屏蔽系数计算
- 格式:doc
- 大小:16.00 KB
- 文档页数:2
电缆屏蔽计算公式
电缆屏蔽计算公式是一种用于计算电缆屏蔽效果的方法。
在电缆传输中,电缆外部的干扰会对信号的传输质量产生不良影响,因此需要通过屏蔽来保护电缆,减少干扰的影响。
电缆的屏蔽效果可以通过屏蔽系数来描述,屏蔽系数越高,表示屏蔽效果越好。
屏蔽因子=(1+4πσ/ωε)^-1
其中,σ为屏蔽材料的导电率,ω为工作频率,ε为电缆绝缘材料的介电常数。
屏蔽因子越高,表示外屏蔽的效果越好。
电缆的内屏蔽采用铜丝编织、铜箔、铝箔等方式,其屏蔽效果可以通过衰减因子来描述。
根据电场理论,内屏蔽的衰减因子与屏蔽材料的传导率、电缆内径、屏蔽厚度等因素有关。
具体计算公式如下:
衰减因子=(1+4πσ/ωε)^-1
其中,σ为屏蔽材料的导电率,ω为工作频率,ε为电缆绝缘材料的介电常数。
衰减因子越高,表示内屏蔽的效果越好。
在实际应用中,电缆常常同时具有外屏蔽和内屏蔽,屏蔽效果由两者共同决定。
总屏蔽效果可以通过屏蔽系数来描述,屏蔽系数被定义为外屏蔽因子与内屏蔽因子的乘积。
具体计算公式如下:
屏蔽系数=外屏蔽因子×内屏蔽因子
屏蔽系数越高,表示总屏蔽的效果越好。
需要注意的是,以上公式是根据理论推导得出的近似公式,实际应用中还需要考虑电缆的具体结构、工作环境等因素,以及各种因素之间的相互影响。
因此,在实际应用中需要根据具体情况进行修正和调整,确保计
算结果的准确性。
此外,还需要结合实测数据进行验证,以保证计算结果的可靠性。
大型零磁装置屏蔽系数的计算方法孙芝茵;李立毅;潘东华;刘添豪;Peter Ferlinger【摘要】零磁装置屏蔽外界磁场以实现极端微弱磁场环境,由于其边角、孔洞、缝隙等非理想因素,屏蔽特性难以准确预估.大型零磁装置整体尺寸在米级,而屏蔽材料的厚度只有毫米级,采用常规有限元方法将不可避免地遇到剖分问题.该文提出针对静态磁场屏蔽和交变磁场屏蔽的改进有限元计算方法,采用两种薄层等效边界条件计算屏蔽层内外的磁场变化.通过与理想屏蔽体的理论分析结果进行对比,验证了该等效边界的有效性.基于该方法可进行多层屏蔽的优化设计、分析孔洞对屏蔽系数的影响规律.结合德国慕尼黑工业大学最新建设的零磁装置,通过屏蔽系数的测量实验,验证了该计算方法的有效性.【期刊名称】《电工技术学报》【年(卷),期】2018(033)019【总页数】8页(P4450-4457)【关键词】近零磁场;微弱磁场;磁屏蔽;屏蔽系数【作者】孙芝茵;李立毅;潘东华;刘添豪;Peter Ferlinger【作者单位】哈尔滨工业大学空间基础科学研究中心哈尔滨 150001;哈尔滨工业大学空间基础科学研究中心哈尔滨 150001;哈尔滨工业大学空间基础科学研究中心哈尔滨 150001;哈尔滨工业大学电气工程及自动化学院哈尔滨 150001;慕尼黑工业大学物理系慕尼黑 D-85748【正文语种】中文【中图分类】TM15零磁装置可实现近零磁场环境,在前沿科学、航天国防等方面都具有独特的应用[1],如基于反物质探测背景的微观粒子固有的电偶极矩的探测[2,3]、空间磁场探测[4]、生物磁图[5,6]等。
我国在国家重大科技基础设施项目中部署了“空间环境地面模拟装置”的建设任务,其中包含模拟空间磁场的内容,即在地磁场和各类磁场干扰条件下,实现近零磁场环境,进而模拟空间微弱磁场。
近零磁装置的一个主要评价指标是屏蔽系数,采用屏蔽前后磁场强度或磁感应强度的比值或其dB值表示。
对屏蔽系数和安全距离计算公式的理解和探讨1. 引言屏蔽系数和安全距离是电磁波理论中的两个重要概念,其计算公式也是电磁透明性设计中的核心内容。
本文将从这两个概念的定义、计算公式及数值分析等方面进行探讨。
2. 屏蔽系数的定义屏蔽系数是指材料对电磁波的抑制能力,是一个比值,通常用db来表示。
