3.4力的合成和分解
- 格式:doc
- 大小:974.60 KB
- 文档页数:3
物理概念和规律: 一、力的合成1.定义:如果一个力的 与几个力共同作用的效果 ,这个力就叫做那几个力的 ;如果几个力的 与某个力单独作用的效果 ,这几个力叫做那个力的分力.2.力的合成:求几个力的 叫做力的合成. (1)平行四边形定则求两个互成角度的力的合力,可以用表示这两个力的有向线段为 ,作平行四边形,这两邻边所夹的 就表示合力的大小和方向.这种方法叫平行四边形定则.所有矢量的合成都遵循平行四边形定则.(2)三角形定则把两个矢量 ,从第一个矢量的始端指向第二个矢量的末端的有向线段就表示合矢量的 .三角形定则与平行四边形定则实质上是一样的 (3)两分力等大,夹角为θ时,,大小:F = ,方向:F 与F 1夹角为θ2。
3.共点力:作用于物体上 ,或者力的 相交于同一点的几个力称为共点力.4.合力与分力的三性5.合力与分力的关系:合力与分力是作用效果上的一种 关系 (1)两个力的合成当两分力F 1、F 2大小一定时,①最大值:两力 时合力最大,F =F 1+F 2,方向与两力同向;②最小值:两力方向相反时,合力 ,F =|F 1-F 2|,方向与两力中较大的力同向; ③合力范围:两分力的夹角θ(0°≤θ≤180°)不确定时,合力大小随夹角θ的增大而 ,所以合力大小的范围是:(2)三个力的合成三个力进行合成时,若先将其中两个力F 1、F 2进行合成,则这两个力的合力F 12的范围为|F 1-F 2|≤F 12≤F 1+F 2.再将F 12与第三个力F 3合成,则合力F 的范围为 ,对F 的范围进行讨论:①最大值:当三个力方向相同时,合力,大小为F max=F1+F2+F3.②最小值:若F3的大小介于F1、F2的和与差之间,F12可以与F3等大小,即|F12-F3|可以等于零,此时三个力合力的就是零;若F3不在F1、F2的和与差之间,合力的最小值等于最大的力减去另外两个较小的力的和的绝对值.③合力范围:F min≤F≤F max.6. 计算法求合力时常用到的几何知识(1)应用直角三角形中的边角关系求解,用于平行四边形的两边垂直,或平行四边形的对角线垂直的情况.(2)应用等边三角形的特点求解.(3)应用相似三角形的知识求解,用于矢量三角形与实际三角形相似的情况.二、力的分解1.定义:一个力的作用可以用几个力的共同作用来等效替代,这几个力称为那一个力的分力.求一个已知力的的过程,是力的合成的逆运算.2.分解法则平行四边形定则——把已知力F作为平行四边形的,与力F共点的平行四边形的两个就表示力F的两个分力F1和F2.3.分解依据通常依据力的进行分解.(1)已知合力和两个分力的方向时,有.甲乙(2)已知合力和一个分力的时,有唯一解.丙丁(3)已知合力以及一个分力的大小和另一个分力的方向时,有下面几种可能:a b c d①当F sinθ<F2<F时,有.②当F2=时,有唯一解.③当F2<F sin θ时,.④当F2>F时,有唯一解.4.按实际效果分解的几个实例实例分析地面上物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2.F1=F cosα,F2=质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F1,二是使物体压紧斜面的分力F2.F1=mg sin α,F2=质量为m的光滑球被竖直挡板挡住而静止于斜面上时,其重力产生两个效果:一是使球压紧板的分力F1;二是使球压紧斜面的分力F2.F1=mg tan α,F2=质量为m的光滑球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F1;二是使球拉紧悬线的分力F2.F1=mg tan α,F2=质量为m的物体被OA、OB绳悬挂于O点,重力产生两个效果:对OA的拉力F1和对OB的拉力F2.F1=,F2=αcosmg质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1;二是压缩BC的分力F2.F1=,F2=αcosmg(1)定义:将一个力沿着的两个方向分解的方法.