数学建模算法
- 格式:docx
- 大小:37.77 KB
- 文档页数:3
数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
数学建模十大经典算法数学建模是将现实问题抽象化成数学问题,并通过数学模型和算法进行解决的过程。
在数学建模中,常用的算法能够帮助我们分析和求解复杂的实际问题。
以下是数学建模中的十大经典算法:1.线性规划算法线性规划是一种用于求解线性约束下的最优解的方法。
经典的线性规划算法包括单纯形法、内点法和对偶理论等。
这些算法能够在线性约束下找到目标函数的最大(小)值。
2.整数规划算法整数规划是在线性规划的基础上引入了整数变量的问题。
经典的整数规划算法包括分枝定界法、割平面法和混合整数线性规划法。
这些算法能够在整数约束下找到目标函数的最优解。
3.动态规划算法动态规划是一种将一个问题分解为更小子问题进行求解的方法。
经典的动态规划算法包括背包问题、最短路径问题和最长公共子序列问题等。
这些算法通过定义递推关系,将问题的解构造出来。
4.图论算法图论是研究图和图相关问题的数学分支。
经典的图论算法包括最小生成树算法、最短路径算法和最大流算法等。
这些算法能够解决网络优化、路径规划和流量分配等问题。
5.聚类算法聚类是将相似的数据点划分为不相交的群体的过程。
经典的聚类算法包括K均值算法、层次聚类算法和密度聚类算法等。
这些算法能够发现数据的内在结构和模式。
6.时间序列分析算法时间序列分析是对时间序列数据进行建模和预测的方法。
经典的时间序列分析算法包括平稳性检验、自回归移动平均模型和指数平滑法等。
这些算法能够分析数据中的趋势、周期和季节性。
7.傅里叶变换算法傅里叶变换是将一个函数分解成一系列基础波形的过程。
经典的傅里叶变换算法包括快速傅里叶变换和离散傅里叶变换等。
这些算法能够在频域上对信号进行分析和处理。
8.最优化算法最优化是研究如何找到一个使目标函数取得最大(小)值的方法。
经典的最优化算法包括梯度下降法、共轭梯度法和遗传算法等。
这些算法能够找到问题的最优解。
9.插值和拟合算法插值和拟合是通过已知数据点来推断未知数据点的方法。
经典的插值算法包括拉格朗日插值和牛顿插值等。
建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
数学建模常用的30个常用算法(python代码) 数学建模中使用的算法涉及多个领域,包括优化、统计、机器学习等。
以下是一些在数学建模中常用的30个算法的简要说明和Python代码示例。
请注意,这只是一小部分,具体应用场景和需求可能需要使用其他算法。
1.线性规划(Linear Programming):from scipy.optimize import linprog2.整数规划(Integer Programming):from scipy.optimize import linprog3.非线性规划(Nonlinear Programming):from scipy.optimize import minimize4.蒙特卡洛模拟(Monte Carlo Simulation):import numpy as np5.差分方程(Difference Equations):import numpy as np6.梯度下降法(Gradient Descent):import numpy as np7.贪心算法(Greedy Algorithm):def greedy_algorithm(values, weights, capacity):n = len(values)ratio = [(values[i] / weights[i], i) for i in range(n)]ratio.sort(reverse=True)result = [0] * ntotal_value = 0current_weight = 0for _, i in ratio:if weights[i] + current_weight <= capacity: result[i] = 1current_weight += weights[i]total_value += values[i]return result, total_value8.动态规划(Dynamic Programming):def dynamic_programming(weights, values, capacity): n = len(values)dp = [[0] * (capacity + 1) for _ in range(n + 1)]for i in range(1, n + 1):for w in range(capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]9.