煤层气井动力洞穴完井工艺
- 格式:pdf
- 大小:258.16 KB
- 文档页数:3
煤层气高效开发钻完井工艺技术探讨对煤层气进行高效开发,需要结合地层特点,对钻完井工艺技术进行探讨,根据不同的煤层气,利用不同的工艺技术对煤层气进行高效开发。
在储层改造方面,主要以水力压裂改造为主,钻井类型以定向井井型为主;利用空气旋冲钻井工艺来实现煤层气的钻井工艺改造,通过对煤层气高效开发完井工艺技术分析,得出了相关的改进建议,能够提高煤层气的开发效率。
标签:煤层气;钻完井工艺;技术探讨对煤层气勘探阶段需要确保完全准确的地质资料,在进入开发以后的主要目标是提高产量,实现高效开发。
由于很多煤层气的单井产量偏低,而且钻井效率不高,因此需要针对地层特点,选择合适的钻完井工艺技术才有利于提高单井产量,实现煤层气的高效开发。
在选择钻完井技术工艺时,需要考虑的一个重要问题就是储层是否需要改造。
储层利用哪种方式进行改造取决于储层的特性,因此探讨煤层气的钻完井工艺技术,需要研究储层的特性和改造工艺中所出现的问题。
1储层改造工艺探讨1.1储层是否需要改造储层是否需要改造取决于储层中的渗透率,根据大量实践表明,渗透率在至最合适煤层气开采,适合储层改造的渗透率范围在至,如果渗透率小于就需要进行水利压裂改造,才能出现较好的产量。
因此需要根据储层的渗透率来决定储层是否需要改造。
1.2储层改造工艺煤层气储层进行改造的工艺主要有两种:第一种为水力压裂改造;第二种为空气动力造穴改造。
煤层气进行水力压裂改造与常规的油气田改造基本相同,空气动力造穴主要的原理是将高压气体注入井内,在瞬间释放压力的作用下时,煤层气储层产生裂缝,进而改善煤层气储层的渗透率。
空气动力造穴完井没有得到广泛推广的原因主要有以下几方面:第一,对于造穴的时间难以预测,就会造成成本难预测的情况。
第二,该技术对储层渗透率的改善效果不是特别明显;第三,需要特殊的钻井工具及设备。
第四,非常容易对环境造成污染。
第五,由于在进行造穴过程中瓦斯、氧气浓度和明火这三项的控制力不高,很有可能形成瓦斯爆炸的事故。
煤层气裸眼洞穴完井
煤层气开发中的裸眼洞穴完井,半个世纪以前就诞生了,但直到1977年Amcoco公司利用此法在圣胡安盆地Cahn1井实施后,其潜在优势才被真正认识。
之后,众多公司相继采用此技术在圣胡安盆地北部水果地组煤层进行储层改造,取得了良好的效果。
具体工艺是在较高的生产压差作下,利用井眼的不稳定性,在井壁煤岩发生破坏后允许煤块塌落到井筒中,进而形成物理洞穴(自然裸眼洞穴完井);或者人工施加压力(从地面注气、水),然后突然释放,使井壁煤层发生破坏,再清除井底的煤粉,形成较大尺寸的物理洞穴。
从现场试验结果看,裸眼洞穴完井的产量远远高于压裂井,一般为3~20倍。
之后一些学者对裸眼洞穴完井的增透机理进行了系统探讨,如图6.5所示,主要包括以下几个方面。
洞穴:洞穴是在煤层重复性坍塌和煤屑的清除过程中形成的,其有效直径一般为3~4 m,且其形状不规则。
洞穴的形成增大了煤层的裸露面积,消除了煤层在钻井过程中形成的伤害,实现了井筒与煤层的最大限度沟通。
破碎带:由于洞穴效应的延续,使洞穴以外的煤层发生张性破裂和剪切破裂,形成一定范围的破碎带。
破碎带的有效半径一般为6~8 m。
破碎带的形成,使煤层内一些处于封闭状态的原始微裂缝相互沟通,同时也形成一些新的裂缝,使得此带的渗透率明显增加。
扰动带:在造洞穴过程中,由于应力释放作用会在剪切破碎带以外产生一定的扰动效果,这种扰动相当于一种压力波的冲击作用,从而在煤层形成一个半径约60 m左右的渗透率升高区,即扰动带,其范围与煤层物性和造洞穴的井底压力有关。
Mineral Technology384《华东科技》煤层气钻井工艺及完井技术研究陈悦亨(广东煤炭地质二0二勘探队,广东 广州 510800)摘要:对煤层气钻井工艺进行研究,总结影响煤层气钻井正常施工的因素,目的是通过对各项影响因素的分析,构建针对性的钻井工艺,确定完井技术方案,并通过合理工艺技术的选择,保证煤层气钻井的顺利进行,推动产业稳步及高效的发展。