如图所示.(2)公式:F1=F cosθ,F2=F sinθ.(3)适用:正交分解适用于各种运算.(4)优点:将矢量运算转化成坐标轴方向上的运算.(5)正交分解的目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决的运算,“分”的目的是为了更好地“合”.(6)正交分解的基本步骤(a)建立以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力落在坐标轴上.(b)正交分解各力将每一个不在坐标轴上的力分解到上,并求出各分力的大小,如图267所示.图267(c)分别求出x轴、y轴上各分力的,即:F x=F1x+F2x+…F y=F1y+F2y+…(d)求共点力的合力合力大小F=,合力的方向与x轴的夹角为α,则tan α= .针对训练一、单项选择题1.关于F1、F2及它们的合力F,下列说法正确的是( )A.合力F一定与F1、F2共同作用产生的效果不同B.两力F1、F2一定是同种性质的力C.两力F1、F2一定是同一个物体受的力D.两力F1、F2与F是物体同时受到的三个力2. 如图所示,物体受到两个相互垂直的共点力F1和F2的作用,其大小分别为30N和40N,它们合力的大小为()A.10N B.50N C.70N D.1200N3.两个共点力的大小分别为F1=15 N,F2=9 N.它们的合力不可能等于 ( )A.9 N B.24N C.25 N D.15 N4.水平横梁一端A插在墙壁内,另一端装有一小滑轮B.一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量为m=10 kg的重物,∠CBA=30°,如图258所示,则滑轮受到绳子的作用力大小为(g取10 N/kg)( )图258A.50 N B.50 3 NC.100 N D.100 3 N5.有两个大小相等的力F1和F2,当它们的夹角为90°时,合力为F,则当它们的夹角为120°时,合力的大小为( )A.2F B.2 2 FC.2F D.F6. 在按照图所示装置进行“验证力的平行四边形定则”的实验时,下列说法正确的是()A.测力计可以不与木板在同平面内B.作图时可以用细绳的长度作为两个分力的大小C.确定某个分力时,只要记录测力计的读数,不要记录测力计的方向D.确定某个分力时,需要同时记录测力计的读数及细绳的方向7. . 用如图的四种方法悬挂一个镜框,绳中所受拉力最小的是()A.B.C.D.8. 同时作用在某物体上的两个方向相反的两个力,大小分别为6N和9N,其中9N的力在逐步减小到零的过程中,两个力的合力的大小()A.先减小后增大B.先增大后减小C.一直减小D.一直增大9. 如图所示,在“探究求合力的方法”的实验中,两弹簧测力计将橡皮条拉伸到0点,它们示数分别为F1和F2.接下来用一只弹簧测力计拉橡皮条时()A.将橡皮条拉伸到O点B.拉力大小等于F1﹣F2C.拉力大小等于F1+F2D.沿F1和F2角平分线方向10. 如图所示,物体在四个共点力作用下保持平衡,撤去F1而保持其他三个力不变,则此时物体的合力F()A.等于F1,方向与F1相同B.等于F1,方向与F1相反C.大于F1,方向与F1相同 D.大于F1,方向与F1相反11. 作用在同一个物体上的两个共点力,一个力的大小是2N,另一个力的大小是4N,它们合力的大小可能是()A.1N B.3N C.5N D.7N12. 作用于O点的五个恒力的矢量图的末端跟O点恰好构成一个正六边形,如图。
