材料拉伸实验
- 格式:ppt
- 大小:888.51 KB
- 文档页数:10
材料的拉伸与压缩实验实验目的:一、拉伸实验1. 观察材料在拉伸过程中所表现的各种现象。
2. 确定低碳钢的流动极限(屈服极限)、强度极限、延伸率和面积收缩率;确定铸铁的强度极限。
3. 比较低碳钢(塑性材料)和铸铁(脆性材料)机械性质的特点及破坏情况。
4. 学习电子万能实验机的构造原理,并进行操作练习。
二、压缩实验1.确定压缩时低碳钢的流动极限和铸铁的强度极限。
2.观察低碳钢、铸铁压缩时的变形和破坏现象。
3.学习电子万能实验机的构造原理,并进行操作练习。
实验设备与仪器:微机控制电子万能试验机、应变仪、三相变压器、游标卡尺等。
实验原理:塑性材料和脆性材料在拉伸时的力学性能。
(参考材料力学课本)实验步骤:一、拉伸实验1、试验前的准备工作对低碳钢试样打标距,用试样打点机或手工的方法在试样工作段确定L0=100mm的标记。
试样越短,局部变形所占比例越大,δ也就越大。
2、测量试样尺寸测量方法:测量两端标据点内侧及中间这三个截面处的直径,在每一横截面内沿相互垂直的两个直径方向各测量一次取平均值。
用测得的三个平均值中最小值计算试件的原始横截面积S0 。
3、实验操作步骤1) 接好电源,开启电源开关。
2) 根据低碳钢的抗拉刚度Rm(σb)和原始横截面积S0 估计试件的最大载荷Fm 。
3) 调整试验力为“零”。
4)安装试样。
先上后下5) 输入试验编号并回车确认。
6) 试件参数的设定。
点击“试样”键进入试样参数输入区。
输入:试样截面形状:圆形;ID:学号;标距:100mm;直径:测量值的最小平均值mm。
输入后点击“完成并返回”键。
7)开始试验。
点击“开始试验”键,实验开始。
试验时注意观察显示屏上曲线的变化和荷载的变化,观察相应试验现象的变化。
8)试样断裂后立刻点击停止实验。
9)读取在屏幕上的图像曲线上,找出F eH上屈服点(力)、F eL下屈服点(力)、F m最大荷载(力)及对应的荷载数值。
并保存数据,填写记录表。
二、压缩实验1、测量试样尺寸用游标卡尺测量直径d0。
材料力学拉伸实验材料力学是工程学中的重要基础学科,它研究材料在外力作用下的力学性能。
在工程实践中,对材料的拉伸性能进行测试是非常重要的,因为这可以帮助工程师了解材料的强度、韧性和延展性等重要性能指标。
本文将介绍材料力学拉伸实验的基本原理、实验步骤和数据分析方法,希望能对相关领域的学习和研究提供帮助。
1. 实验原理。
材料在外力作用下会发生形变,其中最常见的一种形变是拉伸形变。
当外力作用在材料上时,材料会发生拉伸变形,这时材料会产生应力和应变。
应力是单位面积上的力,而应变是单位长度上的形变量。
拉伸实验可以通过施加不同的拉伸力来研究材料的应力-应变关系,从而得到材料的力学性能参数。
2. 实验步骤。
(1)准备工作,首先准备好需要进行拉伸实验的材料样品,通常为圆柱形。
然后根据实验要求选择合适的拉伸试验机,并安装好相应的夹具。
(2)样品加工,将材料样品切割成符合实验要求的尺寸,并在样品上标记好长度和直径等必要的信息。
(3)安装样品,将样品夹持在拉伸试验机上,并调整夹具,使样品处于合适的位置。
(4)施加载荷,通过拉伸试验机施加逐渐增加的拉伸力,记录下相应的载荷和伸长值。
(5)数据采集,在拉伸过程中,实时记录载荷和伸长值,并绘制应力-应变曲线。
(6)数据分析,根据实验数据,计算出材料的屈服强度、抗拉强度、断裂强度等力学性能指标。
3. 数据分析方法。
拉伸实验得到的主要数据是载荷和伸长值,通过这些数据可以计算出应力和应变。
应力是载荷与样品初始横截面积的比值,而应变是伸长值与样品初始长度的比值。
绘制应力-应变曲线后,可以得到材料的屈服点、抗拉强度和断裂点等重要参数。
4. 结论。
