电路与模拟电子学-第3章-动态电路分析
- 格式:ppt
- 大小:4.04 MB
- 文档页数:173
一阶动态电路课程设计一、课程目标知识目标:1. 让学生掌握一阶动态电路的基本概念,如时间常数、稳态响应和暂态响应;2. 使学生了解一阶动态电路的数学模型及其应用,如RC电路和RL电路;3. 帮助学生理解一阶动态电路的阶跃响应、冲击响应和频率响应特性。
技能目标:1. 培养学生运用欧姆定律、基尔霍夫定律分析一阶动态电路的能力;2. 培养学生根据电路特点选择合适的方法求解一阶动态电路响应的能力;3. 提高学生通过实验和仿真软件观察、分析一阶动态电路现象的能力。
情感态度价值观目标:1. 培养学生对电路学科的热爱,激发学习兴趣和探究欲望;2. 培养学生具备团队协作精神,学会与他人共同分析、解决问题;3. 增强学生的实际操作能力,使其体会理论联系实际的重要性。
课程性质分析:本课程为电子技术基础课程,侧重于让学生掌握一阶动态电路的基本原理和分析方法,为后续相关课程打下基础。
学生特点分析:学生为高中年级学生,具备一定的物理和数学基础,但对电路分析尚处于初级阶段,需要通过具体实例和实际操作来加深理解。
教学要求:结合学生特点,采用理论教学与实验相结合的方式,注重培养学生的动手能力和实际问题解决能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续学习打下坚实基础。
二、教学内容1. 一阶动态电路基本概念:时间常数、稳态响应、暂态响应;2. 一阶动态电路数学模型:RC电路、RL电路的电压和电流关系;3. 一阶动态电路分析方法:欧姆定律、基尔霍夫定律的应用;4. 一阶动态电路响应特性:阶跃响应、冲击响应、频率响应;5. 实验与仿真:观察和分析一阶动态电路的响应过程。
教学大纲安排:第一周:介绍一阶动态电路基本概念,分析RC电路和RL电路的数学模型;第二周:讲解一阶动态电路分析方法,举例说明欧姆定律和基尔霍夫定律的应用;第三周:探讨一阶动态电路的阶跃响应和冲击响应特性,引导学生通过实验观察现象;第四周:研究一阶动态电路的频率响应特性,结合仿真软件进行分析;第五周:总结本章节内容,进行复习和巩固。
模拟电子线路 课件第三章第5-8节——共C 和共B 电路、多级放大器主 题:课件第三章第5-8节——共C 和共B 电路、多级放大器 学习时间:2016年4月18日-4月24日内 容:我们这周主要学习课件第三章半导体三极管及放大电路基础第5-8节共C 和共B 电路、多级放大器的相关内容。
请同学带着以下问题学习:如何分析共C 组态放大电路及多级放大器?一、学习要求掌握共C 组态放大电路的静、动态分析方法;能用小信号等效电路法求指标;掌握多级放大器的静、动态分析和电压放大倍数的计算。
重点:共C 组态放大电路的分析方法;多级放大器的参数计算方法 难点:多级放大器的静、动态分析二、主要内容1.共C 和共B 电路(1)共集电极放大电路(射极输出器)输入信号加在基极和集电极之间,输出信号由发射极和集电极之间取出,集电极是输入、输出回路的共同端。
共集电极电路又称为射极输出器、电压跟随器。
①静态工作点分析CC BEB b e =(1)V U I R R β++-C B I I β=CE CC e E =U V R I -+-u o +-R S u②动态分析电压放大倍数 'o L u 'i e L (1+)==1(1+)b U R A U r R ββ≈+其中,'L e L R R R =∥输入电阻 'i b be L [(1+)]r =R r R β+∥ 输出电阻 s b beo e 1+R R r r R β+=∥∥共集电极放大电路的特点:● 电压增益小于而接近于1,输出电压与输入电压同相; ● 输入阻抗高,输出阻抗小。
射极输出器的应用:● 放在多级放大器的输入端,提高整个放大器的输入电阻。
● 放在多级放大器的输出端,减小整个放大器的输出电阻。
● 放在两级之间,起缓冲作用。
2.共基极电路输入信号加在发射极和基极之间,输出信号由集电极和基极之间取出,基极是输入、输出回路的共同端。
模拟电⼦技术基础学习指导与习题解答(谢红主编)第三章思考题与习题解答第三章思考题与习题解答3-1 选择填空(只填a 、b 、c 、d)(1)直接耦合放⼤电路能放⼤,阻容耦合放⼤电路能放⼤。
(a.直流信号,b.交流信号,c.交、直流信号)(2)阻容耦合与直接耦合的多级放⼤电路之间的主要不同点是。
(a.所放⼤的信号不同,b.交流通路不同,c.直流通路不同)(3)因为阻容耦合电路 (a1.各级Q 点互相独⽴,b1.Q 点互相影响,c1.各级Au 互不影响,d1.Au 互相影响),所以这类电路 (a2.温漂⼩,b2.能放⼤直流信号,c2.放⼤倍数稳定),但是 (a3.温漂⼤,b3.不能放⼤直流信号,c3.放⼤倍数不稳定)。