4力的合成和分解一、合力和分力1.共点力几个力如果都作用在物体的,或者它们的作用线,这几个力叫作共点力.2.合力与分力假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的,这几个力叫作那个力的.3.合力与分力的关系合力与分力之间是一种的关系,合力作用的效果与分力相同.二、力的合成和分解1.力的合成:求的过程.2.力的分解:求力的过程.3.平行四边形定则:在两个力合成时,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,如图1所示,F表示F1与F2的合力.图14.如果没有限制,同一个力F可以分解为对大小、方向不同的分力.5.两个以上共点力的合力的求法:先求出任意两个力的合力,再求出这个合力与第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力.三、矢量和标量1.矢量:既有大小又有方向,相加时遵从则的物理量.2.标量:只有大小,没有方向,相加时遵从的物理量.1.判断下列说法的正误.(1)合力的作用可以替代几个分力的共同作用,它与分力是等效替代关系.()(2)合力总比分力大.()(3)力F的大小为100 N,它的一个分力F1的大小为60 N,则另一个分力可能小于40 N.()(4)由于矢量的方向可以用正、负表示,故具有正负值的物理量一定是矢量.()(5)矢量与标量的区别之一是它们的运算方法不同.()2.两个共点力互相垂直,F1=8 N,F2=6 N,则它们的合力F=________ N,合力与F1间的夹角θ=________.(已知sin 53°=0.8)3.将一个大小为2 3 N的水平力分解成两个力,其中一个分力在竖直方向,另一个分力与水平方向的夹角是30°,则两个分力的大小分别是________ N和________ N.一、合力与分力的关系导学探究1.一个成年人或两个孩子均能提起同一桶水,那么该成年人用的力与两个孩子用的力的作用效果是否相同?二者能否等效替代?答案作用效果相同,两种情况下的作用效果均是把同一桶水提起来.能够等效替代.2.两个孩子共提一桶水时,要想省力,两个人拉力间的夹角应大些还是小些?为什么?答案夹角应小些.提水时两个孩子对水桶拉力的合力的大小等于一桶水所受的重力大小,合力不变时,两分力的大小随着两个力之间夹角的减小而减小,因此夹角越小越省力.知识深化两分力大小不变时,合力F随两分力夹角θ的增大而减小,随θ的减小而增大.(0°≤θ≤180°) 1.两分力同向(θ=0°)时,合力最大,F=F1+F2,合力与分力同向.2.两分力反向(θ=180°)时,合力最小,F=|F1-F2|,合力的方向与较大的一个分力的方向相同.3.合力的大小取值范围:|F1-F2|≤F≤F1+F2.合力大小可能大于某一分力,可能小于某一分力,也可能等于某一分力.关于F1、F2及它们的合力F,下列说法中正确的是()A.合力F一定与F1、F2共同作用产生的效果相同B.F1、F2与F是物体同时受到的三个力C.两分力夹角小于90°时,合力的大小随两分力夹角增大而增大D.合力的大小一定大于分力中最大者二、力的合成和分解1.力的合成和分解都遵循平行四边形定则.2.合力或分力的求解.(1)作图法(如图2所示)图2(2)计算法 ①两分力共线时:a .若F 1、F 2两力同向,则合力F =F 1+F 2,方向与两力同向.b .若F 1、F 2两力反向,则合力F =|F 1-F 2|,方向与两力中较大的同向. ②两分力不共线时:可以根据平行四边形定则作出力的示意图,然后由几何关系求解对角线,其长度即为合力大小.以下为两种特殊情况:a .相互垂直的两个力的合成(即α=90°):F =F 12+F 22,F 与F 1的夹角的正切值tan β=F 2F 1,如图3所示.图3b .两个等大的力的合成:平行四边形为菱形,利用其对角线互相垂直平分的特点可解得F 合=2F cos α2,如图4所示.若α=120°,则合力大小等于分力大小,如图5所示. c .合力与一个分力垂直:F =F 22-F 12,如图6所示.图4 图5图6注意:平行四边形定则只适用于共点力.在电线杆的两侧常用钢丝绳把它固定在地面上,如图7所示,两钢丝绳与电线杆处于同一平面内,如果钢丝绳与地面的夹角均为60°,每条钢丝绳的拉力都是300 N,试用作图法和计算法分别求出两根钢丝绳作用在电线杆上的合力.图7如图8所示,两个人共同用力将一个牌匾拉上墙头,已知合力的方向竖直向上,甲的拉力大小为450 N,方向与合力夹角为53°,甲、乙两人的拉力方向垂直,求合力F的大小及乙的拉力F2的大小.