材料力学拉伸实验是研究材料力学性能的重要手段,通过实验可以得到材料的力学性能参数,为工程设计和材料选型提供重要参考。
在进行拉伸实验时,需要注意样品的加工和安装,以及实验数据的准确记录和分析。
希望本文的介绍能够对相关领域的学习和研究有所帮助。
实验一:光滑静态拉伸试验金属材料的拉伸试验是人们应用最广泛的测定其力学性能的方法。
试验时取一定的标准试样,在温度、环境介质、加载速度均为确定条件下将载荷施加于试样两端,使试样在轴向拉应力作用下产生弹性变形、塑性变形、直至断裂。
通过测定载荷和试样尺寸变化可以求出材料的力学性能指标。
一、实验数据分析与处理n 0.2721S b290.6534 535.09796e B0.00406 0.17887ψeB-0.00406 -0.178871.1光滑钢1.1.1计算机数据图1—1 钢光滑拉伸试验应力~应变曲线图1—2 钢光滑拉伸试验均匀塑性变形阶段lgS~lge的线性拟合2010-4-5 15:43Linear Regression for A0709032_lgS:Y = A + B * XParameter Value Error------------------------------------------------------------A 2.9417 0.00425B 0.2721 0.00386------------------------------------------------------------R SD N P------------------------------------------------------------ 0.99321 0.00788 70 <0.0001经计算得:K=10A=102.9417=874.38MPan=B=0.27211.1.2坐标纸数据图1—3 钢光滑拉伸试验载荷~位移曲线图1—4 钢光滑拉伸试验应力~应变曲线图1—5 钢光滑拉伸试验均匀塑性变形阶段lgS~lge的线性拟合2010-4-6 20:24Linear Regression for Data1_lgs:Y = A + B * XParameter Value Error------------------------------------------------------------A 3.19016 0.05524B 0.6578 0.06625------------------------------------------------------------R SD N P------------------------------------------------------------ 0.95726 0.02645 11 <0.0001经计算得:K=10A=103.19016=1549.39MPan=B=0.65781.2光滑铸铁1.2.1计算机数据图1—6 铸铁光滑拉伸试验应力~应变曲线1.2.2坐标纸数据图1—7 铸铁光滑拉伸试验载荷~位移曲线图1—8 光滑铸铁拉伸试验应力~应变曲线(注:对于光滑铸铁,没有“均匀塑性变形阶段”,所以不能得到K,n值。
一、实验目的1. 了解材料在拉伸过程中的力学行为,观察材料的弹性、屈服、强化、颈缩和断裂等物理现象。
2. 测定材料的拉伸强度、屈服强度、抗拉强度等力学性能指标。
3. 掌握万能试验机的使用方法及拉伸实验的基本操作。
二、实验原理材料在拉伸过程中,其内部微观结构发生变化,从而表现出不同的力学行为。
根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系。
当应力达到某一值时,材料开始发生屈服,此时应力不再增加,应变迅速增大。
随着应力的进一步增大,材料进入强化阶段,应力逐渐增加,应变增长速度减慢。