关键词:煤层气;钻井工艺;完井技术随着我国煤矿产业的展,煤层气在能源结构中占据十分重要的位置。
2015年,国家能源局发布了《煤层气勘探开发行动计划》,这一计划中要求加快煤层气的勘探开发,并通过高效技术的运用,提高煤层气的采收率,以推动我国煤层气产业的可续发展。
但是,由于煤层气储存的特殊性,在实际的产业运行中,出现了煤层保护与钻井安全矛盾突出的问题,这些现象若不能及时处理,会影响煤层气钻井工艺的整体效果。
因此,在煤层气产业发展中,为了提高钻井效率,需要细化煤层气钻井工艺,并构建成熟的井技术,提高我国煤层气开发的率,为行业的发展提供技术支持。
1 煤层气钻井技术特点 结合煤层气钻井工艺形式,其技术特点如下:第一,煤层气的目标层为煤层,煤既是生气层又是储气层。
第二,煤层的孔隙和割理都很发育,煤储层普遍压力低,地层破碎,易发生井漏。
第三,煤层气钻井的井壁稳定性差,容易发生井下复杂事故。
第四,改进钻井工艺,减少钻井液的微粒和胶体颗粒对煤层气运移通道的充填和堵塞,可以在一定程度上会增加资源开采量[1]。
2 工程概况 2.1 项目概况 山西地区煤层气钻井工程项目是煤层气地面抽采井钻井工程,煤层气井设计为L 型水平井。
在煤层气的开发过程中,L 型水平井与直井、定向井等开发方式相比,其优越性主要体现在:通过增加煤层段井眼长度,扩大了煤层泄露面积,可有效沟通煤层裂隙和割理,从而增加单井产气量,经济效益显著。
因此,蓝焰煤层气公司决定在郑庄区块推广水平井, ZH-L40-1井布置在郑庄矿3#煤层中,目的是为了解决3#煤层瓦斯突出问题。
73CPCI中国石油和化工化工安全浅析煤层气井储层保护钻井工艺张 锐(中石化胜利石油工程有限公司钻井工艺研究院 山东东营 257000)摘 要:煤层气就是煤矿瓦斯,其中含有九成的甲烷,是天然气的可替代能源。
煤层的含水量高,而且脆裂容易坍塌。
为了煤层气因此而遭到污染或者泄露,就需要对煤层采取保护措施,特别是采用钻井工艺开采煤层气的过程中,要对井储层予以必要的技术性保护。
本论文针对煤层气井储层保护钻井工艺展开探讨。
关键词:煤层气 钻井工艺 保护措施 井储层煤层气是良好的天然气可替代能源。
随着近年来煤层气的可利用价值得到了广泛的认识,煤层的钻井工作量也相应地有所增加。
煤层气井储层的埋藏通常在1000米以内,但是,由于煤层的含水量高,而且脆裂容易坍塌而很容易在钻井的过程中而导致煤层气污染,加之煤层的压力系统很容易出现变化,一旦煤层出现裂缝,就会快速地扩大范围而发生水锁效应而导致煤层受到损坏。
采用有效的保护性钻井工艺是非常必要的。
1 案例分析某盆地拥有丰富的煤层气储量。
在该地区的煤层气进行开发的时候,为了避免煤层井泄露事故,就需要在井眼的设计中考虑到压力作用下煤层的破裂的问题,因此需要井眼的设计的规格要大一些。
具体实施中,可以选择直径444.5毫米的钻头,钻进的深度达到35毫米左右,就可以下表层套管了。
将直径为338.5毫米的表层套管下入30米的深度,坐入到硬基岩处大约8米。
改用直径为11.5毫米的钻进,在接近靶窗附近处,将直径为340.5毫米的技术套管到接近封固煤层段之处。
之后,再使用直径为216.4毫米的钻头继续钻井,直到井底,使用直径为149.8毫米的钻头对各个钻井进行钻井。
2 钻井方式在钻井施工之前,对煤层气储层所在钻井区域进行了实地勘察,从而对钻井区域的地质特点有所深入了解。
钻井所在区域具有轻微的列分,而且广泛分布,这就导致该区域的煤层孔隙压力相对较低,对机械强度的承受能力较弱,当然对应力也具有较高的敏感度。
煤层气U型井钻完井工艺探讨_王立峰河南科技2013.NO.09Journal of Henan Science and Technology工业工程与技术1U 型井钻井技术简介煤层气“U ”型井一般由一口洞穴直井和一口定向水平井组成[1-2],由于水平井在水平段的靶点末端与洞穴直井相连通,两口井形成一个“U ”字形的井筒结构,因此形象地称U 型井(图1)。