当输入的电磁波功率为1时,经过材料屏蔽后输出的功率与输入功率的比值就是屏蔽系数db值。
屏蔽系数越高,表明材料对电磁波的抑制能力越强,屏蔽效果就越好。
3. 屏蔽系数的计算公式屏蔽系数的计算公式如下:dB = 10 log10(P1 / P2),其中P1为电磁波进入材料前的功率,P2为电磁波通过材料后的功率。
屏蔽系数往往受许多因素的影响,如电磁波频率、电磁波入射角度、材料种类、厚度等因素。
4. 安全距离的定义安全距离是指在电磁辐射场中,保证人体或设备不会受到危害的距离。
安全距离的计算是十分关键的,它的大小与电磁场强度及频率有关,需通过专业人员进行电磁场的测量才能得出准确的数值。
5. 安全距离的计算公式安全距离的计算公式与电磁辐射的类型有关。
在电迁移场情况下,安全距离的公式为D=Kλ/2π,其中D为安全距离,K为根据工作环境确定的比例系数,λ为电磁波的波长。
而在静电场情况下,则根据具体情况选择不同的计算方法。
6. 数值分析实际应用中,屏蔽材料的选择和安全距离的计算应该根据具体的工作环境和要求。
例如,在医疗设备中需要保证安全距离,以免对患者和医护人员产生不良影响;而在电子设备中需要使用高效的屏蔽材料,以避免电磁干扰对设备性能的影响。
总之,屏蔽系数和安全距离是电磁波理论中的重要概念,它们的计算公式及数值分析对于电磁透明性设计具有重要指导意义。
在实际应用中,应该根据具体情况进行选择和计算,以达到最优的设计效果。
屏蔽计算资料屏蔽计算资料: 一、X射线探伤机房4.4屏蔽设计的核实与评价4.4.1评价方法4.4.1.1屏蔽评价原则(1)根据国家标准规定,对源的设计、建造和运行中留有足够的安全裕量,以确保可靠的正常运行。
(2)在对四周墙体、天花板的屏蔽厚度计算时,对泄漏X射线的能量,按原初辐射能量计算;对散射X射线,四周墙体(包括防护门)按有用线束90°散射计算,对天花板取90°散射X射线计算。
(3)同一屏蔽体按泄漏辐射和散射辐射分别计算屏蔽厚度,若两者的厚度相差不到一个1/10值衰减层厚度时,则在其中较厚的一个厚度上再加一个半值层厚度。
4.4.1.2辐射屏蔽的计算方法(1)原初X射线屏蔽计算(主防护体的屏蔽厚度计算)按下式计算最大允许透射量B pp 2B=H×dW×T×U(1)式中:B p——屏蔽墙最大允许透射量,mSv·m*m·mA-1·min-1;H——周剂量约束值,mSv·wk-1;d——焦点至计算点的距离,m;W——周工作负荷,mA·min·wk-1;U——使用因子;T——居留因子。
计算出B p后,取负对数(-logB p),得出相应1/10值(TVT)层厚度个数N TVT,查相应能量的X射线在混凝土和铅的1/10值层厚度,可计算原初X射线屏蔽厚度。
《放射物理与防护》(2)散射X射线屏蔽计算(副防护体屏蔽厚度计算)散射X 射线的透射量B s 按下式计算:B s =H ·(d 1d 2)2/(αWAT) (2)式中 :B s ——屏蔽墙最大允许透射量,mSv ·mA -1·min -1; H ——周剂量约束值,mSv ·wk -1;d 1——电子靶到散射表面的最近距离,m ; d 2——散射点至计算点的距离,m ;α——反散射因子, 90°散射角可取0.07%; A ——散射表面面积,m 2;W 、T 、H 的含义与公式(1)相同。
屏蔽计算资料: 一、X射线探伤机房4.4屏蔽设计的核实与评价4.4.1评价方法4.4.1.1屏蔽评价原则(1)根据国家标准规定,对源的设计、建造和运行中留有足够的安全裕量,以确保可靠的正常运行。
(2)在对四周墙体、天花板的屏蔽厚度计算时,对泄漏X射线的能量,按原初辐射能量计算;对散射X射线,四周墙体(包括防护门)按有用线束90°散射计算,对天花板取90°散射X射线计算。
(3)同一屏蔽体按泄漏辐射和散射辐射分别计算屏蔽厚度,若两者的厚度相差不到一个1/10值衰减层厚度时,则在其中较厚的一个厚度上再加一个半值层厚度。