(已知sin 53°=0.8,cos 53°=0.6)图8三、力的分解的讨论导学探究(1)如果不受限制,分解同一个力能作出多少平行四边形?有多少组解?(2)已知合力F和两分力的方向(如图9甲),利用平行四边形定则,能作多少平行四边形?两分力有几组解?(3)已知合力F和两个分力中的一个分力F2(如图乙),另一分力F1有几个解?图9知识深化力的分解有解或无解,简单地说就是代表合力的对角线与给定的代表分力的有向线段是否能构成平行四边形(或三角形).若可以构成平行四边形(或三角形),说明合力可以分解成给定的分力,即有解;若不能,则无解.常见的有几种情况.已知条件分解示意图解的情况已知两个分力唯一解的方向已知一个分力的大小和方向唯一解已知一个分力(F2)的大小和另一个分力(F1)的方向①F2<F sin θ无解②F2=F sin θ唯一解③F sin θ<F2<F 两解④F2≥F 唯一解一个成人与一个小孩分别在河的两岸拉一条船,船沿河岸前进,成人的拉力为F1=400 N,方向如图10所示(未画出小孩的拉力方向),要使船在河流中平行于河岸行驶.求小孩对船施加的最小力F2的大小和方向.图101.(合力与分力的关系)两个共点力的大小分别为F1=15 N,F2=8 N,它们的合力大小不可能等于()A.9 N B.25 N C.8 N D.21 N2.(力的合成)(2019·济南一中期中)有两个大小相等的共点力F1和F2,当它们之间的夹角为90°时合力大小为F,则当它们之间的夹角为120°时,合力的大小为()A.2F B.22F C.2F D.32F3.(力的合成)如图11所示,水平地面上固定着一根竖直立柱,某人用绳子通过柱顶的光滑定滑轮将100 N的货物拉住.已知人拉着绳子的一端,且该绳端与水平方向夹角为30°,则柱顶所受压力大小为()图11A.200 N B.100 3 NC.100 N D.50 3 N4.(力的分解的讨论)已知两个共点力的合力大小为50 N,分力F1的方向与合力F的方向成30°角,分力F2的大小为30 N,则()A.F1的大小是唯一的B.F2的方向是唯一的C.F2有两个可能的方向D.F2可取任意方向。
3.4 《力的合成和分解》教学设计一、教材分析学生在初中已经接触过求沿同一直线作用的两个力的合力的方法,在第一章也初步接触过位移的矢量合成,本节的内容进一步介绍矢量运算的普遍法则——平行四边形定则。
教科书首先结合提水桶、吊灯悬吊在天花板上等实例,根据等效思想提出合力与分力的概念;然后提出力的合成和分解的探究问题,并设计实验进行探究,得出力的合成和分解所遵从的法则——平行四边形定则;最后,从物理量运算的角度,提升对矢量和标量的认识。
二、学情分析对于本章来说,把牛顿第三定律由原来在牛顿运动定律之后,提前放入本章,这就为解答共点力平衡问题的受力分析奠定了必要的知识基础。
为此,本章在重力、弹力、摩擦力的后面,增加“牛顿第三定律”一节课文,并在该节课文中,专门设立了一个“物体受力的初步分析”小标题,为分析“共点力的平衡”问题设下伏笔。
在这一节中,把力的合成和分解设计为一节课,其教学目标很明确,只要求学生会用等效替换的方法根据平行四边形定则进行力的合成和分解的运算,并不要求学生解答具体实际情境中的受力问题,而把这些问题放在“共点力的平衡”中去解决,这有利于帮助教师理解和规范力的合成和分解的教学目标。
三、教学建议平行四边形定则是本节的重点和难点。
这个定则是矢量运算普遍遵从的法则,对后续学习具有重要影响,因此本节内容是整个高中物理的重要内容,是物理知识体系中有方法、可迁移、应用广泛的内容,因此平行四边形定则是学习的重点。
矢量运算的法则完全不同于算术运算法则,从思维方式上看对学生来说具有较大的跨度,因此平行四边形定则是学生学习的难点。
四、教学目标和教学重难点1、教学目标(1)、知道合力与分力的概念,体会等效替换的思想。
(2)、通过实验探究,得出力的合成和分解遵从的法则——平行四边形定则。
(3)、会利用作图和三角函数知识求解合力或者分力。