图1典型煤层气U 型井井身结构图2工程概况2.1地质依据井田位于太原西山煤田的南东部,西山古交国家规划矿区清交区的东南部一带。
井田内地表基岩出露良好,第四系中上更新统黄土零星覆盖于沟坡、山梁之上。
出露地层主要为二叠系上统上石盒子组,东南部沟谷两侧局部出露二叠系下统下石盒子组,下部地层未出露。
地层由老至新为:奥陶系中统上马家沟组(O 2s)、峰峰组(O 2f);石炭系中统本溪组(C 2b );石炭系上统太原组(C 3t );二叠系下统山西组(P 1s )、下石盒子组(P 1x );二叠系上统上石盒子组(P 2s );第四系中上更新统(Q 2+3)、全新统(Q 4)。
2.2工程概况YQ-01井组是蓝焰公司在煤矿区内进行煤层气地面抽采(瓦斯治理)工程,设计一组U 型对接井,水平井水平段在沿煤层顶板钻进。
资料表明,预施工区域内15#煤比较松软,易发生坍塌,在煤层中施工钻孔难度相当大,成孔的概率极低。
鉴于此,将YQ-01井组设计成由一口水平井YQ-01H1和一口洞穴直井YQ-01V 组成的一个U 型井组。
设计中,先钻一口垂深685.00m 的直井,以钻入15号煤层底板以下50m 完钻,直井井口距离水平井井口621.00m ,在15号煤层及顶板内下入1根玻璃钢套管。
177.8mm 套管固井后,下入造穴工具破碎15煤层顶板的玻璃钢套管和水泥环,洞穴孔径≥500mm 。
3设备、钻具及定向仪器配置3.1钻井设备主要钻井设备:ZJ-20钻机;泥浆泵为F800;柴油机为12V190、12V135;空压机为XRXS1275;发电机组为300GF (300KW )、120GF (120KW )。
煤层气洞穴-筛管完井工艺李宏欣1张学峰2(1.河南省煤层气开发利用有限公司,河南 450016; 2.河南豫中地质勘察工程公司,河南 450053)摘 要:洞穴完井是单一厚煤层重要的煤层气增产完井技术之一。
洞穴完井工艺流程概括为:钻头钻至煤层顶界上3m 时停止钻进,进行裸眼地球物理测井,下技术套管,注水泥固井。
检查固井质量合格后,钻穿煤层至底板下10m 完钻。
在完成该段裸眼测井和固井测井后,下入喷射式造穴器造穴,洞穴直径达到112m 时停止造穴。
最后在裸眼煤层段及以下井段安装悬挂式割缝筛管,并密封衬管和套管之间的环形空间。
煤层气可以流过筛管割缝进入井筒。
关键词:赋存地质条件 煤层气 煤储层 洞穴完井Cavity -Perforated Casing Completing Technology for CBM WellLi Hongxin 1,Zhang Xuefeng 2(1.Henan Province CB M Development &Utilization Ltd 1Co 1,Henan 450016; 2.Henan YuzhongGeological Engineering Co 1,Henan 450053)Abstract:Cavity Completing is one of the important techniques for enhanced completing in a single thick sea m.Cavity completing technique includes roughly the following steps:drill the borehole until the drill bit in -tersects the material 3m above the top boundary of coal seam;make geophysical logging in the open borehole;lower the casings and proceed