遗传算法(Genetic Algorithm):import numpy as np10.模拟退火算法(Simulated Annealing):import numpy as np11.马尔可夫链(Markov Chains):import numpy as np12.蒙特卡洛树搜索(Monte Carlo Tree Search):import numpy as np13.K均值聚类(K-means Clustering):from sklearn.cluster import KMeans14.主成分分析(Principal Component Analysis):from sklearn.decomposition import PCA15.支持向量机(Support Vector Machine):from sklearn.svm import SVC16.朴素贝叶斯分类器(Naive Bayes Classifier):from sklearn.naive_bayes import GaussianNB17.决策树(Decision Tree):from sklearn.tree import DecisionTreeClassifier18.随机森林(Random Forest):from sklearn.ensemble import RandomForestClassifier19.K最近邻算法(K-Nearest Neighbors):from sklearn.neighbors import KNeighborsClassifier20.多层感知器(Multilayer Perceptron):from sklearn.neural_network import MLPClassifier21.梯度提升机(Gradient Boosting):from sklearn.ensemble import GradientBoostingClassifier22.高斯混合模型(Gaussian Mixture Model):from sklearn.mixture import GaussianMixture23.时间序列分析(Time Series Analysis):import statsmodels.api as sm24.马尔科夫链蒙特卡洛(Markov Chain Monte Carlo):import pymc3 as pm25.局部最小二乘回归(Local Polynomial Regression):from statsmodels.nonparametric.kernel_regression import KernelReg26.逻辑回归(Logistic Regression):from sklearn.linear_model import LogisticRegression27.拉格朗日插值法(Lagrange Interpolation):from scipy.interpolate import lagrange28.最小二乘法(Least Squares Method):import numpy as np29.牛顿法(Newton's Method):def newton_method(f, df, x0, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - f(x) / df(x)if abs(f(x)) < tol:breakreturn x30.梯度下降法(Gradient Descent):def gradient_descent(f, df, x0, learning_rate=0.01, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - learning_rate * df(x)if abs(df(x)) < tol:breakreturn x以上代码只是简单示例,实际应用中可能需要根据具体问题进行调整和扩展。
数学建模十大经典算法数学建模是将现实问题转化为数学模型,并利用数学方法进行求解的过程。
下面是数学建模中常用的十大经典算法:1.线性规划(Linear Programming):通过确定一组线性约束条件,求解线性目标函数的最优解。
2.整数规划(Integer Programming):在线性规划的基础上,要求变量取整数值,求解整数目标函数的最优解。
3.非线性规划(Nonlinear Programming):目标函数或约束条件存在非线性关系,通过迭代方法求解最优解。
