第六章 屈服准则
- 格式:ppt
- 大小:1.49 MB
- 文档页数:30
五种常见的屈服准则及其优缺点、适用范围屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
一、几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca准则,Von-Mises准则,Mnhr-Coulomb准则,Drucker Prager准则,Zienkiewicz-Pande准则。
其中后三种适用于混凝土和岩土材料的准则。
1. Tresca屈服准则当最大剪应力达到一定数值时,材料开始屈服。
这就是Tresca屈服条件,也称为最大剪应力条件。
规定σ1≥σ2≥σ3时,上式可表示为:如果不知道σ1、σ2、σ3的大小顺序,则屈服条件可写为:换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。
2. Mises屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为:或其中,k为常数,可根据简单拉伸试验求得:或根据纯剪切试验来确定:它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。
这时有:换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。
或者说,材料处于塑性状态时,其等效应力是不变的定值,该定值取决于材料变形时的性质,而与应力状态无关。
Mises屈服准则的物理意义:当材料的单位体积形状改变的弹性能达到某一常数时,质点就发生屈服。
故Mises屈服准则又称为能量准则。
3. Mnhr Coulomb准则Tresca屈服条件和Mises屈服条件主要是对金属材料成立的两个屈服条件,但是这两个屈服条件如果简单地应用于岩土材料,会引起不可忽视的偏差。
五种常见的屈服准则及其适用范围 屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
1.几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca 准则,Von-Mises 准则 ,Mnhr- Coulomb 准则,Drucker Prager 准则,Zienkiewicz-Pande 准则。
其中后三种适用于混凝土和岩土材料的准则1.1 Tresca 屈服准则当最大剪应力达到一定数值时,材料开始屈服。
这就是Tresca 屈服条件,也称为最大剪应力条件。
k =max τ规定时321σσσ≥≥,上式可表示为:k 2-31=σσ 如果不知道321、、σσσ的大小顺序,则屈服条件可写为:0]4)][(4)][(4)[(221322322221=------k k k σσσσσσ换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca 屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。
1.2 Mises 屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为22k J =或22132322216)()()(k =-+-+-σσσσσσ其中, k 为常数,可根据简单拉伸试验求得3/222s k J σ==,或根据纯剪切试验来确定, 222s k J τ==它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。
这时有:const k J r ===222σ 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。
几种常见的屈服准则及其适用条件屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
1.几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca 准则,Von-Mises 准则 ,Mnhr- Coulomb 准则,Drucker Prager 准则,Zienkiewicz-Pande 准则。
其中后三种适用于混凝土和岩土材料的准则1.1 Tresca 屈服准则当最大剪应力达到一定数值时,材料开始屈服。
这就是Tresca 屈服条件,也称为最大剪应力条件。
k =max τ规定时321σσσ≥≥,上式可表示为:k 2-31=σσ 如果不知道321、、σσσ的大小顺序,则屈服条件可写为:换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca 屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。
1.2 Mises 屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为22k J =或22132322216)()()(k =-+-+-σσσσσσ其中, k 为常数,可根据简单拉伸试验求得3/222s k J σ==,或根据纯剪切试验来确定,222s k J τ==它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。
这时有:const k J r ===222σ 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。
或者说,材料处于塑性状态时,其等效应力是不变的定值,该定值取决于材料变形时的性质,而与应力状态无关。
基本概念(2):屈服准则本期,给大家介绍一下有限元计算中经常遇到的一个概念:屈服准则。
上期讲的屈服强度属于材料特性。
屈服准则是一个计算概念。
一、屈服准则的含义屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
物体力在外载荷(通常为外力)作用下发生的变形有二种形态:(1)弹性变形。
弹性变形是可逆的,当外载荷卸去后物体可以恢复到初始状态,物体中任何二个质点之间的距离都恢复到初始值,物体内无任何残余变形。
(2)塑性变形。