当应力达到最大值时,材料发生颈缩现象,此时材料横截面积迅速减小,应变增长速度加快。
最终,材料在某一应力下发生断裂。
三、实验仪器与设备1. 万能试验机:用于对材料进行拉伸试验,可自动记录应力与应变数据。
2. 拉伸试样:采用低碳钢圆棒,规格为直径10mm,长度100mm。
3. 游标卡尺:用于测量拉伸试样的尺寸。
4. 电子天平:用于测量拉伸试样的质量。
四、实验步骤1. 将拉伸试样清洗干净,用游标卡尺测量其直径和长度,并记录数据。
2. 将拉伸试样安装在万能试验机的夹具中,调整夹具间距,确保试样在拉伸过程中均匀受力。
3. 打开万能试验机电源,设置拉伸速度和最大载荷,启动试验机。
4. 观察拉伸过程中试样的变形和破坏现象,记录试样断裂时的载荷。
5. 关闭试验机电源,取出试样,用游标卡尺测量试样断裂后的长度,计算伸长率。
五、实验数据与结果1. 拉伸试样直径:10.00mm2. 拉伸试样长度:100.00mm3. 拉伸试样质量:20.00g4. 拉伸试样断裂载荷:1000N5. 拉伸试样断裂后长度:95.00mm根据实验数据,计算材料力学性能指标如下:1. 抗拉强度(σt):1000N / (π × (10mm)^2 / 4) = 784.62MPa2. 屈服强度(σs):600N / (π × (10mm)^2 / 4) = 471.40MPa3. 伸长率(δ):(95.00mm - 100.00mm) / 100.00m m × 100% = -5%六、实验分析1. 本实验中,低碳钢试样在拉伸过程中表现出明显的弹性、屈服、强化、颈缩和断裂等物理现象,符合材料力学理论。
拉伸实验操作方法与实验步骤一、引言拉伸实验是材料力学实验中常用的一种试验方法,通过对材料进行拉伸加载,研究材料的力学性能和变形行为。
本文将介绍拉伸实验的操作方法与实验步骤,帮助读者了解如何正确进行拉伸实验。
二、实验前准备1. 准备材料:根据实验需求选择合适的材料样品,确保材料样品的质量符合实验要求。
2. 检查设备:检查拉伸试验机的工作状态,确保设备正常运行。
同时,检查传感器、测量仪器等设备的准确度和灵敏度。
3. 样品制备:根据实验要求,制备材料样品。
对于金属材料,通常采用切割或冲压的方式制备样品;对于非金属材料,可以通过模具制备样品。
三、实验操作方法1. 安装样品:将制备好的样品安装在拉伸试验机上。
确保样品的安装牢固,并且样品的几何尺寸符合实验要求。
2. 调整试验机:根据实验需求,调整拉伸试验机的参数,如加载速度、加载方式等。
同时,根据实验要求选择合适的测量仪器,如应变计、力传感器等。
3. 开始实验:启动拉伸试验机,开始加载样品。
根据实验要求,可以选择不同的加载方式,如恒速加载、恒应力加载等。
4. 数据记录:实验过程中,及时记录样品的载荷-位移曲线、应力-应变曲线等数据。
可以使用计算机或数据采集系统进行数据记录。
5. 实验结束:当样品达到破坏点或实验要求时,停止加载,并记录相应的数据。
注意安全操作,避免对实验人员和设备造成伤害。
四、实验步骤1. 样品准备:根据实验要求,制备合适的材料样品。
2. 样品安装:将样品安装在拉伸试验机上,并调整好样品的初始长度。
3. 参数设置:根据实验要求,设置拉伸试验机的参数,如加载速度、加载方式等。
4. 开始实验:启动拉伸试验机,开始加载样品。
根据实验要求,可以选择不同的加载方式。
5. 数据记录:实验过程中,及时记录样品的载荷-位移曲线、应力-应变曲线等数据。
6. 实验结束:当样品达到破坏点或实验要求时,停止加载,并记录相应的数据。
五、实验注意事项1. 安全操作:在进行拉伸实验时,要注意安全操作,避免对实验人员和设备造成伤害。
拉伸实验及操作规程拉伸实验是一种常用的材料力学性质测试方法,通过对材料的拉伸过程进行观测和测量,得到材料的拉伸性能指标,如抗拉强度、屈服强度、断裂延伸率等。