4.动态规划(Dynamic Programming):通过分阶段决策,将复杂问题分解为多个阶段,并存储中间结果,以求解最优解。
5.蒙特卡洛模拟(Monte Carlo Simulation):通过随机抽样和统计分析的方法,模拟系统的行为,得出概率分布或数值近似解。
6.遗传算法(Genetic Algorithm):模拟生物进化过程,通过选择、交叉和变异等操作,寻找最优解。
7.粒子群算法(Particle Swarm Optimization):模拟鸟群或鱼群的行为,通过个体间的信息交流和集体协作,寻找最优解。
8.模拟退火算法(Simulated Annealing):模拟金属退火的过程,通过控制温度和能量变化,寻找最优解。
9.人工神经网络(Artificial Neural Network):模拟生物神经网络的结构和功能,通过训练网络参数,实现问题的分类和预测。
10.遗传规划(Genetic Programming):通过定义适应性函数和基因编码,通过进化算子进行选择、交叉和变异等操作,求解最优模型或算法。
这些算法在不同的数学建模问题中具有广泛的应用,能够帮助解决复杂的实际问题。
数学建模方法详解三种最常用算法在数学建模中,常使用的三种最常用算法是回归分析法、最优化算法和机器学习算法。
这三种算法在预测、优化和模式识别等问题上有着广泛的应用。
下面将对这三种算法进行详细介绍。
1.回归分析法回归分析是一种用来建立因果关系的统计方法,它通过分析自变量和因变量之间的关系来预测未知的因变量。
回归分析可以通过构建一个数学模型来描述变量之间的关系,并利用已知的自变量值来预测未知的因变量值。
常用的回归分析方法有线性回归、非线性回归和多元回归等。
在回归分析中,我们需要首先收集自变量和因变量的样本数据,并通过数学统计方法来拟合一个最优的回归函数。
然后利用这个回归函数来预测未知的因变量值或者对已知数据进行拟合分析。
回归分析在实际问题中有着广泛的应用。
例如,我们可以利用回归分析来预测商品销售量、股票价格等。
此外,回归分析还可以用于风险评估、财务分析和市场调研等。
2.最优化算法最优化算法是一种用来寻找函数极值或最优解的方法。
最优化算法可以用来解决各种优化问题,例如线性规划、非线性规划和整数规划等。
最优化算法通常分为无约束优化和有约束优化两种。
无约束优化是指在目标函数没有约束条件的情况下寻找函数的最优解。
常用的无约束优化算法有梯度下降法、共轭梯度法和牛顿法等。
这些算法通过迭代计算来逐步优化目标函数,直到找到最优解。
有约束优化是指在目标函数存在约束条件的情况下寻找满足约束条件的最优解。
常用的有约束优化算法有线性规划、非线性规划和混合整数规划等。
这些算法通过引入拉格朗日乘子、KKT条件等来处理约束条件,从而求解最优解。
最优化算法在现实问题中有着广泛的应用。
例如,在生产计划中,可以使用最优化算法来确定最优的生产数量和生产计划。
此外,最优化算法还可以应用于金融风险管理、制造工程和运输物流等领域。
3.机器学习算法机器学习算法是一种通过对数据进行学习和模式识别来进行决策和预测的方法。
机器学习算法可以根据已有的数据集合自动构建一个模型,并利用这个模型来预测未知的数据。
数学建模中常用的十种算法在数学建模中,常用的算法有很多种。
以下是数学建模常用的十种算法:1.线性回归算法:线性回归是一种用于建立变量之间线性关系的统计算法。
它通过最小化预测值与实际值之间的均方误差来确定最佳拟合直线。
2.非线性回归算法:非线性回归是一种用于建立变量之间非线性关系的统计算法。
它通过最小化预测值与实际值之间的均方误差来确定最佳拟合曲线。
3.最小二乘法算法:最小二乘法是一种用于估计模型参数的优化算法。
它通过最小化观测值与预测值之间的平方差来确定最佳参数值。
4.插值算法:插值是一种用于根据已知数据点推断未知数据点的技术。
其中常用的算法包括线性插值、拉格朗日插值和样条插值。
5.数值积分算法:数值积分是一种用于计算函数的定积分的技术。
其中常用的算法包括梯形法则、辛普森法则和龙贝格积分。
6.数值优化算法:数值优化是一种用于求解最优化问题的技术。
其中常用的算法包括梯度下降法、牛顿法和拟牛顿法。
7.图形算法:图形算法是一种用于处理图像和图形数据的技术。
其中常用的算法包括图像滤波、图像分割和图像识别。
8.聚类算法:聚类是一种用于将数据集分组为不同类别的技术。
其中常用的算法包括K均值聚类、层次聚类和DBSCAN。
9.分类算法:分类是一种用于将数据分为不同类别的技术。
其中常用的算法包括支持向量机、决策树和随机森林。
10.贝叶斯算法:贝叶斯算法是一种用于计算后验概率的统计推断方法。
