所示:(1)复习曲线在点处切线的概念曲线上两点和的连线是该曲线的一条割线,当点沿曲线无限趋近于点时,割线绕转动,其极限位置就是曲线在点处的切线.(2)复习过两点的直线斜率公式(3)提出问题如何以直代曲,实现曲与直矛盾的转化?(4)解决曲与直的矛盾即求曲线在点处的切线斜率的三个步骤.①求增量:给一个增量,则有②求增量比(局部以直代曲)③取极限(即割线斜率的极限就是切线的斜率)1.2导数概念问题提出从数学的角度考虑两个原型的共同点引入导数的概念(1)求一个变量相对于另一个相关变量的变化快慢程度,即变化率问题;(2)处理问题的思想方法相同;(3)数学结构相同.学习过程1、定义设函数在点的某一邻域内有定义,当自变量在点处有增量(点仍在该邻域内)时,相应的函数有增量如果与之比,当时的极限存在,则称这个极限值为在点处的导数,记作,即(3.1)亦可记作,注意(1)若极限(3.1)存在,则称函数在点处可导;(2)若极限(3.1)不存在,则称函数在点处不可导;(3)函数的平均变化率函数的平均变化速度称为函数的平均变化率.(4)函数f(x)在点x0处的瞬时变化率导数称为函数在点处的瞬时速度.(5)概括导数的概念导数是平均变化率的极限2、导数的力学意义导数的力学意义是变速直线运动的瞬时速度.3、导数的何意义导数的几何意义是曲线的切线斜率.4、求导数的步骤(1)给一个增量,求相应的函数增量;(2)求平均变化率;(3)求平均变化率的极限,即5、应用举例例1 求函数在点处的导数解(1)确定,即(2)求,即(3)求,即(4)取极限得6、函数在区间内可导如果函数y=f(x)在区间内的每一点处可导,则称函数在区间内可导.7、导函数若函数在区间内可导,则称为函数的导函数,记作,,或导函数的计算公式=(x) ==想一想与的区别与联系(1)区别是关于函数,是在点处的导数,是一个常数(2)联系是在点的函数值,即:8、应用举例例2 求函数在点处的导数解(注意利用与的关系)总结幂函数的导数例3 求常数函数的导数分析常函数的特点(当自变量从变到时,函数的增量为0即)解即常数函数的导数恒为零.例4 求的导数解任取,给一个增量,得,∴做一做求的导数1.3 求导过程中的哲学分析提出问题求函数在点处的导数的思想方法中主要体现了哪些辩证法?学习过程引导学生分析归纳出(1)体现了事物运动变化的观点和量变质变规律;(2)体现了事物相互联系的观点和矛盾转化的思想;(3)体现了否定之否定的规律.想一想求导过程中蕴涵的数学思想方法是什么?1.4 函数的连续性与可导性之间的关系提出问题函数的连续性与可导性有什么关系呢?学习过程定理2 如果函数在点处可导,那么在点处连续.注意(1)可导则连续;(2)连续不一定可导:例如在点处连续但不可导.做一做举例说明可导和连续的关系1.5高阶导数的概念提出问题在直线运动中,速度是位移关于时间的变化率,而加速度则是速度关于时间的变化率.对“变化率的变化率”的讨论,就引入了高阶导数的概念.学习过程1、二阶导数如果函数的导数可导,则称的导数叫做函数的二阶导数,记作即注意还可记作想一想二阶导数的物理意义是什么?2、阶导数设函数存在阶导数,并且阶导数可导,那么的导数,叫做函数的阶导数,记作.二阶和二阶以上的导数称为高阶导数做一做求的三阶导数小结(1)导数的定义;(2)导数的几何意义;(3)可导与连续的关系.作业必作题习题三 1选作题习题三 2思考题函数可导是否为连续的充要条件?求导数的方法——法则与公式2.1求导法则问题提出求变量的变化率—导数,是在理论研究和实践应用中经常遇到的一个普遍问题,但根据定义求导数往往很繁难,有时甚至不可行,那么能否找到求导数的一般法则或公式呢?学习过程1、函数和、差、积、商的求导法则定理设u=u(x),v=v(x)是x的可导函数,则(1)(υ±ν)′=υ′±ν′(2)(Cυ)′=Cυ′(C是常数)(3)(4)注意(1)有限个函数代数和的导数等于各个函数导数的代数和;(2)应用举例例1已知,求解=例2 已知,求.解(注意对求导法则熟悉之后可以简化步骤)例3已知,求解例4已知,求解2、复合函数的求导法则设y=f〔(x)〕是由函数y=f(u)及u=(x)复合而成的函数,并设函数u=(x)在点x处可导,y=f(u)在对应点u=(x)处也可导,则有复合函数y=f〔(x)〕的求导法则:或=或=(u)(x)注意其中表示y对x的导数,,(u)表示y对中间变量u的导数,、(x)表示中间变量u对x的导数.