4.4.1.2辐射屏蔽的计算方法(1)原初X射线屏蔽计算(主防护体的屏蔽厚度计算)按下式计算最大允许透射量B pp 2B=H×dW×T×U(1)式中:B p——屏蔽墙最大允许透射量,mSv·m*m·mA-1·min-1;H——周剂量约束值,mSv·wk-1;d——焦点至计算点的距离,m;W——周工作负荷,mA·min·wk-1;U——使用因子;T——居留因子。
计算出B p后,取负对数(-logB p),得出相应1/10值(TVT)层厚度个数N TVT,查相应能量的X射线在混凝土和铅的1/10值层厚度,可计算原初X射线屏蔽厚度。
《放射物理与防护》(2)散射X射线屏蔽计算(副防护体屏蔽厚度计算)散射X 射线的透射量B s 按下式计算: B s =H ·(d 1d 2)2/(αWAT) (2)式中 :B s ——屏蔽墙最大允许透射量,mSv ·mA -1·min -1; H ——周剂量约束值,mSv ·wk -1;d 1——电子靶到散射表面的最近距离,m ; d 2——散射点至计算点的距离,m ; α——反散射因子, 90°散射角可取0.07%; A ——散射表面面积,m 2;W 、T 、H 的含义与公式(1)相同。
电缆屏蔽金属网屏蔽效能的工程计算前言:众所周知,电缆屏蔽层包括金属屏蔽和非金属屏蔽两种形式,采用哪一种屏蔽形式取决于电缆的种类。
电力电缆为了屏蔽和均化电场,承载故障电流,通常采用金属屏蔽形式。
而在国家标准GB/T12706《额定电压1kV(Um=1.2kV)到35kV(Um=40.5kV)挤包绝缘电力电缆及附件》中仅规定:“金属屏蔽应由一根或多根金属带、金属编织、金属丝的同心层或金属丝与金属带的组合结构组成。
”“铜带屏蔽由一层重叠绕包的软铜带组成,也可采用双层软铜带间隙绕包。
”“单芯电缆铜带标称厚度≥0.12mm,三芯电缆铜带标称厚度≥0.10mm。
”“铜丝屏蔽由疏绕的软铜线组成,其表面应用反向绕包的铜丝或铜带扎紧,相邻铜丝的平均间隙应不大于4mm。
”金属带或金属丝屏蔽主要是在发生短路的情况下,在一定时间内承担一部分故障电流,避免绝缘在过高的电流影响下产生热击穿。
前提是金属屏蔽必须有牢靠的接地措施,金属屏蔽的几何截面积应能满足相应的电气要求。
当电压等级低于35kV或导体标称截面积小于500mm2时,国家标准GB/T 12706没有明确规定金属带或金属丝屏蔽的使用范围,国内在没有特殊要求时均采用铜带屏蔽结构;DIN VED 0276和AS/NZS 1429.1要求电缆的金属屏蔽应采用铜丝屏蔽结构,并对铜丝屏蔽的几何截面积或电气要求进行规定。
主要原因为国内电缆大多采用经小电阻接地方式,采用铜带屏蔽即可满足承载故障电流的要求;国外电缆大多采用直接接地方式,需采用铜丝屏蔽才可满足承载故障电流的要求。
那么,怎样计算铜带和铜丝屏蔽结构可承载的故障电流呢?在计算过程中又应注意哪些问题呢?允许故障电流的计算在进行计算前,需对以下符号的含义加以说明:A—考虑到四周或邻近材料的热性能常熟,(mm2/s)1/2;B—考虑到四周或邻近材料的热性能常熟,mm2/s;F—不完善的热接触因数;I—短路期间允许故障电流的有效值,A;IAD—短路期间,在绝热基础上计算的故障电流,A;K—载流体材料常数;M—热接触因数,S-1/2;S—载流体几何截面,mm2;n—包带层数或单线根数;d—单丝直径,mm;t—短路持续时间,s;w—带宽,mm;β—0℃时电阻温度系数的倒数,K;δ—金属护套、屏蔽层或铠装层厚度,mm;ε—考虑热量损失在临近层的因数;θf—终止温度,℃;θi—起始温度,℃;ρ3—金属护套、屏蔽层或铠装层四周媒介热阻,K.m/W;ζ1—屏蔽层、金属护套或铠装层比热,J/K.m3;ζ2、ζ3—屏蔽层、金属护套或铠装层四周媒介比热,J/K.m3。