ce menting.Continue drilling after proving the quality of cementing up to the standard,and stop drilling until the bit penetrating the coal seam and reaching the material 10m belo w the floor of seam.After the loggings are finished in the open borehole section and in the cemented borehole,a jet is lowered to under ream the coal sea m to form a cavity until the diameter of the cavity reaches 112m.Finally,set the slotted casings in the open hole coal sec tion and the section beneath as well.Seal the annular space be -tween the lining and casings.CB M can then enter the well through the slots of perforated casing.Keywords:Geological occurrence c onditions;CB M;coal reservoir;cavity completion 为了改变煤层透气性差设计采用洞穴-筛管完井这一技术,目的在于有效扩大煤储层暴露面积或渗流面积,最大限度降低钻井液和固井水泥浆对煤储层的伤害,保持煤储层和井筒之间最佳的连通条件,煤层气流达到井口的阻力最小。
煤层气的完井技术第一篇:煤层气的完井技术煤层气的完井技术常用的完井技术目前常用的完井技术有以下几种:1、裸眼完井这是在煤层气开发的最初阶段广泛采用的一种完井方式,可以避免在注水泥过程中造成伤害,且成本较低。
但是使用这种完井方式不能选择在某一煤层进行测试和完井、不能格挡各单个煤层间的气窜,而且由于井筒中煤细粒的聚集不能在煤层之下,煤细粒也常堵塞井筒,使煤层中的气不能有效地流向井眼。
因此这种完井方式逐渐被另一种裸眼扩眼完井方式所取代。
2、裸眼扩眼完井在煤层之上下套管,然后在水,空气或泡沫的负压下钻穿煤层,再使用空气或泡沫排出循环钻井液,并在煤层段扩眼,形成一个大的中腹。
因为负压钻井减少了地层损害,扩眼又进一步提高了井筒附近劈理系统的渗透性,所以可以获得较好的产能。
煤层段的空腔有时是通过井的多次“冲击过程”,即可获得预期的扩眼效果,然后经高速空气或泡沫循环除去井筒中坍塌的煤屑和流入的地层流体,再下入衬管,即可投入生产。
3、下套管射孔压裂完井套管完井解决了裸眼完井遇到的许多问题,可以选择行的对某一煤层进行完井和开发,可以在煤层之下钻一段“鼠袋”,用于储集煤细粒和安装脱水泵,从而获得更高的产气量,压裂处理可以有效地提高产能,在对煤层实施水力压裂时,常采用较高的处理能力,压裂可以在煤层甚至邻层中产生相当复杂的裂缝形态,包括垂直裂缝和水平裂缝。
除上述二种基本完井方式之外,还有两项新技术可以提高气井产量和降低成本。
4、水平井钻水平井是一项极具潜力的天然气裂缝煤层气藏的完井技术,与最大渗透性方向垂直的长水平井眼已被证明是十分有效的。
最大渗透率方向与通常天然裂缝方向一致,或与壁理方向一致,所以在最大渗透率方向容易确定的情况下,可采用钻水平井有效地开发煤层气,但若最大渗透率方向不好确定,最大渗透率方向与劈理方向关系不大,这种情况下水平井就不一定比相当长度的水力压裂裂缝更有效。
5、多层完井多层完井是降低煤层气开发成本的一种重要手段,通过多层完井,可以增大一口井的开采储量,提高井的产量,降低单位开发成本。