本文将介绍拉伸实验的操作规程及相关注意事项。
一、实验目的1. 了解材料的拉伸性能。
2. 计算材料的抗拉强度、屈服强度和断裂延伸率等指标。
3. 分析材料的断裂方式和断口的形态。
二、实验仪器设备1. 电子万能试验机2. 拉伸试样3. 萘酚蓝液或其他显色液4. 显微镜5. 显示屏或打印机三、实验步骤及操作规程1. 准备试样:根据材料的具体要求,制备符合标准尺寸的拉伸试样。
试样的制备要严格按照标准,保证试样的尺寸和形状的一致性。
2. 试样夹持:将试样放入夹具中,保证试样受力均匀,夹具的夹持力要符合要求,防止试样在拉伸过程中发生位移和变形。
3. 试验条件设置:根据试样的具体要求和标准,设置试验机的拉伸速度、采样频率等参数。
一般来说,拉伸速度应该控制在一定范围内,避免过快或过慢引起试样的变形和破坏。
4. 开始拉伸:启动试验机,使其开始进行拉伸试验。
在拉伸过程中,对试样受力进行连续测量,并记录下各个拉伸阶段的数据。
5. 记录数据:在试验机进行拉伸试验时,对试样进行力和变形的测量,并及时记录数据。
通常可以通过试验机的显示屏或打印机输出试验数据。
6. 观察试样的变化:在拉伸过程中,可以通过显微镜观察试样的断裂形态及断口的形态。
若有需要,可以使用显色液对试样进行染色,以便更好地观察试样的断面结构。
7.计算指标:根据试验数据计算材料的抗拉强度、屈服强度和断裂延伸率等指标。
具体的计算方法可以参考相应的标准或手册。
四、实验注意事项1. 严格按照标准要求进行试验,确保试验结果的准确性和可靠性。
2. 在试验过程中确保试样夹持牢固,受力均匀,避免试样发生滑动或变形。
3. 进行试验时须佩戴好个人防护装备,如实验手套、护目镜等,避免发生意外事故。
4. 试验结束后及时清理试验台面和试验机,保持实验环境整洁。
材料力学拉伸实验报告【篇一:材料力学拉伸试验】1-1 轴向拉伸实验一、实验目的1、测定低碳钢的屈服强度rel(?s)、抗拉强度rm(?b)、断后伸长率a11.3(?10)和断面收缩率z(?)。
2、测定铸铁的抗拉强度rm(?b)。
3、比较低碳钢?5(塑性材料)和铸铁?5(脆性材料)在拉伸时的力学性能和断口特征。
注:括号内为gb/t228-2002《金属材料室温拉伸试验方法》发布前的旧标准引用符号。
二、设备及试样1、电液伺服万能试验机(自行改造)。
2、 0.02mm游标卡尺。
3、低碳钢圆形横截面比例长试样一根。
把原始标距段l0十等分,并刻画出圆周等分线。
4、铸铁圆形横截面非比例试样一根。
注:gb/t228-2002规定,拉伸试样分比例试样和非比例试样两种。
比例试样的原始标距l0和原始横截面积s0的关系满足l0?ks0。
比例系数k取5.65时称为短比例试样,k取11.3时称为长比例试样,国际上使用的比例系数k取5.65。
非比例试样l0和s0无关。
三、实验原理及方法低碳钢是指含碳量在0.3%以下的碳素钢。
这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。
(工程应变)(2)屈服阶段ab:在超过弹性阶段后出现明显的屈服过程,即曲线沿一水平段上下波动,即应力增加很少,变形快速增加。
这表明材料在此载荷作用下,宏观上表现为暂时丧失抵抗继续变形的能力,微观上表现为材料内部结构发生急剧变化。
从微观结构解释这一现象,是由于构成金属晶体材料结构晶格间的位错,在外力作用下发生有规律的移动造成的。
如果试样表面足够光滑、材料杂质含量少,可以清楚地看出试样表面有450方向的滑移线。
根据gb/t228-2002标准规定,试样发生屈服而力首次下降前的最大应力称为上屈服强度,记为“reh”;在屈服期间,不计初始瞬时效应时的最低应力称为下屈服强度,记为“rel”,若试样发生屈服而力首次下降的最小应力是屈服期间的最小应力时,该最小应力称为初始瞬时效应,不作为下屈服强度。