⽬的复习概念。
解 (1)a 、b 、c ,b 。
(2)a 、c 。
(3)a1,a2,b3。
3-2 如图题3-2所⽰两级阻容耦合放⼤电路中,三极管的β均为100,be1 5.3k Ωr =,be26k Ωr =,S 20k ΩR =,b 1.5M ΩR =,e17.5k ΩR =,b2130k ΩR =,b2291k ΩR =,e2 5.1k ΩR =,c212k ΩR =,1310µF C C ==,230µF C =,e 50µF C =,C C V =12 V 。
图题3-2(a)放⼤电路;(b)等效电路(答案)(1)求i r 和o r ;(2)分别求出当L R =∞和L 3.6k ΩR =时的S u A 。
⽬的练习画两级放⼤电路的微变等效电路,并利⽤等效电路求电路的交流参数。
分析第⼀级是共集电路,第⼆级是分压供偏式⼯作点稳定的典型电路,1V 、2V 均为NPN 管。
解 (1)求交流参数之前先画出两级放⼤电路的微变等效电路如图题3-2(b)所⽰。
注意图中各级电流⽅向及电压极性均为实际。
第⼀级中b1I 的⽅向受输⼊信号i U 极性的控制,⽽与1V 的导电类型(NPN 还是PNP)⽆关,i U 上正下负,因此b1I 向⾥流,输出电压o1U 与i U 极性相同;第⼆级中b 2I 的⽅向受o1U 极性的控制,o1U 上正下负,因此b 2I 向⾥流,也与2V 的导电类型⽆关,或者根据c1I 的⽅向(由1c 流向1e )也能确定b 2I 的⽅向是向⾥流。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
初三物理动态电路总结归纳动态电路是物理学中的重要知识点,涉及到电流、电压、电阻等基本概念和电路的运作原理。
初三学生在学习这一内容时,往往存在一定的困惑和难点。
本文将对初三物理动态电路进行总结归纳,旨在帮助同学们更好地理解和掌握该知识点。
一、动态电路的基本概念动态电路是指电路中有电流流动的状态,和静态电路相对。
在动态电路中,电流随时间的变化而变化,涉及到充电、放电等过程。
动态电路中的主要元件包括电源、电阻、电容和开关等。
二、串联电路和并联电路在动态电路中,有两种常见的电路连接方式,即串联电路和并联电路。
串联电路中,电流只有一条路径可走,电流大小相同,而电压可以分担;并联电路中,电流可以分流,电流大小不同,而电压相同。
串联电路和并联电路的特点及应用需要同学们深入理解。
三、电容器的充放电过程电容器是动态电路中常见的元件,充放电过程是电容器的重要特性。
当电容器接入电路后,电路会通过电容器将电荷积累起来,形成电荷差异,此过程称为充电;而当电容器上的电荷被释放,回到初始状态时,称为放电。
电容器的充放电过程和电容器的性质密切相关,掌握这一知识点对于解决电路问题至关重要。
四、欧姆定律和功率计算欧姆定律是动态电路分析中的基本定律,表达了电流、电压和电阻之间的关系。
根据欧姆定律,我们可以计算电路中的电流大小,进而推导出电路中其他要素的数值。
同时,我们还可以利用欧姆定律计算电路的功率,了解电路的能量转化情况,为电路设计和实际应用提供参考。
五、实际电路的应用动态电路的学习并不仅仅限于理论知识,它在生活中的应用也非常广泛。
无论是电灯、电子设备还是汽车等,都涉及到动态电路的运作。
同学们可以从实际生活中的例子出发,加深对动态电路的理解,将所学知识应用于实际问题解决中。
六、解决动态电路问题的方法在学习动态电路时,同学们可能会遇到一些问题和难题。
解决这些问题的关键在于细致观察电路画法,运用所学知识对电路进行分析,并带入相关公式进行计算。
动态电路的分析与计算动态电路是指根据电压和电流的变化情况,进行分析和计算的电路。
在动态电路中,电压和电流是随时间变化的,因此需要进行动态分析,即考虑电路中的时间响应。
动态电路有许多应用,如信号处理、通信系统、数据传输以及计算机等。
动态电路的分析方法主要有微分方程法和拉普拉斯变换法。
微分方程法以电路中的基本元件为基础,根据基尔霍夫定律和基本电路方程建立微分方程组,通过求解微分方程组来获得电路的时间响应。
拉普拉斯变换法则是将时间域的电路方程转化为复频域的代数方程,通过频域分析来求解电路的输出响应,最后再进行反变换得到时间响应。
对于动态电路的计算,通常需要计算电路的传输函数、单位冲激响应或者零输入响应等。
电路的传输函数是指输出与输入之间的关系,可以用于计算输出的频率响应和稳态响应。
单位冲激响应是指当输入是单位冲激信号时,电路的输出响应。
零输入响应是指当输入为零时,电路的输出响应。
在进行动态电路分析和计算时,需要考虑电路中的各种元器件的动态特性和非线性特性。
例如,电容和电感有时会引起频率依赖的阻抗,这需要在计算中进行考虑。