其中常用的算法包括贝叶斯分类、朴素贝叶斯和马尔科夫链蒙特卡洛。
以上是数学建模中常用的十种算法,它们在不同的应用领域和问题中具有广泛的应用价值,并且常常可以相互结合以获得更好的建模结果。
数学建模方法详解三种最常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。
在数学建模中,常用的算法有很多种,其中最常用的有三种,分别是线性规划、整数规划和动态规划。
一、线性规划线性规划是一种优化方法,用于在给定的约束条件下,寻找目标函数最大或最小值的一种方法。
它的数学形式是以线性约束条件为基础的最优化问题。
线性规划的基本假设是目标函数和约束条件均为线性的。
线性规划通常分为单目标线性规划和多目标线性规划,其中单目标线性规划是指在一个目标函数下找到最优解,而多目标线性规划则是在多个目标函数下找到一组最优解。
线性规划的求解方法主要有两种:单纯形法和内点法。
单纯形法是最常用的求解线性规划问题的方法,它的核心思想是通过不断迭代改进当前解来达到最优解。
内点法是一种相对较新的求解线性规划问题的方法,它的主要思想是通过从可行域的内部最优解。
二、整数规划整数规划是线性规划的一种扩展形式,它在线性规划的基础上增加了变量必须取整数的限制条件。
整数规划具有很强的实际应用性,它能够用于解决很多实际问题,如资源分配、生产优化等。
整数规划的求解方法通常有两种:分支定界法和割平面法。
分支定界法是一种常用的求解整数规划问题的方法,它的基本思想是通过将问题划分为若干个子问题,并通过求解子问题来逐步缩小解空间,最终找到最优解。
割平面法也是一种常用的求解整数规划问题的方法,它的主要思想是通过不断添加线性割平面来修剪解空间,从而找到最优解。
三、动态规划动态规划是一种用于求解多阶段决策问题的数学方法。
多阶段决策问题是指问题的求解过程可以分为若干个阶段,并且每个阶段的决策都受到之前决策的影响。
动态规划的核心思想是将问题划分为若干个相互关联的子问题,并通过求解子问题的最优解来求解原始问题的最优解。
动态规划通常分为两种形式:无后效性和最优子结构。
无后效性是指一个阶段的决策只与之前的状态有关,与之后的状态无关。
最优子结构是指问题的最优解能够由子问题的最优解推导而来。
数学建模常用算法
《数学建模常用算法》
一、算法介绍
1、数学建模攻略:算法攻略是数学建模的基础,有利于快速解决问题,它是建模者最重要的工具之一。
2、搜索算法:搜索算法是从一组可能解决方案中搜索最佳解决方案的算法,用于解决搜索问题、优化问题和最优化问题等。
3、约束满足算法:约束满足问题是指在一定的约束条件下求解最优解的问题。
4、最优化算法:最优化算法是求解最优解的算法,可用于解决最优化问题、组合优化问题等。
5、迭代算法:迭代算法是一种以迭代的方式求解最优解的算法,用于求解非线性函数最优解等。
6、概率算法:概率算法是一种以概率方式求解最优解的算法,用于解决最优搜索问题、优化问题等。
7、随机算法:随机算法是一种以随机方式求解最优解的算法,用于解决优化问题、最优化问题等。
二、算法应用
1、搜索算法:搜索算法在数学建模中最常用于求解搜索问题、优化问题和最优化问题。
2、约束满足算法:约束满足算法可以用于解决求解约束优化问题、分配优化问题等。
3、最优化算法:最优化算法可以用于解决最优化问题、组合优化问题、路径优化问题等。
4、迭代算法:迭代算法主要应用于求解非线性函数的最优解,也可用于求解最优化问题等。
5、概率算法:概率算法可以用于解决优化搜索问题、优化寻路问题、优化调度问题等。
6、随机算法:随机算法可以用于解决优化问题、最优化问题、多目标优化问题等。
数学建模常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解的过程。
在数学建模中,常用的算法有很多种,下面将介绍一些常见的数学建模算法。
1.最优化算法:-线性规划算法:如单纯形法、内点法等,用于求解线性规划问题。
-非线性规划算法:如最速下降法、牛顿法等,用于求解非线性规划问题。
-整数规划算法:如分支定界法、割平面法等,用于求解整数规划问题。
2.概率统计算法:-蒙特卡洛模拟:通过模拟随机事件的方式,得出问题的概率分布。
-贝叶斯统计:利用先验概率和条件概率,通过数据更新后验概率。
-马尔可夫链蒙特卡洛:用马尔可夫链的方法求解复杂的概率问题。
3.图论算法:-最短路径算法:如迪杰斯特拉算法、弗洛伊德算法等,用于求解两点之间的最短路径。
-最小生成树算法:如普里姆算法、克鲁斯卡尔算法等,用于求解图中的最小生成树。
- 最大流最小割算法: 如Edmonds-Karp算法、Dinic算法等,用于求解网络流问题。
4.插值和拟合算法:-多项式插值:如拉格朗日插值、牛顿插值等,用于通过已知数据点拟合出多项式模型。