材料拉伸实验实验报告【材料拉伸实验实验报告】一、引言拉伸实验是材料力学中最常见的实验之一,通过对材料进行拉伸加载,可以得到材料的拉伸应力-应变曲线、屈服强度、断裂强度等重要力学性能参数,对于材料的设计和应用有重要的指导作用。
本实验主要通过金属材料的拉伸实验来研究材料的力学特性,提取材料相应的力学性能参数。
二、实验目的1. 掌握拉伸实验的基本原理和操作方法;2. 了解拉伸实验中所涉及的概念和术语;3. 学习应用杨氏模量来表征材料的力学性能。
三、实验原理1. 拉伸应力和拉伸应变:拉伸应力(σ)是指单位截面积上的拉力,即材料的拉伸力与横截面积的比值。
拉伸应变(ε)是指材料在拉伸过程中单位长度的变化量,即实验前后的长度差与原始长度的比值。
2. 拉伸力和力学性能参数:拉伸力是指实验中施加在试样上的力,力学性能参数主要包括屈服强度、断裂强度、弹性模量、塑性应变等。
3. 杨氏模量:杨氏模量(E)是材料的重要力学性能参数,它表征了材料在一定应力范围内对应变的抵抗能力,计算公式为:E = σ / ε,其中σ为拉伸应力,ε为拉伸应变。
四、实验步骤1. 准备试样:根据实验要求,选择合适的金属材料,制作出试样。
2. 安装试样:将试样安装在拉伸试验机上的夹具中,并确保试样的位置合适。
3. 设置实验参数:根据实验要求,设置拉伸试验机的加载速度、采样频率等参数。
4. 进行拉伸实验:启动拉伸试验机,开始加载试样,记录下拉伸过程中的载荷和位移数据。
5. 绘制拉伸应力-应变曲线:根据实验记录的载荷和位移数据,计算出拉伸应力和拉伸应变的数值,并绘制拉伸应力-应变曲线图。
6. 计算力学性能参数:根据绘制的拉伸应力-应变曲线,计算出屈服强度、断裂强度和塑性应变等力学性能参数。
五、实验结果与分析根据实验记录的数据,绘制出拉伸应力-应变曲线,通过曲线的形状和数据的分析,得到试样的力学性能参数。
六、实验结论通过本次拉伸实验,得到了试样的拉伸应力-应变曲线,并计算出了相应的力学性能参数。
材料力学拉伸实验材料力学是研究物质在外力作用下的力学性能和变形规律的学科,而拉伸实验是材料力学中非常重要的一种实验方法。
通过拉伸实验,可以了解材料在拉伸过程中的力学性能,如抗拉强度、屈服强度、延伸率等指标,对于材料的选择和设计具有重要意义。
拉伸实验的基本原理是在外力作用下,材料会发生变形,通过施加拉伸力使材料发生变形,然后测量拉伸前后的长度和直径,从而计算出拉伸应力和拉伸应变,最终得到材料的力学性能参数。
在进行拉伸实验时,首先需要准备好试样。
试样的准备对于实验结果的准确性和可靠性至关重要。
通常情况下,试样的形状为圆柱形,长度大于直径,以保证在拉伸过程中的均匀变形。
在试样制备完成后,需要对试样进行表面处理,以确保试样的表面光洁度和平行度,避免表面缺陷对实验结果的影响。
接下来是拉伸实验的具体操作。
首先将试样夹紧在拉伸试验机上,然后施加拉伸力,逐渐增加载荷直至试样发生断裂。
在拉伸过程中,需要记录载荷和试样的变形情况,以便后续的数据处理和分析。
通过拉伸实验得到的数据,可以绘制应力-应变曲线。
应力-应变曲线是描述材料在拉伸过程中力学性能的重要曲线,通过该曲线可以直观地了解材料的抗拉强度、屈服强度、延伸率等指标。
在实验过程中,还可以观察试样的断裂形态,从而进一步了解材料的断裂机制和断裂特点。
拉伸实验不仅可以用于金属材料,也适用于塑料、橡胶等材料。
不同材料在拉伸过程中表现出不同的力学性能,通过拉伸实验可以对不同材料的性能进行比较和分析,为材料的选择和设计提供参考依据。
在进行拉伸实验时,需要注意实验过程中的安全问题,确保操作人员的安全。
同时,也需要严格控制实验条件,避免外界因素对实验结果的影响。
总的来说,拉伸实验是了解材料力学性能的重要手段,通过实验可以得到材料的力学性能参数,为材料的选择和设计提供重要参考。