(4)、知道矢量相加遵从平行四边形定则,标量相加遵从算术法则。
能区别矢量和标量。
3.4力的合成和分解(第2课时)一、力的分解1.定义:已知一个力求的过程叫做力的分解;2.分解法则:力的分解是力的合成的,遵守力的定则;如果没有限制,同一个力可以分解为对大小、方向不同的分力。
如图所示。
二、对一个已知力的分解可根据力的实际作用效果来分解1.具体步骤如下:(1)根据力的实际作用效果确定两个分力的方向;(2)根据两个分力的方向作出力的平行四边形;(3)利用三角函数等数学知识求三角形的边,从而计算出分力的大小。
2.常见的力的分解实例实例分析地面上物体受到斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2,F1=,F2=(θ为拉力F与水平方向的夹角)放在斜面上的物体的重力产生两个效果:一是使物体具有沿斜面下滑的趋势;二是使物体压紧斜面;相当于分力F1、F2的作用,F1=,F2=(α为斜面倾角)用斧头劈柴时,力F产生的作用效果为垂直于两个侧面向外挤压接触面,相当于分力F1、F2的作用,且F1=F2=【例1】(单选)如图所示,用一根细绳和一根杆组成三角支架,绳的一端绕在手指上,杆的一端顶在掌心,当挂上重物时,绳与杆对手指和手掌均有作用,则手指与手掌所受的作用力方向判断完全正确的是()【练1】(单选)漫画中的大力士用绳子拉动汽车,绳中的拉力为F,绳与水平方向的夹角为θ;若将F沿水平和竖直方向分解,则其竖直方向的分力为()A.F sin θB.F cos θC.Fsin θD.Fcos θ【例2】(单选)如图所示,把光滑斜面上的物体所受重力mg分解为F1、F2两个力。
图中F N 为斜面对物体的支持力,则下列说法正确的是( )A.F1是斜面作用在物体上使物体下滑的力B.物体受到mg、F N、F1、F2共四个力的作用C.F2是物体对斜面的压力D.力F N、F1、F2这三个力的作用效果与mg、F N这两个力的作用效果相同【例3】(单选)小明想推动家里的衣橱,但使出了很大的力气也推不动,他回忆起物理课堂上学习的“力的分解”知识,便想了个妙招,如图所示,用A、B两块木板,搭成一个底角较小的人字形架,然后往中央一站,衣橱居然被推动了!下列说法中正确的是() A.这是不可能的,因为小明根本没有用力去推衣橱B.这是不可能的,因为无论如何小明的力气也没那么大C.这有可能,A板对衣橱的推力有可能大于小明的重力D.这有可能,但A板对衣橱的推力不可能大于小明的重力【练2】(单选)人们不可能用双手掰开一段木桩,然而,若用斧子就容易把木桩劈开。
第三章相互作用-力第4节力的合成与分解【知识清单】1.几个力如果,或者,则这几个力称为共点力。
2.如果一个力作用的效果与几个力作用的效果相同,这一个力叫做这几个力的合力,这几个力叫做这一个力的分力。
3.的过程叫力的合成,的过程叫力的分解。
力的合成与力的分解是互为逆过程的。
4.在两个力合成时,以作平行四边形,的对角线就代表合力的大小与方向,这个规律叫平行四边形定则。
5.力的分解也遵从平行四边形定则。
一个已知力可分解为无数多对大小、方向各不相同的分力。
具体分解过程中可先根据确定两分力的方向后再利用进行分解。
6.利用平行四边形定则求多个力的合力时,可先求两个力的合力,再求出与第三个力的合力,依次进行,直到将所有的力都合成进去。
7.既在大小又有方向,相加时遵从的物理量叫矢量;只有大小没有方向,相加时遵从的物理量叫做标量。
【考点题组】【题组一】合力与分力1.关于两个大小不变的力F1、F2及它们的合力F,下列说法中正确的是()A.合力F一定与F1、F2共同作用产生的效果相同B.两力F1、F2一定是同一个物体受到的力C.两力F1、F2与F是物体同时受到的三个力D.F一定不随F1、F2的变化而变化2.大小不变的F1、F2两个共点力的合力为F,则有()A.合力F一定大于任一个分力B.合力F的大小既可能等于F1,也可能等于F2C.合力有可能小于任一个分力D.在0°至180°的范围内,合力F的大小随F1、F2间夹角的增大而减小3.两个共点力的合力为F,如果它们之间的夹角θ固定不变,使其中一个力增大,则()A.