屏蔽计算资料: 一、X射线探伤机房4.4屏蔽设计的核实与评价4.4.1评价方法4.4.1.1屏蔽评价原则(1)根据国家标准规定,对源的设计、建造和运行中留有足够的安全裕量,以确保可靠的正常运行。
(2)在对四周墙体、天花板的屏蔽厚度计算时,对泄漏X射线的能量,按原初辐射能量计算;对散射X射线,四周墙体(包括防护门)按有用线束90°散射计算,对天花板取90°散射X射线计算。
(3)同一屏蔽体按泄漏辐射和散射辐射分别计算屏蔽厚度,若两者的厚度相差不到一个1/10值衰减层厚度时,则在其中较厚的一个厚度上再加一个半值层厚度。
4.4.1.2辐射屏蔽的计算方法(1)原初X射线屏蔽计算(主防护体的屏蔽厚度计算)按下式计算最大允许透射量B pp 2B=H×dW×T×U(1)式中:B p——屏蔽墙最大允许透射量,mSv·m*m·mA-1·min-1;H——周剂量约束值,mSv·wk-1;d——焦点至计算点的距离,m;W——周工作负荷,mA·min·wk-1;U——使用因子;T——居留因子。
计算出B p后,取负对数(-logB p),得出相应1/10值(TVT)层厚度个数N TVT,查相应能量的X射线在混凝土和铅的1/10值层厚度,可计算原初X射线屏蔽厚度。
《放射物理与防护》(2)散射X射线屏蔽计算(副防护体屏蔽厚度计算)散射X 射线的透射量B s 按下式计算: B s =H ·(d 1d 2)2/(αWAT) (2) 式中 :B s ——屏蔽墙最大允许透射量,mSv ·mA -1·min -1; H ——周剂量约束值,mSv ·wk -1;d 1——电子靶到散射表面的最近距离,m ; d 2——散射点至计算点的距离,m ; α——反散射因子, 90°散射角可取0.07%; A ——散射表面面积,m 2;W 、T 、H 的含义与公式(1)相同。
屏蔽效能的计算用途与材料一,电磁屏蔽效能电磁屏蔽是解决电子设备电磁兼容问题的重要手段之一,大部分电磁兼容问题都可以通过电磁屏蔽来解决,特别是随着电路工作的频率日益提高,单纯依靠线路板设计往往不能满足电磁兼容标准的要求。
电子设备的屏蔽设计与传统的结构设计有许多不同之处,一般的在结构设计师如果没有考虑屏蔽问题,很难满足电磁兼容性要求。
所以再设计电子产品时,必须从一开始就考虑电磁屏蔽问题。
电磁屏蔽主要是用来放置高频电磁场的影响,从而有效地控制电磁波从某一区域向另一区域进行辐射传播。
基本原理是才艺欧诺个低电阻值得导体材料,利用电磁波在屏蔽体表面的反射以及在到体内部的吸收和传输过程中的损耗而产生屏蔽作用。
电磁屏蔽的目的就是抑制电磁噪声的传播,使处在电磁环境中的仪器在避免电磁干扰的同时也不产生电磁干扰,通常采用导电性导磁性较好的材料把所需屏蔽的区域与外部隔离开来。
屏蔽体的有效性是用屏蔽效能来度量的,屏蔽效能定义为:电磁场中同一地点没有屏蔽存在时电磁场强度E1 与有效屏蔽时的电磁场强度E2 的比值,它表征了屏蔽体对电磁波的衰减程度。
用于电磁兼容目的的屏蔽体通常能将电磁波的强度衰减到原来的百分之一甚至百万分之一,因此通常用分贝来表述屏蔽效能。
一般民用产品机箱的屏蔽效能在40dB 以下,军用设备机箱的屏IOOdB 以上的屏蔽效能一般要达到60B,屏蔽室或屏蔽舱等往往要达到10OdBO蔽体是很难制造的,成本也很高。
二,屏蔽材料选择(1) 金属铁磁材料适用于低频(f<300Hz) 磁场的磁屏蔽。
较常用的有纯铁、铁硅合金 (即硅钢等)、铁镍软磁合金(即坡莫合金 ) 等。
相对磁导率μr 越高,屏蔽效果越好;层数越多,屏蔽也越好。
(2) 非金属磁性材料——铁氧体磁性材料该材料在高频时具有较高的磁导率,电导率较大,且具有较高的介电性能,已广泛应用于高频弱电领域。
(3) 良导体材料适用于高频电磁场、低频电场以及静电场的屏蔽。