因此,掌握拉伸实验的基本原理和操作技巧,对于材料科学和工程技术人员来说,具有非常重要的意义。
实验二材料的拉伸实验概述常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。
通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。
这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。
一、金属的拉伸实验(一)实验目的1.测定低碳钢的屈服强度Rel、抗拉强度Rm、断后延伸率A11.3和断面收缩率Z。
2.测定铸铁的抗拉强度Rm。
3.观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线)。
4.分析比较低碳钢和铸铁的力学性能特点与试样破坏特征。
(二)实验原理依据国标GB/T 228-2002《金属室温拉伸实验方法》分别叙述如下:1.低碳钢试样。
在拉伸试验时,利用试验机的自动绘图器可绘出低碳钢的拉伸曲线,见图1示的F—ΔL曲线。
图中最初阶段呈曲线,是由于试样头部在夹具内有滑动及试验机存在间隙等原因造成的。
分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。
拉伸曲线形象的描绘出材料的变形特征及各阶段受力和变形间的关系,可由该图形的状态来判断材料弹性与塑性好坏、断裂时的韧性与脆性程度以及不同变形下的承载能力。
但同一种材料的拉伸曲线会因试样尺寸不同而各异。
为了使同一种材料不同尺寸试样的拉伸过程及其特性点便于比较,以消除试样几何尺寸的影响,可将拉F a-比例伸长力;F c-弹性伸长力;F su-上屈服力;F sl-下屈服力;F b-最大力;F f-断裂力;-断裂后塑性伸长;-弹性伸长;图1碳钢拉伸曲线伸曲线图的纵坐标(力F)除以试样原始横截面面积S,并将横坐标(伸长ΔL)除以试样的原始标距L0得到的曲线便与试样尺寸无关,此曲线称为应力-应变曲线或R—曲线,如图2示。
从曲线上可以看出,它与拉伸图曲线相似,也同样表征了材料力学性能。
拉伸试验过程分为四个阶段,如图1、图2所示。
(1)弹性阶段OC。
在此阶段中的OA段拉力和伸长成正比关系,表明钢材的应力与应变为线性关系,完全遵循虎克定律,如图2示。
关于材料的拉伸实验材料的拉伸实验是材料力学中的基本实验之一,也是了解材料材质的重要手段。
在这篇文档中,我将介绍材料的拉伸实验的相关概念、实验方法和应用场景。
一、基本概念在材料的力学性质中,拉伸实验是指在加力的情况下将材料拉长,然后观察其变形和破坏的实验。
通过这个实验,我们可以获得材料的许多重要参数,如杨氏模量、屈服强度、断裂强度等。
这些参数对材料的工程应用非常关键。
二、实验方法材料的拉伸实验通常需要使用专用设备,如万能材料试验机。
首先需要准备样品,通常是一条长度较长的金属棒状样品,在样品的两端固定两个夹具,即拉伸机的夹具。
然后通过旋转马达来加力,不断拉伸样品,直至样品被拉断。
在拉伸过程中,需要测量材料的应力和应变。
应力指的是样品受到的单位面积内的力,而应变是指在材料受到应力时单位长度的变化量。
在实验中,需要测量应力和应变的变化情况,以获得材料的拉伸性能曲线。
这个曲线表现了材料的变形和破裂过程,在材料的设计和工程应用中非常重要。
三、应用场景材料的拉伸实验通常应用于材料的设计和制造中。
通过这个实验,我们可以了解到材料的拉伸性能,并以此来确定材料的工程应用场景。
比如,我们可以通过拉伸实验来确定材料的屈服强度和断裂强度,以了解材料在实际应用中的承重能力和破坏极限。
同时,这个实验还可以确定材料的弹性模量以及高温、低温等环境下的性能变化情况,常用于特殊材料的研究。