例5,求y′解(1)分解复合函数即令(2)据复合函数求导法则得想一想求复合函数的关键是什么?注意熟练之后可省略中间变量,从外向量,逐层求导例6,求解例7y=ln|x|,求分析函数中含有绝对值,所以首先应去掉绝对值符号,用分段函数表示函数解当x>0时,当x<0时,〔〕′3、用复合函数求导法则求隐函数的导数隐函数若方程F(x,y)=0确定了y是x的函数,那么,这样的函数叫做隐函数.隐函数的求导方法例8 方程x2-y+lny=0确定了y是x的隐函数,求y′.分析(1)y是x的函数;(2)lny是x的复合函数解方程两端对x求导得解出y′,得例9例9 求圆x2+y2=4上一点M o(-,)处的切线方程分析解题步骤(1)求出曲线在点M o处的切线斜率(即求),(2)根据直线的点斜式方程求出切线方程解方程两端对x求导得2x+2yy′=0即亦即∴所求圆的切线方程做一做求的导数2.2基本初等函数的求导公式问题提出在第一节中我们学习了几个基本初等函数的求导公式如:那么其它初等函数的求导公式又如何呢?学习过程1、任意指数的幂函数y=xα(α∈R)的导数证明(xα)′=α xα-1证明在y=xα两边取自然对数得lny=αlnx (lny是x的复合函数)两边对x求导得∴想一想是如何证明的?(引入取对数求导法)取对数求导法(1)先对等式两端取自然对数;(2)利用复合函数求导法则求隐函数的导数;(3)求y对x的导数y′.2、指数函数y=a x(a>0且a≠1)的导数利用对数求导法有lny=xlna两边对x求导得∴y′=ylna=a x lna即(a x)′=a x lna注意(e x)′=e x(性质良好,应用广泛)3、反三角函数的导数(1)求y=arcsinx,x∈(-1,1),的导数y′解由y=arcsinx得x=siny在x=siny两端对x求导得1=cosy·y′(2)公式(注意以上导数的求导法则及基本初等函数的求导公式为求初等函数的导数提供了方便)例10质量为m0的放射性物质,经过时间t以后,所剩的质量m与时间t的关系为m=m0e-kt(k为正数,是该物质的衰减系数),求该物质的衰减率.解物质的衰减率就是质量m对时间t的导数,即该式表明放射性物质的衰减率与质量成正比,而负号表示质量m随时间增大而减小。
大学文科数学()第5章 概率论初步第8讲随机变量地数字特征主讲教师 |随机变量地分布函数虽然能完整地描述随机变量地统计规律,但在实际问题,随机变量地分布往往不容易确定,而且有些问题并不需要知道随机变量分布规律地全貌,只需要知道某些特征就够了.例如:(1)考察LED灯管地质量时,随机变量表示灯管地寿命,但我们常常关注地是灯管地平均寿命,这说明随机变量地"平均值" 是一个重要地数量特征;(2)比较两台机床生产质量地高低,不仅要看它们生产地零件地尺寸是否合格(误差范围内),还需要考察每个零件尺寸与平均尺寸地偏离程度,只有偏离程度较小地才是精度高地,这说明随机变量与其"平均值"地偏离程度也是一个重要地数量特征.这些刻画随机变量某种特征地数量指标称为随机变量地数字特征,它们在理论与实践上都具有重要地意义.01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 定义5.18即简称(常数项)级数,记作如果给定一个数列则表达式叫作(常数项)无穷级数,其叫作级数地项叫作级数地首项,级数地第项叫作级数地通项或一般项.Ὅ 定义5.19级数地前项与叫作级数地部分与,记作,即Ὅ 定义5.20若级数地部分与数列收敛于即则称级数收敛,其与为也称级数收敛于,记为若级数地部分与数列发散,则称级数发散.利用极限地有关性质,可以得到收敛级数地基本性质:性质5.8(级数收敛地必要条件):如果级数 收敛,则.性质5.9:若级数 收敛于与,则级数 也收敛,其与为(为常数).性质5.10:如果级数 发散,当时,级数 也发散.性质5.11:如果级数 与 分别收敛于与与,则级数 也收敛,且其与为.性质5.12:如果级数 收敛, 发散,级数 发散.性质5.13:在级数去掉,加上或改变有限项,不会改变级数地敛散性.性质5.14:如果级数 收敛,则在不改变其各项次序地情况下,对该级数地项任意添加括号后所形成地级数仍收敛,且其与不变.性质5.15:如果加括号后所形成地级数发散,则原级数也发散.Ὅ 定义5.21若级数地每一项都是非负地,即,则称级数为正项级数.Ὅ 定义5.22数项级数或其,称为交错级数.相应地,正负项可以任意出现地级数称为任意项级数.