合力F一定增大B.合力F的大小可能不变C.合力F可能增大,也可能减小D.当0°<θ<90°时,合力F可能减小4.两个共点力的大小分别为F1=15 N,F2=8 N,它们的合力大小不可能等于()A.9 N B.25 N C.8 N D.21 N5.两个共点力的大小均为8 N,如果要使这两个力的合力大小也是8 N,则这两个共点力间的夹角应为()A.30°B.60°C.90°D.120°6.有三个力大小分别为3 N、7 N、9 N,则它们的合力的最大值和最小值分别为( )A.19 N、1 NB.9 N、2 NC.19 N、0D.13 N、0【题组二】力的合成1.如图所示,物体在水平方向受F1、F2两个力的作用,F1方向向右,F2方向向左,大小分别为F1=8 N和F2=2 N.则物体所受合力的大小和方向为()A.6 N,方向水平向左B.10 N,方向水平向左C.6 N,方向水平向右D.10 N,方向水平向右2.射箭时,若刚释放的瞬间弓弦的拉力为100 N,对箭产生的作用力为120 N,其弓弦的拉力如图乙中F1和F2所示,对箭产生的作用力如图乙中F所示.弓弦的夹角应为(cos 53°=0.6)()图甲图乙A.53°B.127°C.143°D.106°3.某物体同时受到同一平面内的三个共点力作用,若这三个共点力大小和方向分别如图甲、乙、丙、丁所示(坐标纸中每格边长表示1 N大小的力),则关于该物体受到合力的说法正确的是()A.甲图中物体所受的合外力大小等于4 NB.乙图中物体所受的合外力大小等于4 NC.丙图中物体所受的合外力大小等于6 ND.丁图中物体所受的合外力大小等于6 N4.如图,有五个力作用于同一点O,表示这五个力的有向线段恰分别构成一个正六边形的两条邻边和三条对角线.已知F2=10N,则这五个力的合力大小为()A.20N B.30N C.40N D.60N5..有两个大小不变的共点力F1和F2,它们合力的大小F合随两力夹角的变化情况如图所示,则两力的大小分别为多少?6.若一个物体受多个力的作用,如图所示,六个共面共点力,大小分别为1 N、2 N、3 N、4 N 5 N、6 N,相互之间的夹角均为60°,求它们合力的大小和方向.【题组三】力的分解1.在已知的一个力的分解中,下列情况具有唯一解的是 ( )A .已知两个分力的方向,并且不在一条直线上B .已知一个分力的大小和方向C .已知一个分力的大小和另一个分力的方向D .已知两分力的大小2.将F 沿水平和竖直方向分解,则其竖直方向的分力为( )A .Fsin θB .Fcos θC .θsin FD .θcos F 3.如图所示,光滑斜面上物体重力mg 分解为F 1、F 2两个力,下列说法正确的是( )A .物体受到重力mg 、F N 、F 1、F 2四个力的作用B .物体只受到重力mg 和斜面的支持力F N 的作用C .F 1是斜面作用在物体上使物体下滑的力,F 2是物体对斜面的压力D .力F N 、F 1、F 2三力的作用效果与力mg 、F N 两个力的作用效果相同4.如图所示,小球被轻绳系住,静止在光滑斜面上.若按力的实际作用效果来分解小球受到的重力G ,则G 的两个分力的方向分别是图中的A .1和2B .1和3C .2和3D .1和45.如图所示,光滑斜面的倾角为θ,有两个相同的小球,小球所受重力均为G,分别用光滑挡板A、B挡住,挡板A沿竖直方向,挡板B垂直于斜面,则球1对挡板的压力F1=________,对斜面压力F2=________;球2对挡板压力F3=______,对斜面压力F4=________.6.如图所示,一位重600 N的演员悬挂在绳上.若AO绳与水平方向的夹角为37°,BO绳水平,则AO、BO两绳受到的拉力各为多大?(sin 37°=0.6,cos 37°=0.8)【题组四】探究力的合成1.在“验证力的平行四边形定则”实验中,需要将橡皮条的一端固定在水平木板上,另一端系上两根细绳,细绳的另一端都有绳套(如图所示).实验中需用两个弹簧测力计分别钩住绳套,并互成角度地拉橡皮条.某同学认为在此过程中必须注意以下几项:A.两根细绳必须等长B.橡皮条应与两绳夹角的平分线在同一直线上C.在使用弹簧测力计时要注意使弹簧测力计与木板平面平行D.用两个弹簧测力计拉绳套时,两测力计示数要保持相同E.用两个弹簧测力计拉绳套时,两测力计拉力方向要互成90°角,便于求两个力的合力.其中正确的是________(填字母).2.在做“互成角度的两个力的合成”实验时,橡皮条的一端固定在木板上,用两个弹簧秤把橡皮条的另一端拉到某一确定O点。