此外,在材料的故障分析和质量监控中,拉伸实验也是非常有用的。
通过分析样品在拉伸实验中发生的变形和破坏情况,可以识别材料制造过程中可能出现的问题,进而改进生产技术,确保材料的品质和稳定性。
综上所述,材料的拉伸实验是材料力学中的基本实验之一,可以为材料的设计、制造和质量监控提供重要参考信息。
虽然这个实验看起来繁琐,但在实际应用中却有着广泛的应用前景。
关于材料的拉伸实验拉伸实验是材料力学测试中的一项重要试验,通常用于测试材料的力学性能,如材料的拉伸强度、屈服强度、延伸率等。
这种实验是通过在材料的两端施加外力,逐渐增加材料上的拉力,并记录材料的长度随着拉力的增加而产生的变化程度。
本文将介绍拉伸实验的背景、目的和原理,同时阐述实验的流程和相关数据的处理以及实验的应用领域。
一、背景材料力学是材料科学的一个重要分支,研究材料的载荷变形规律和破坏机理。
对于材料的拉伸强度、屈服强度和断裂强度等力学性能的了解,有助于工程师和科学家设计材料和结构,并制定相应的安全标准和规则。
二、目的拉伸试验的主要目的是测试材料的几个重要参数,这些参数对于材料的设计、生产和使用都具有一定的重要性。
重要参数包括:1.拉伸强度:即在断裂前的最大拉力,通过这种实验,我们可以测量材料的受力极限。
2.屈服强度:即在材料发生变形时,承受应力的能力。
通过屈服强度,我们可以描述材料在拉伸过程中的最大强度。
3.伸长率:即在拉伸过程中,材料长度的变化百分比。
通过伸长率,我们可以测量材料的可塑性,从而推断该材料的适用范围和使用情况。
三、原理拉伸测试的原理是在固定的温度和湿度条件下,将原始材料进行压制和拉伸,测量材料在不同拉伸程度下的拉力和相应的变形(伸长)。
在拉伸过程中,材料的负荷和长度均逐渐增加,直到材料产生破坏为止。
通过拉力和变形的测量,可以根据材料的荷载-滞后图推导出拉伸强度、屈服强度、伸长率和拉伸模量等力学性质。
通过拉伸测试,可以了解材料的强度、刚度、延展性等特性,从而确定其最佳应用领域和工作环境。
四、实验流程拉伸实验需要在实验室或专业的测试中心进行,而且需要使用专业的试验设备。
在进行实验之前,需要准备一些样本,保证其相同的形状、大小和工艺。
下面是实验的基本流程:1. 样本准备:选择合适的材料,切割成标准的形状和尺寸,根据国际标准处理表面。
2.测试:将样本固定到拉伸试验机的测试夹具上,然后开始施加负荷,逐渐增加材料受力,直到发生材料破裂。
材料拉伸实验材料拉伸实验是材料力学实验中的一种重要实验方法,通过对材料在拉伸载荷作用下的力学性能进行测试,可以评估材料的强度、韧性、延展性等重要性能指标。
本文将介绍材料拉伸实验的基本原理、实验方法和数据分析。
首先,进行材料拉伸实验前需要准备相应的试样。
通常情况下,试样的形状为圆柱形,其尺寸和几何形状应符合相关标准。
在进行实验前,需要对试样的尺寸进行精确测量,并做好标记,以便后续数据分析。
另外,还需要准备好拉伸试验机以及相应的测量和记录设备。
在进行实验时,首先将试样安装到拉伸试验机上,并施加逐渐增加的拉伸载荷。
在加载过程中,需要记录载荷和试样变形的数据,以绘制应力-应变曲线。
通过对应力-应变曲线的分析,可以得到材料的屈服强度、抗拉强度、断裂强度等力学性能指标。
除了静态拉伸实验外,还可以进行动态拉伸实验,以评估材料在动态加载下的力学性能。
动态拉伸实验通常需要使用冲击试验机或高速拉伸试验机,通过施加冲击载荷或高速拉伸载荷,来模拟材料在动态加载下的响应。
在进行数据分析时,需要对实验数据进行准确的处理和计算。
通过对应力-应变曲线的斜率、最大载荷值等数据进行分析,可以得到材料的力学性能参数。
此外,还可以通过断口形貌观察、显微组织分析等方法,对材料的断裂机理进行研究,为进一步优化材料设计和制备工艺提供参考。