煤层气地面开发技术第一节主要内容:一、煤层气井完井方式1、裸眼完井裸眼完井又分为常规裸眼完井和裸眼洞穴完井。
(1)常规裸眼完井通常,煤层气井裸眼完井是在煤层顶部下表层套管后,一直钻进煤层至设计深度终孔,将煤层用砂或砾石填满,然后将套管下到煤层上方并注水泥返至地表,再用空气或水冲洗井眼,使煤层裸露。
(2)裸眼洞穴完井裸眼洞穴完井适用于高压、高渗透性厚煤层。
该方法是在井底造一个大的洞穴,下入割缝衬管后进行排采作业。
2、套管射孔完井套管射孔完井时钻穿煤层直至设计井深,然后下生产套管至煤层底部“口袋”,注水泥固井,最后射孔,射孔弹射穿生产套管、水泥环并穿透煤层某一深度,建立起气流的通道。
3、混合完井混合完井也叫多煤层完井,根据各煤层的特点和上下围岩的性质,使裸眼完井和套管完井在同一口井同时使用。
混合完井的形式包括套管射孔完井、套管射孔+裸眼完井、裸眼洞穴完井等几种类型。
一般情况下,上部煤层采用套管射孔或套管割缝完井,下部煤层采用裸眼完井或裸眼洞穴完井。
4、水平井完井技术水平井完井由地面垂直向下钻至造斜点后,以中、小曲率半径侧斜钻进目的煤层,在煤层中按设计方向延伸几百米至上千米。
水平井的水平段一般采用裸眼1完井或4英寸(11.43cm)割缝衬管完井。
2二、煤层气井固井工艺向煤层气井的钻井井眼中下入套管,并在套管和井壁的环空中注入水泥浆,以加固井壁、封隔煤层的施工程序叫固井。
通常煤层气井从大到小要下两至三层套管。
1、下套管下入井内的套管,根据其作用不同,可分为三种。
第一种为表层套管,其作用是封隔地表不稳定的松软易坍塌地层、水层、漏层;安装井控的井口装置。
第二种是支撑中间套管,下入深度一般是数十米到数百米,水泥返到地面。
第三种为生产套管,它将目的层与非目的层隔开,给煤层气生产形成中途不流失的通道,为实施增产措施创造条件,水泥返到地面。
2、注水泥固井作业所用水泥是一种有特殊要求的硅酸盐水泥,其成分、物理化学性能都有明确而具体的要求。
洞穴完井一、概述洞穴完井(动力洞穴完井)是通过将空气、水的混合物注入裸眼储层,当注入达到一定压力时,放喷释放井底压力,这样周期性重复注入/放喷,诱发井筒周围煤层中裂隙和节理系统的连通和向外延伸,提高煤储层渗透性的一种完井方法。
在洞穴完井过程中,当井筒的注入压力增加至超过煤层的最小水平应力时,在平行于它的方向上(面割理),产生张性破裂,这种破裂可延伸30—60m 。
注入时张力产生的裂隙被支撑着,所以,在井筒周围煤层的渗透性得到了提高;在放喷时,由于压力的突然释放及叠加的水动力效应(类似于活塞的抽吸作用),使煤层垮塌,井筒扩大,煤层载荷的这种变化引起煤层剪切破裂带的增大,剪切破裂横切面割理和节理,与张裂隙方向成直角相交,沟通了面割理,提高了煤层的渗透性(图1)。
洞穴完井技术正是应用了剪切破裂带的横切作用原理,连通了井筒周围的节理和自然裂隙系统,随着井筒的扩大,裂隙向外延伸,提高了煤层的渗透性,这是洞穴完井成功的主要因素。
洞穴完井的增产机理可概括为以下三个方面(图2):1)实际洞穴:实际洞穴的半径可达3--4m ,增大了煤层的裸露面积,消除了煤层在钻井完井作业中受到的污染。
2)剪切/破碎带:洞穴效应的延伸,使洞穴以外的煤层发生张性破裂和剪切破裂,形成一个半径约6--8m的剪切破碎带,增强了导流能力。
3)扰动带:由于应力的释放作用,在剪切/破碎带以外产生对煤层的扰动,形成一个渗透性增高区,扰动带很大,半径可达90m 。
洞穴完井方法在美国圣湖安盆地煤层气井中广泛应用,并获得成功,洞穴完井与压裂完井的气产量之比约为7:1,单井气产量 28300m3/d,是一种有效的增产措施。
国内近几年对洞穴完井方法进行了探索,地矿、石油系统分别在安阳、丰城等地进行了水力切割洞穴完井实验,未达到预期效果。
联合国资助项目在开栾进行了动力洞穴完井实验,效果不理想。
目前,国内尚无洞穴完井成功实例。
从技术储备看,国内具备水力切割洞穴完井技术,并进行了几口井的实验。