此外,对于非线性元件,可以使用小信号模型或者通过数值方法进行求解。
动态电路的分析和计算通常使用电路模拟软件或者数值分析软件进行。
这些软件可以提供丰富的模型和工具,使得电路的分析和计算更加方便和准确。
例如,SPICE软件可以模拟电路的动态响应,并给出电路的各种性能参数和波形图。
总的来说,动态电路的分析和计算是电路理论和实验的重要组成部分。
通过合理使用分析方法和计算工具,可以获得电路的时间响应和频率响应等信息,为电路设计和优化提供依据。
第3章 正弦稳态电路的分析习题解答3.1 已知正弦电压,当时,。
求出有效值、频率、()V 314sin 10θ-=t u 0=t V 5=u 周期和初相,并画波形图。
解 有效值为 V07.7210==U ;Hz 502314==πf s 02.01==f T 将 , 代入,有 ,求得初相。
波形图如下0=t V 5=u )sin(105θ-=︒-=30θ3.2 正弦电流的波形如图3.1所示,写出瞬时值表达式。
i图3.1 习题3.2波形图解 从波形见,电流的最大值是,设的瞬时值表达式为i A 20i A π2sin 20⎪⎭⎫ ⎝⎛+=θt T i 当 时,,所以 ,求得或 。
0=t A =10i θsin 2010=︒=30θ6π=θ当 时,,所以 ,求得 。
s 2=t A =20i ⎪⎭⎫ ⎝⎛+⨯=6π2π2sin 2020Ts 12=T 所以 。
A ⎪⎭⎫ ⎝⎛︒+=306πsin 20t i 3.3正弦电流,。
求相位差,说明超前滞()A 120 3cos 51︒-=t i A )45 3sin(2︒+=t i 后关系。
解 若令参考正弦量初相位为零,则的初相位,而初相位1i ︒-=︒-︒=30120901θ2i,其相位差 , 所以滞后于 角,或︒=452θ︒-=︒-︒-=-=75453021θθϕ1i 2i ︒75超前 角。
2i 1i ︒753.4 正弦电流和电压分别为(1)V)60 4sin(23o 1+=t u (2)V)75 4cos(52︒-=t u (3)A)90 4sin(2o 1+-=t i (4) V)45 4cos(252︒+-=t i 写出有效值相量,画出相量图。
解 (1) ,相量图如图(1)V 6031︒∠=∙U (2) V)15 4sin(5)75 4cos(52︒+=︒-=t t u 有效值相量为 ,相量图如图(2)V 15252︒∠=∙U (3) ()()A90 4sin 290 4sin 21︒-=︒+-=t t i 有效值相量为 ,相量图如图(3)A 9021︒-∠=∙I (4) ()()A45 4sin 2545 4cos 252︒-=︒+-=t t i 有效值相量为 ,相量图如图(4)A 4552︒-∠=∙I3.5 图3.2中,已知,,求。
第3章 习题1. 概念题:(1)在放大电路中,三极管或场效应管起的作用就是 将一种形式的电量转换为另一种形式的电量 。
(2)电源的作用是 为能量转换提供能源 ,如果离开电源,放大器可以工作吗( 不能 )(3)单管放大器的讲解从电容耦合形式开始,这是因为 阻容耦合放大器设计和计算相对来说要简单点 ,如果信号和负载直接接入,其 工作点 的计算将要复杂的多。
(4)在共射放大器的发射极串接一个小电阻,还能认为是共射放大器吗( 能 )在共集放大器的集电极串接一个小电阻,还能认为是共集放大器吗( 能 )(5)在模电中下列一些说法是等同的,(A 、C 、F )另一些说法也是等同的。
(B 、D 、E )A. 直流分析B. 交流分析C. 静态分析D. 动态分析E. 小信号分析F. 工作点分析(6)PN 结具有单向导电性,信号电压和电流的方向是随时间变化的,而交流信号却能在放大电路中通过并获得放大,这是因为 放大器输出端获取的交流信号其实就是电流或电压的相对变化量 。
(7) β大的三极管输入阻抗 也大 ,小功率三极管的基本输入阻抗可表示为EQTbb'be I U )1(r r β++≈。
(8)画直流通路比画交流通路复杂吗(不)在画交流通路时直流电压源可认为 短路 ,直流电流源可认为 开路 ,二极管和稳压管只考虑其 动态内阻 即可。
(9)求输出阻抗时负载R L 必须 断开 ,单管放大器输出阻抗最难求的是共 集电极 放大器,其次是共 源 放大器。
(10)对晶体管来说,直流电阻指 晶体管对所加电源呈现的等效电阻 ,交流电阻指 在一定偏置下晶体管对所通过的信号呈现的等效电阻 ,对纯电阻元件有这两种电阻之区分吗( 无 )(11)在共射级放大器或共源放大器中,电阻R C 或R D 的作用是 把电流I C 或I D 的变化转换为电压的变化 。
(12)放大电路的非线性失真包括 饱和 失真和 截止 失真,引起非线性失真的主要原因是 放大器工作点偏离放大区 。