总之,材料拉伸实验是评估材料力学性能的重要手段,通过对材料在拉伸载荷下的响应进行测试和分析,可以全面了解材料的力学性能,为材料的选材和工程应用提供科学依据。
希望本文能够对材料拉伸实验的基本原理和实验方法有所帮助,同时也希望读者能够在进行材料力学实验时,严格遵循相关标准和规范,确保实验数据的准确性和可靠性。
材料拉伸实验材料拉伸实验是材料力学实验中的一种重要实验方法,通过对材料在拉伸过程中的力学性能进行测试,可以了解材料的抗拉强度、屈服强度、断裂伸长率等重要力学性能参数,为材料的设计、选择和使用提供重要依据。
本文将介绍材料拉伸实验的基本原理、实验方法和实验步骤。
材料拉伸实验的基本原理是利用外力作用下材料发生拉伸变形的特性,通过施加拉伸力,使材料在拉伸载荷作用下发生变形,从而测定材料的拉伸性能。
在拉伸实验中,通常通过拉伸试验机施加力,使试样在拉伸载荷作用下逐渐拉伸,同时测量试样的变形和载荷,得到拉伸应力-应变曲线,从中可以得到材料的力学性能参数。
材料拉伸实验的实验方法包括静态拉伸试验和动态拉伸试验两种。
静态拉伸试验是在恒定载荷作用下进行的拉伸试验,适用于测定材料的静态力学性能参数;动态拉伸试验是在变化载荷作用下进行的拉伸试验,适用于测定材料在动态载荷下的力学性能参数。
根据不同的实验要求和材料性能,选择合适的实验方法进行拉伸实验。
进行材料拉伸实验的实验步骤主要包括试样制备、试验参数确定、试验装置搭建、试验数据采集和分析等。
首先,根据实验要求制备符合标准要求的试样,保证试样的几何尺寸和表面质量符合要求。
其次,确定实验参数,包括拉伸速度、试验温度、载荷范围等,保证实验参数的准确性和一致性。
然后,搭建试验装置,包括安装试样、连接传感器、调试试验机等。
接着,进行试验数据采集和分析,通过试验机实时采集试验数据,得到拉伸应力-应变曲线和材料的力学性能参数。
最后,对试验数据进行分析和总结,得出结论并编制实验报告。
总之,材料拉伸实验是材料力学实验中的重要实验方法,通过对材料在拉伸过程中的力学性能进行测试,可以了解材料的抗拉强度、屈服强度、断裂伸长率等重要力学性能参数,为材料的设计、选择和使用提供重要依据。
在进行拉伸实验时,需要严格按照实验方法和实验步骤进行操作,保证实验数据的准确性和可靠性,为材料研究和工程应用提供可靠的数据支持。
(一)低碳钢、铸铁和铝试件的拉伸实验
(1)试件决定
用游标卡尺测量标距两端及中间这三个横截面处的直径,在每一横截面内沿互相垂直的两个直径方向各测量一次取其平均值。
用所测得的三个平均值中最小的值计算试件的横截面面积A0。
计算A0时取三位有效数字。
图1 测量标距
(2)实验机决定
按照试件强度极限σb和横截面面积预计试件的最大载荷。
按照最大载荷的大小,决定好电脑和实验机,选好量程。
(3)安装试件
先将试件安装在实验机的上夹头内,再移动下夹头使其达到适当位置,并把试件下端夹紧。
(4)检查及试车
请教师检查以上步骤的完成情况,然后开动实验机,预加少量载荷(对应的应力不能超过材料的比例极限)后,卸载回“零”点,以检查实验机工作是否正常。
(5)举行实验
开动实验机使之缓慢匀速加载。
注重看见微机上显示的力的变化情况和相应的实验现象。
当力的变化异常小或基本不变时,说明材料开始屈服,记录屈服载荷P s。
试件断裂后停车,读出最大载荷P b,并记录下来。
(6)结束工作
取下试件,将断裂试件的两段对齐并尽量靠紧,用游标卡尺测量断裂后标距段的长度l1;测量断口(颈缩)处的直径d1,应在断口处沿两个互相垂直方向各测量d1一次,计算其平均值,取其中最小者计算断口处最小横截面面积A1。
电子万能实验机可用微机打印出拉伸曲线。
图2 测量断后标距
实验数据一律用表格形式记录,下面列出供参考的表格形式。
表1 测量低碳钢和铸铁试件的尺寸
表2 低碳钢和铸铁P s、P b记录
表3 试件断后尺寸记录。