塑性变形是不可逆的,物体中任何二个质点之间的距离不可能全部恢复到初始值,从而使得变形永久地保留在物体中,一般说来,在外载荷的作用下,物体中的任一质点开始时都只发生弹性变形,但是随着外载荷的增大使得该质点处的应力张量达到某一临界值时,该质点才能发生塑性变形受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。
受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。
在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。
简而言之,屈服准则,就是将实际结构的多轴应力状态与材料试验的单轴屈服应力等效转换的方法。
二、常用的屈服准则1.Tresca屈服准则当材料的最大剪应力达到材料屈服强度时,这判断材料在多轴应力状态下发生屈服。
换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca 屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响优点:当知道主应力的大小顺序,应用简单方便缺点:(1)没有考虑正应力和静水压力对屈服的影响。
72. 材料的屈服准则有哪些,如何选择?72、材料的屈服准则有哪些,如何选择?在材料力学和工程领域中,屈服准则是一个至关重要的概念。
它用于确定材料在受力情况下何时开始发生塑性变形,对于材料的设计、分析和应用具有重要意义。
那么,材料的屈服准则都有哪些?在实际应用中又该如何进行选择呢?常见的材料屈服准则主要包括以下几种:首先是 Tresca 屈服准则。
Tresca 准则认为,当材料中的最大剪应力达到某一极限值时,材料开始屈服。
这个极限值通常是材料在简单拉伸试验中屈服应力的一半。
Tresca 屈服准则的数学表达式相对简单,在一些简单的受力情况下,计算较为方便。
其次是 von Mises 屈服准则。
与 Tresca 准则不同,von Mises 准则基于材料的畸变能。
它指出当材料的畸变能达到某一特定值时,材料发生屈服。
von Mises 屈服准则在数学形式上更为复杂,但在处理复杂应力状态时,具有更好的适用性和准确性。
还有 MohrCoulomb 屈服准则。
该准则主要适用于岩土等摩擦型材料。
它考虑了材料的内摩擦角和黏聚力等因素,能较好地描述岩土材料在剪切作用下的屈服行为。
此外,DruckerPrager 屈服准则是对 MohrCoulomb 准则的一种扩展和改进,使其在数值计算中更便于应用。
那么在实际工程中,如何选择合适的屈服准则呢?这需要综合考虑多个因素。
首先要考虑材料的类型。
不同的材料具有不同的力学性能和变形特点。
例如,金属材料通常更适合采用 von Mises 屈服准则,而岩土类材料则多采用 MohrCoulomb 或 DruckerPrager 屈服准则。
其次,受力状态也是一个重要的考量因素。
如果材料处于简单的单向或双向受力状态,Tresca 屈服准则可能就足够准确和简便。
但对于复杂的多向应力状态,von Mises 屈服准则往往能提供更可靠的结果。
再者,工程问题的复杂程度也会影响屈服准则的选择。
混凝土屈服准则
混凝土的屈服准则是指在特定的变形条件(如变形温度、变形速度等)下,各应力分量达到或超过某一临界值,导致混凝土开始发生塑性变形的情况。
这种关系描述了受力物体中不同应力状态下的质点进入塑性状态,并使塑性变形继续进行所必须遵守的力学条件。
混凝土的屈服准则主要有两种:
1.Tresca屈服准则:这个准则主要关注最大切应力。
当混凝土中的最大切应力达
到或超过某一临界值时,材料开始屈服。
这一临界值主要取决于混凝土材料的自身属性,而不受应力或约束条件的影响。
在Tresca屈服准则中,当材料在最大剪应力大于其极限强度时,就会发生破坏。
这可以通过主应力之差绝对值来判断是否进入塑性状态。
值得注意的是,Tresca屈服准则没有考虑中间主应力的影响。
2.Mises屈服准则(或其近似的Von Mises屈服准则):这个准则考虑的是等效
应力,即应力偏张量的第二不变量。
当混凝土中的等效应力达到某一临界值时,材料开始进入塑性状态。
Mises屈服准则考虑了所有应力分量的影响,包括中间主应力,因此相对于Tresca准则,它可能提供更准确的预测。
在ANSYS等数值模拟软件中,常采用近似的Von Mises屈服准则,并提供了适用于混凝土材料的多线性等向强化模型(MISO)和多线性随动强化模型(MKIN)。
总的来说,选择哪种屈服准则取决于具体的工程应用和所需的精度。
对于复杂的受力情况,可能需要采用更复杂的屈服准则或模型来更准确地描述混凝土的力学行为。
3.4 屈服准则理论类2009-12-29 11:25:32 阅读157 评论0 字号:大中小订阅3.4 屈服准则3.4.1 屈服准则的概念3.4.2 屈雷斯加(H.Tresca )屈服准则3.4.3 米塞斯(Von .Mises )屈服准则3.4.4 屈服准则的几何描述3.4.5 屈服准则的试验验证与比较一.屈服准则的概念1 .屈服准则A.受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。
B.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。
在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。
它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为f(σij)=C又称为屈服函数,式中 C 是与材料性质有关而与应力状态无关的常数,可通过试验求得。
屈服准则是求解塑性成形问题必要的补充方程。
2 .有关材料性质的一些基本概念A.理想弹性材料物体发生弹性变形时,应力与应变完全成线性关系,并可假定它从弹性变形过渡到塑性变形是突然的。
B.理想塑性材料(又称全塑性材料)材料发生塑性变形时不产生硬化的材料,这种材料在进入塑性状态之后,应力不再增加,也即在中性载荷时即可连续产生塑性变形。
C.弹塑性材料在研究材料塑性变形时,需要考虑塑性变形之前的弹性变形的材料这里可分两种情况:Ⅰ.理想弹塑性材料在塑性变形时,需要考虑塑性变形之前的弹性变形,而不考虑硬化的材料,也即材料进入塑性状态后,应力不再增加可连续产生塑性变形。
Ⅱ.弹塑性硬化材料在塑性变形时,既要考虑塑性变形之前的弹性变形,又要考虑加工硬化的材料,这种材料在进入塑性状态后,如应力保持不变,则不能进一步变形。
只有在应力不断增加,也即在加载条件下才能连续产生塑性变形。