3.4 力的合成和分解
教学目标:
1.体会等效替代的思想,知道合力与分力的概念
2.通过实验探究得出力的合成和分解遵从的法则——平行四边定则
3.会利用作图和三角函数知识求解合力或分力
4.知道矢量相加遵从平行四边形定则,标量相加遵从算术法则。
能区分标量和矢量。
教学过程:
一.导入
通如图所示,一个静止的物体在某平面上受到5
个力的作用,你能判断它将向哪个方向运动吗?引
导得出问题能否用“一个力的单独作用替代两个力
或多个力的共同作用,而效果不变”,上述问题也就
迎刃而解啦。
我们今天就来学习这个问题。
在讲解合力和分力之前先让学生了解共点力,
同时通过曹冲称象故事让学生先对等效替代有个认
识。
二.力的合成和分解
通过上图引导学生得出有时一个力单独作用与几个力共同作用,其效果相同。
进而得出合力和分力的概念,知道合力和分力之间是一种等效替代的关系。
假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力。
假设几个力共同作用的效果跟某个力单独作用的效果相同,这几个力就叫作那个力的分力。
三.力的合成
.求几个力的合力的过程叫作力的合成
1.同一直线上力的合成(该内容在初中接触过学生理解起来比较容易)
同向相加 方向相减(方向与较大那个力的方向相同)
2.问题:不在同一直线上的两个力的合成是求和吗
演示实验:
1.让两个有夹角的弹簧测力计一起提起一个物体,读数。
2.用一个弹簧测力计提起同一个物体,读数
结论:当两个力方向互成角度时,合力大小不再等于两分力大小之和。
即 F ≠
F1+F2
等效
实验:探究两个互成角度的力的合成规律
实验器材:
两个弹簧秤、橡皮条、细绳、白板、白板笔、刻度尺等
步骤1:用两个力F1、F2共同作用在橡皮条上,使橡皮条从E点伸长到O点。
记下0点位置及F1、F2的大小和方向
步骤2:只用一个弹簧称将同一个橡皮条从E伸至O点。
记下F的大小和方向。
步骤3:用同一标度,将三个力在同一点用力的图示表示出来,观察它们之间的位置关系。
得出:互成角度的两个力的合成遵循平行四边形定则
作法:用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。
这个法则叫做平行四边形定则。
例:某物体受到一个大小为32N的力方向水平向右,还受到另一个大小为44N的力,方向竖直向上。
通过作图法求出这两个力合力的大小和方向。
多个力的合成:逐次合成法
合力与分力间夹角θ关系:
①F1和F2大小不变时,夹角θ越大,合力就越小:F合随F1和F2的夹角增大而减小
②F合可能大于、等于、小于F1、F2
θ=0°时,即F1、F2共线同方向:F合=F1+F2 合力方向与两个力的方向相同
④θ=180°时,即F1、F2共线反方向:F合=|F1-F2|合力方向与分力F1、F2中较大的方向相同。
⑤合力的取值范围:|F1-F2|≤F合≤F1+F2
四.力的分解
求一个力的分力的过程叫作力的分解
力的分解是力的合成的逆运算
力的分解的方法:平行四边形定则
作法:把已知力F为平行四边形的对角线,那么与力F共点的平行四边形的两个邻边就表示力F的两个分力。
如图所示,如果没有其它限制同一条对角线,可以作
无数个不同的平行四边形。
那如何进行分解——根据具体问题来确定
按效果进行分解:
例:如图根据力的作用效果对物体所受的重力G进行分解,并求出分力的大小。
五.标量和矢量
1.既有大小又有方向,相加时遵从平行四边形定则的物理量叫作矢量。
如:位移、速度、加速度、力等
2.只有大小,没有方向,相加时遵从算术法则的物理量叫作标量
如:质量、路程、电流等
课堂小结:。