-最小二乘法拟合:通过最小化实际数据与拟合模型之间的差异来确定模型参数。
-样条插值:通过使用多段低次多项式逼近实际数据,构造连续的插值函数。
5.遗传算法和模拟退火算法:-遗传算法:通过模拟自然选择、遗传变异和交叉等过程,优化问题的解。
-模拟退火算法:模拟固体退火过程,通过随机策略进行,逐步靠近全局最优解。
6.数据挖掘算法:- 聚类算法: 如K-means算法、DBSCAN算法等,用于将数据分为不同的类别。
-分类算法:如朴素贝叶斯算法、决策树算法等,用于通过已知数据的类别预测新数据的类别。
- 关联分析算法: 如Apriori算法、FP-growth算法等,用于发现数据集中的关联规则。
以上只是数学建模中常用的一些算法,实际上还有很多其他算法也可以应用于数学建模中,具体使用哪种算法取决于问题的性质和要求。
数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。
数学建模大赛常用算法数学建模大赛是一项小组竞赛,旨在提高数学、计算机科学和工程学等领域的学生在现实环境下解决问题的能力。
为了提高成功的可能性,参赛者需要掌握各种数学建模算法。
下面列举了常用的数学建模算法。
1.线性规划算法线性规划是一种在线性约束下,寻找最优解的优化问题。
这种方法被广泛应用于调度、优化和资源分配等领域。
其中最著名的算法是单纯性法(Simplex algorithm),它从基本可行解上始发,移动到加权最优点,以找到最优解。
2.整数规划算法整数规划是一种线性规划的扩展,其目的是优化实数值,但仅允许变量取整数值。
这种算法的典型应用包括排产、最优化和指派问题等领域,其中著名的算法包括分支定界法(Branch and bound algorithm)和切平面法(Cutting-plane algorithm)。
3.动态规划算法动态规划从多阶段决策过程的观点,解决了最优化问题。
这种算法是通过把整个问题分解成自问题并逐步求解它们的最优值,来得到整个问题的最优解。
该算法广泛应用于计划、序列分析和决策问题。
4.许可削减算法许可削减算法是一种通过有效的压缩矩阵,减少变量和线性约束的数量,从而解决线性规划问题的算法。
它是从削减单元算法发展而来。
5.模拟退火算法模拟退火是一种传统的随机优化算法,通过模拟金属受热冷却的过程,寻找问题的最优解。
该算法广泛应用于物理、化学和工程领域,这是因为它可以在多维极小值问题中寻找全局最优解。
6.遗传算法遗传算法是一种通过生物学进化规律来解决优化问题的搜索算法。
人工智能和计算机科学等多个领域都可以应用该算法。
遗传算法从族群中随机选择配对,通过基因重组产生新的孩子,这些孩子具有更好的适应性。
7.神经网络算法神经网络算法是一种基于数字系统和人工神经网络创造处理信息的统计学习方法。
它通常被用于图像识别和自然语言处理。
8.支持向量机算法支持向量机是一种通过在聚类数据点间创建超平面来解决分类问题的算法。
数学系毕业论文论文 (设计)题目:数学建模中常见的十种算法姓名黄小芬______学号 100501313专业数学与应用数学班级 10级数学3班指导教师戴华炜职称___(宋体四号)____提交日期 2013年6月22日数学建模中常见的十种算法黄小芬指导老师:戴华炜10数学3班惠州学院数学系,广东惠州,516007摘要数学建模是利用各种相关的数学知识,对实际问题进行分析和核心内容提取。
建立起切实可行的数学模型,然后进行分析计算,最终得出一定的结论,应用到实际生活中。
利用数学软件对提出的实际问题进行建模,就可以使得人们从繁重的计算中解脱出来。
把更多的精力投入到对知识的理解和应用之中,从而也大大提高了进行数学建模的效率。
数学建模是连接数学和现实世界的桥梁,越来越多的大学生参加数学建模竞赛活动。
然而数学建模过程中往往会遇到许多困难,比如有些优化模型求解困难,不知如何处理或选择什么样的算法等。
因此,在教学或建模培训过程中引导学生学习一些方法、技巧或算法去克服建模中常遇到的困难,对提高大学生数学建模能力具有重要意义。