煤层气井钻井完井技术浅议蒋作焰【摘要】:煤层在储层物性、机械力学性质及储集方式等方面具有与常规油气储层不同的特征;这些特征决定了煤层气井钻井、取心、完井及储层保护诸技术的特殊性。
据此,我们从钻井完井工程的角度分析了现有技术存在的问题和制约煤层气开发效果的主要因素。
研究并形成了一整套煤层气井的取心技术、储层保护技术和完井技术。
这套技术应用于中国多个煤层气试验开发区,不仅满足了地质评价的需要,也为实现煤层气工业性开采起到了积极推动作用。
【关键词】:煤层气钻井技术完井技术【作者】:蒋作焰2006年毕业于长江大学石油工程专业,中原石油勘探局钻井一公司工程师。
前言煤层气又称煤层甲烷,是一种优质高效清洁能源。
凭借良好的安全效益、环保效益和经济效益,煤层气的勘探开发已在国际上引起广泛的关注。
我国煤层气资源十分丰富,但是目前我国的天然气勘探开发还处于起步阶段。
中原钻井通过多年的攻关研究和试验,形成并掌握了一整套适合煤层气的钻井完井工艺技术,其内容包括:煤层造穴技术、连通技术、煤层井眼轨迹控制技术、水平分支井技术、充气欠平衡钻井技术、煤层绳索取心技术、煤层气完井技术、煤储层保护技术、煤层气井完井技术等。
一、煤层气井钻井完井的特殊性煤层气钻井完井技术是建立在煤层地质力学性质及开采要求基础之上的。
煤层具有不同于其他储层的特殊地质特性表现在以下几个方面:1、井壁稳定性差,容易发生井下复杂故障。
煤层机械强度低,裂缝和割理发育,均质性差,存在较高剪切应力作用。
因而煤层段井壁极不稳定,在钻井完井过程中极易发生井壁坍塌、井漏、卡钻甚至埋掉井眼等井下复杂。
2、煤层易受污染,实施煤层保护措施难度大。
煤层段孔隙压力低且孔隙和割理发育,极易受钻井液、完井液和固井水泥浆中固相颗粒及滤液的污染;但在钻井完井过程中,为安全钻穿煤层,防止井壁坍塌,又要适当提高钻井液完井液的密度,保持一定的压力平衡。
这就必然会增加其固相含量和滤失量,加重煤层的污染。
2000年6月油 气 井 测 试第9卷 第2期
煤层气井动力洞穴完井工艺
顾维军Ξ王 倩
(华北石油管理局井下作业公司)
在煤层气的勘探与开发领域中,特别是在煤层气井的完井工艺和方法上常见的有套管完井、主力煤层段的裸眼完井和主力煤层段的洞穴完井等。
对于不同地区、不同的构造特征,选用的完井工艺及方法也不尽相同,但最终目的只有一个,就是在目前的工艺水平的基础上尽快让煤岩储层的吸咐气解吸出来,并具有工业价值,造福人类。
动力洞穴完井工艺技术从钻井、完井、排水采气的整个工序过程与其它完井方法相比,具有不进行单相注入Π压降试井和压裂等措施就可以达到单井面积降压、恢复和提高煤层渗透率等优点。
该工艺方法同样适用于煤层割理发育,物性较好、封盖条件好、厚度大、含气量及解吸率高的中低挥发份(中高煤阶)的煤岩储层。
地面设备及工具要求
1.井架高度不低于16m的50~80t修井机一台。
2.波纹S-
3.5动力水龙头一套(包括液压操作系统)。
3.适用73mm钻杆的旋转防喷器(SF18210)一套,其中包括20d作业的密封跟件。
4.63.5mm四方钻杆1根、73mm钻杆数根、101.6mm~108mm钻铤4~6根、152.4mm三牙轮钻头一只。
5.压风机3~4台及相应的连接管线,排量10m3Πmin,型号为S210Π150或S210Π250型。
6.400或700型水泥车一台,40m3储水罐一个。
7.修井机水龙带为25~35MPa的高压水龙带。
8.放喷管线末端为139.7mm套管,不得少于20m。
9.预定气压吞吐作业时间15~20d(作业吞吐范围按煤层水平距离30m估算)。
10.注入气压管线试压不得少于25MPa。
11.井场所有设备及工具按石油天然气集团公司新颁布的标准摆放,便于施工作业,并且符合HSE管理体系要求。
地面作业流程及洞穴完井管柱结构
动力洞穴完井地面作业流程及完井管柱结构见图1。