对屏蔽系数和安全距离计算公式的理解和探讨近年来,我国的经济发展步伐加快,基础设施建设得到了积极的推进,科学技术也取得了突破性的进步,推动了我们社会的可持续发展。
在基础设施建设中,不管是道路还是铁路,给大众交通带来了极大的便利。
随着社会的发展,道路或者铁路的建设也日渐增多。
然而,当新建的道路或者铁路与原有的建筑物或者构筑物发生碰撞时,会引起破坏,和甚至发生安全事故。
因此,就有了屏蔽系数的概念。
屏蔽系数是指在道路与构筑物、建筑物碰撞时,某一类建筑物所能实现的最大避撞能力。
根据屏蔽系数的不同,可分为台、壁、柱和梁类屏蔽系数。
台类屏蔽系数表示的是台类建筑物在道路碰撞时可以起到的最大防撞能力;壁类屏蔽系数表示的是壁类建筑物在道路碰撞时可以起到的最大防撞能力;柱类屏蔽系数表示的是柱类建筑物在道路碰撞时可以起到的最大防撞能力;梁类屏蔽系数表示的是梁类建筑物在道路碰撞时可以起到的最大防撞能力。
屏蔽系数能够做到一定程度上防撞,但是如果想要完全避免碰撞,那么必须要考虑安全距离的问题。
安全距离是指道路碰撞时,道路与构筑物、建筑物之间所保留的最小安全距离。
计算安全距离的公式是:安全距离=宽度(B)+深度(D)+高度(H)+防护长度(Pl)+屏蔽系数X。
其中,宽度(B)是指道路的实际宽度;深度(D)是指道路的实际深度;高度(H)是指构筑物、建筑物的实际高度;防护长度(Pl)是指构筑物、建筑物之间空间的实际长度;屏蔽系数X是指构筑物、建筑物所能实现的最大避撞能力。
从上面的分析可以知道,屏蔽系数和安全距离是相互制约的,而且也是维护公路安全的重要因素。
尤其是安全距离,若受到屏蔽系数的影响,会对公路的安全产生较大的影响,对此,我们应当重视起来,加大资金力度,做好公路设计及维护工作,从而确保公路安全。
综上所述,我们可以明确得出:屏蔽系数和安全距离是设计者在规划道路与其他建筑物之间的时候必须考虑的重要因素,两者之间有着千丝万缕的联系,必须加以了解,为此应实施有效的计算方案,使之更好地融合于现有的社会经济环境之中。
屏蔽系数计算
斯莱脱规则:
a.原子中的电子分若干个轨道组中:(1s)
(2s,2p) (3s,3p)
(3d) (4s,4p) (4d)
(4f) (5s,5p),每个圆括号形成一个轨道组;
b.一个轨道组外面的轨道上电子对内轨道组上的电子的屏蔽系数s= 0,即屏蔽作用发生在内层电子对外层电子或同层电子之间,外层电子对内层电子没有屏蔽作用.
c.同一轨道组内电子间屏蔽系数s= 0.35,1s轨道上的2个电子之间的s= 0.30;
d.被屏蔽电子为ns或np时,主量子数为(n-1) 的各电子对ns或np轨道组上电子的屏蔽常数s
= 0.85,而小于(n -1) 的各电子,对其屏蔽常数s= 1.00.
e.被屏蔽电子为nd或nf轨道组上的电子时,则位于它左边各轨道组上的电子对其屏蔽常数s
= 1.00
Sample Exercise:
计算铁原子中①1s,② 2s或2p,③3s或3p,④3d,⑤ 4s上一个电子的屏蔽常数s值和有效核电荷数Zi.
Solution:对于1s上一个电子:s= 1´0.30
= 0.30,Z* = 26-0.30 = 25.7
对于2s或2p上一个电子:
s= 7´0.35+ 2´0.85= 4.15,Z* = 26-4.15 = 21.85
对于3s或3p上一个电子:
s= 7´0.35+ 8´0.85+ 2´1.00= 11.25,
Z*= Z -s= 26 -11.25 = 14.75
对于3d上一个电子:
s= 5´0.35+ 18´1.00= 19.75,Z* = 26-19.75 = 6.25
对于4s上一个电子:s= 1´0.35+ 14´0.85+ 10´1.00= 22.25,
Z*= 26 -22.25 = 3.75
然后代入E= -13.6Z/n2 (eV),可以计算出多电子原子中各能级的近似能量.。