.关键词数学建模;优化模型;算法Ten common mathematical modeling algorithmHUANG Xiaofen Tutor: DAI HuaweiGrade 2010,Class 3, Major in Mathematics and Applied Mathematics,Department ofMathematics , Huizhou University ,Huizhou, Guangdong Province, China,516007AbstractMathematical modeling is the use of mathematical knowledge, the practical problems and core analysis. Establish mathematical model is feasible, then analysis, finally we can draw conclusions, applied to real life. The modeling of the actual problem is proposed by using the mathematical software, can make people free out from the heavy calculation. Put more energy into the understanding and application of knowledge, thus greatly improving the efficiency of mathematical modeling. Mathematical modeling is the bridge between mathematics and the real world, more and more students to participate in the activities of mathematical modeling competition. However, the process of mathematical modeling often encounter many difficulties, such as some optimization model to solve the difficulties, do not know how to handle or the choice of what kind of algorithm. Therefore, to guide the students to learn some methods, techniques and algorithms to overcome the difficulties in modeling often encountered in teaching or modeling training process, to improve the students' mathematical modeling ability has important significance.KeywordsMathematical modeling; optimization model; algorithm目录1.引言――――――――――――――――――12.特殊三阶线性递归数列(宋体四号、加粗)――――――――22.1 特殊三阶线性数列的定义(宋体四号)―――――――――32.2 特殊三阶线性数列的通项问题―――――――――――――32.3 数列{}n a的另一种表达形式―――――――――――――――52.4 数列{}n a的一些性质――――――――――――――――――53. 特殊三阶线性递归数列的应用―――――――――――――――103.1 在概率中的应用――――――――――――――――――――103.2 在三角形中的应用―――――――――――――――――――121.引言纵观历届数学建模竞赛题目许多都可建成优化模型,虽可利用Matlab,Lindo,Lingo等软件,但求解困难的问题仍然突出。
数学建模各题型的算法数学建模的题型很多,对应的算法也有多种。
以下是数学建模常见题型以及相应的算法:1. 线性规划(Linear Programming):常用的线性规划算法包括单纯形法(Simplex Algorithm)、内点法(Interior Point Method)等。
2. 整数规划(Integer Programming):常用的整数规划算法包括分支定界法(Branch and Bound)、动态规划法(Dynamic Programming)、割平面法(Cutting Plane Method)等。
3. 非线性规划(Nonlinear Programming):常用的非线性规划算法包括梯度下降法(Gradient Descent)、牛顿法(Newton's Method)、拟牛顿法(Quasi-Newton Method)、遗传算法(Genetic Algorithm)等。
4. 图论(Graph Theory):常用的图论算法包括最短路径算法(Dijkstra Algorithm、Floyd-Warshall Algorithm)、最小生成树算法(Prim Algorithm、Kruskal Algorithm)、最大流算法(Ford-Fulkerson Algorithm、Edmonds-Karp Algorithm)等。