Ξ顾维军,男,1981年毕业于华北石油学校钻井专业,长期从事井下试油、测试、修井作业以及煤层气的勘探与开发工作。
地址:河北省任丘市华北石油管理局井下作业公司,邮政编码:062552。
施工作业步骤
1.确定主力煤层后,下177.8mm 套管至主力煤层以上5~10m 。
2.下钻具实探人工井底,若井底高于所需人工井底,则冲洗清理至所需人工井底,然后上提钻具至177.8mm 套管鞋以内3~5m 。
3.钻具结构:152.4mm 三牙钻头+单流阀+101.6~108mm 钻铤(3~5根)+73mm 钻杆+63.5mm 方钻杆+方钻杆截止阀+动力水龙头。
4.注气水作业。
(1)投入单流阀体;(2)启动动力水龙头,并以20r Πmin 的转速带动钻具进行划眼;(3)启动压风机,通过钻具注入压缩空气,并根据井口压力攀升趋势及时启动水泥车,并以100L Πmin 的速率注入洁净清水;(4)待集注气水压力稳定后,再连续注气6h ,甚至更长时间;(5)连接好放喷管线。
5.放气作业。
(1)打开套管闸门,第一周期要适当控制放气节奏,直至井筒气放尽,放气的同时,动力水龙头带动钻具反复进行划眼工作;(2)当注入气放尽后,钻具旋转控制井底,若井筒已被煤屑填充,则进行循环冲洗至人工井底。
下一周期可逐步放大放气速率。
6.注气—放气循环作业。
如果第一周期注放气作业正常,则要进行8~12个注放气作业循环,并逐步减少注入气量。
如果第一周期注放气作业不正常,应及时查明原因或让现场监督裁决,直至完成注放气循环作业。
7.井底清洗作业。
实探井底,并进行大排量的冲洗作业,若冲洗进展正常,则可实行下步工作。
反之,可考虑进行泡沫钻洗作业,直至完成清洗井底的工作。
8.下衬管完井。
按要求,考虑后期排采所需,要进行洞穴段的衬管保护完井作业,下127mm 衬管并悬挂于177.8mm 套管管鞋以上5~10m ,衬管底部为丝堵。
1
5第9卷 第2期顾维军等:煤层气井动力洞穴完井工艺
25油 气 井 测 试2000年6月
实 例 分 析
1.基本井况
LX20001井,位于山西临县程家塔乡后南裕村。
投资合作单位:美方C BM公司和中方山西河东煤层气有限公司。
该井于1995年9月中旬开钻,同年12月中旬完钻(包括洞穴完井作业等),完钻井深为718m,主力煤层为8#(676~685m),厚度9m。
完井井身结构为:表层套管244.5mm×23m,技术套管177.8mm×674m,生产衬管127mm×(633~700)m。
2.洞穴完井经历
该井于1995年12月4~15日启动3台压风机及1台水泥车给井内注气水作业,历时12d,共完成6个作业循环,造穴最大半径1.5m,达到了C BM设计要求。
3.动力造穴前后的参数对比
8#煤造穴前DST测试渗透率K1=4.88×10-3μm2,测试半径r1=1.0m,井眼半径r w1= 0.16m。
造穴后螺杆泵排液4d:渗透率K2=40×10-3μm2,测试半径r2=4.0m,井眼半径r w2 =1.50m。
由此可见,煤层通过人工造穴后,其渗透率比造穴前提高了近8.2倍,证明动力洞穴完井工艺是可取的。
目前美国的圣胡安盆地有不少成功的经验及实例,我国虽然在几个地区也陆续进行过试验,例如:安徽丰城煤矿、山西临县三交、程家塔等地,但尚未进入大规模实战阶段,也未对套管完成井(注入Π压降测试和压裂工艺)进行对比。
预计在今后的煤层气勘探及开发领域中,一定会出现百花齐放的大好局面。
本文收稿日期:2000-04-06 编辑:刘振庆
(上接49页)
结论与建议
1.此井是一整套API标准的地面施工,对施工现场实施了统一严格的控制,值得借鉴。
2.此施工特别强调了安全,尤其是人员的安全防护。
3.现场施工人员必须严格执行监督的命令,做到各方面的一致协调。
4.必须对环境严格保护,严格执行HSE。
5.清22井共测试两层,一次性成功率100%,资料录取合格率100%。
本文收稿日期:2000-05-08 编辑:王 军。