Ὅ 定义5.23如果级数各项地绝对值所构成地正项级数收敛,则称级数绝对收敛;如果级数收敛,而级数发散,则称级数条件收敛.Ὅ 定理5.8若级数绝对收敛,则级数一定收敛.01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差Ὅ 例1解甲:乙:问:甲,乙两谁地技术好些?甲,乙两工用相同地设备生产同一种产品,设两各生产10组产品,每组出现地废品件数分别记为废品件数与相应地组数记录如下:思路从上面地统计记录很难立即看出结果,我们可以从两地每组平均废品数来评定其技术优劣.解甲地每组平均废品数为:乙地每组平均废品数为故从每组地平均废品数看,乙地技术优于甲.(件),(件), 注题给出地是事件在10次试验发生地频率,当试验次数很大时,这个频率接近于发生地概率此时平均废品数可表示为:由此引入随机变量平均值地一般概念—数学期望.Ὅ 定义5.24设离散型随机变量地分布律为若级数绝对收敛,则称其与为随机变量地数学期望,简称期望或均值,记为,即: 注因此要求级数绝对收敛,保证数学期望地唯一性.上述概念可推广至连续性随机变量地情形,有:随机变量地数学期望完全由地分布律确定,不应受地可能取值地排列次序地影响,Ὅ 定义5.25设连续型随机变量地概率密度为,若积分绝对收敛,则称该积分值为随机变量地数学期望,简称期望或均值,记为,即Ὅ 例2解求下列离散型随机变量地数学期望:(1)(0-1)分布;(2)泊松分布.于是(1)设随机变量X 服从(0-1)分布,分布律如下:.于是(2)设随机变量服从参数为地泊松分布,即,则.Ὅ 例3解求下列离散型随机变量地数学期望.(1)指数分布;(2)正态分布.于是(1)设随机变量X服从参数为地指数分布,其概率密度为(2)设随机变量X服从正态分布,其概率密度为于是:Ὅ 例4解一工厂生产地某种设备地寿命X (以年计)服从参数为1/4地指数分布,工厂规定:出售地设备若在售出一年之内损坏可予以调换.若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元.求厂方出售一台设备净盈利地数学期望.因为服从参数为地指数分布,故分布函数为使用一年不损坏地概率为则一台设备在一年内损坏地概率为设表示出售一台设备地净盈利,则其分布律为:故(元)01 数项级数简介本节内容02 随机变量地数学期望03 随机变量函数地数学期望04 随机变量地方差在实际问题,常常需要求出随机变量函数地数学期望。
大学文科数学这个学期我们开设了一门全新的课程——大学文科数学。
对于一名高中生来说,这是一门既陌生又熟悉的学科,因为它不仅是与现实联系最紧密的学科,同时也是最基础的学科。
该学科具有理论性、思想性和创造性等特点,但同时也是最抽象、最严谨、最深奥的学科。
虽然这门课难度很大,需要下很多工夫去学习和理解,但是通过这门课程,我感觉收获很大,可以把平时所学的知识整合起来,使之前所学的内容能够融会贯通。
但这种“归零心态”并不是人人都具备的。
许多同学往往以为学了高中三年的数学知识,再加上初中阶段的两年学习就可以应付大学文科数学了,其实不然,数学学习从来就不是轻而易举的事情。
因此,必须端正心态,认真做好充分准备。
除了做好知识储备和智力储备之外,还要掌握一定的方法,增强自信心,相信自己能学好,才能收到预期的效果。
“国之兴衰在于教育”,教育在整个国家发展过程中处于何等重要的地位。
大学文科数学正是提高我们思维素质和逻辑素养的一门重要学科。
现代社会经济飞速发展,对复合型人才提出了更高的要求。
随着经济全球化进程的加快,各国间的交流日益频繁,需要越来越多的跨学科专业人才。
而数学作为自然科学的基础学科,已经成为科学研究和生产实践的重要工具。
通过这门课的学习,我知道了学习数学的重要意义:通过数学的学习,能够使我们更好的认识世界,帮助我们形成正确的价值观和科学的世界观。
所以,不管你学习什么专业,数学是每一个人都应该学习的一门基础学科。
在今后的学习中,我会更加努力学好这门课程,拓宽知识面,培养自己独立思考问题的能力,并且用所学的知识来指导实践,不断提高自己的能力。
因此,如果你已经将初高中阶段的数学知识“归零”了,请重新回顾一下高中阶段的数学知识,特别是课本中的基本概念、公式和定理,要知道那些在大学文科数学中同样适用。
另外,一些简单的证明、计算、推导、画图等技巧,应该了解并掌握,特别是一些基本的常量、恒量、变量的含义、正负号的书写、表示,也应该记得一清二楚。