5. 动态规划(Dynamic Programming):动态规划算法用于求解具有重叠子问题性质的最优化问题,常用的算法有钢条切割问题、背包问题、旅行商问题等。
6. 模拟退火算法(Simulated Annealing):模拟退火算法是一种全局优化算法,常用于求解复杂的组合优化问题,如旅行商问题、装箱问题等。
7. 神经网络(Neural Network):神经网络算法常用于函数拟合、分类、聚类等问题,其中包括前馈神经网络(Feedforward Neural Network)、卷积神经网络(Convolutional Neural Network)、循环神经网络(Recurrent Neural Network)等。
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)1、蒙特卡罗方法(MC)(Monte Carlo):蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
数学建模算法
数学建模算法
概述
数学建模算法是指在一定条件下,将模型转化为数学模型,通过对模型进行求解,得出所需的决策或预测结果。
其实现过程包括建立模型、求解模型、验证模型和应用模型等步骤。
数学建模算法适用于各个领域的问题,如工业、科研、金融、医学等,旨在找到一个最优或最优解,以达到提高效率、降低成本、改善生产等目的。
分类
数学建模算法可以分为静态建模和动态建模两类。
静态建模
静态建模是指在固定的条件下进行建模和求解,即没有
时间的概念。
其主要包括线性规划、整数规划、非线性规划、动态规划等。
其中,线性规划是指在约束条件下,求解目标函数的最大值或最小值的问题。
整数规划则是线性规划的一种特殊形式,即决策变量的取值必须为整数。
非线性规划是指在约束条件下,求解目标函数的最大值或最小值,但目标函数或约束条件中存在非线性关系的问题。
动态规划是一种处理有时间序列的优化问题的数学方法,其目标是在每个阶段进行决策,以达到最优化的目的。
动态建模
动态建模包括多目标规划、随机规划、模拟退火、遗传
算法等。
其主要特点是考虑了时间变化的因素。
其中,多目标
规划是指在多个决策变量和多个目标函数约束下,找到一组最优解,以满足不同目标的要求。
随机规划则是指在随机变量的作用下,求解约束条件下的最大(小)值。
模拟退火是一种随机优化算法,它通过“跳跃”或“震荡”调整决策变量的值,以寻找最优解。
遗传算法则是一种模拟生物进化的优化算法,通过模拟生物群体的交配、变异、适应度等操作,生成新种群,并不断筛选,最终找到最优解。
求解方法
求解数学建模问题的方法主要有三种:解析方法、迭代
法和基于搜索的方法。
其中,解析方法是指通过数学公式分析来解决问题。
例如,对于简单的线性规划问题,可以使用单纯形法或内点法来解决。
迭代法是指通过根据规则来不断逼近最优解的过程,以求解目标函数的最大(小)值。
常用的迭代方法包括牛顿法、梯度下降法等。
基于搜索的方法是指通过对决策空间的搜索来找到最优解的过程。
搜索方法主要包括分支界定法、回溯法等。
应用范围
数学建模算法广泛应用于各个领域。
在工业中,数学建
模可以用于生产线的布局优化、原材料配比优化、产品质量监测等方面;在科研中,数学建模可以用于物理、化学、生物等领域的数据分析和模拟;在金融领域,数学建模可以用于股票预测、风险分析、交易策略等;在医学方面,数学建模可以用于疾病预测、药物研发、医疗资源优化配置等。
应用实例
数学建模算法在各个领域都有广泛的应用。
以下是一些
实际应用案例:
1. 企业生产线规划优化
对于大型企业来说,生产线的规划是一个非常复杂的问题。
数学建模算法可以用于优化不同生产线之间的任务分配和协调,以达到提高生产效率和降低成本的目的。
2. 股票预测
股票是金融市场中的一个重要指标,也是一个充满挑战的领域。
数学建模算法可以用于预测股票的变化趋势,并根据预测结果给出相应的投资建议。
3. 疾病预测
疾病是每个人都可能面临的问题。
数学建模算法可以用于预测疾病的发生概率,并提供相应的治疗方案和预防建议。
4. 物理模拟
在物理领域中,数学建模算法可以用于模拟复杂的物理现象,比如地震动态、流体力学等,并为科学家提供可信的模拟结果。
总结
数学建模算法是一种重要的数学方法,在各个领域都得到了广泛的应用。
通过将实际问题转化为数学问题,并利用各种优化算法进行求解,可以得到最优或最优解,以达到提高效率、降低成本等目的。
随着科技的不断发展,数学建模算法将在更多领域得到应用。