(整理)本期其他学习(热电阻和热电偶检定)
- 格式:docx
- 大小:28.95 KB
- 文档页数:7
实验三热电偶与热电阻的温度测量一、实验目的:1、了解热电偶测量温度的原理与应用。
2、了解热电偶冷(自由)端温度补偿的原理与方法。
3、了解热电阻的测温原理与特性。
二、实验原理:将两种不同的金属丝组成回路,如果二种金属丝的两个接点有温度差,在回路内就会产生热电势,这就是热电效应,热电偶就是利用这一原理制成的一种温差测量传感器,置于被测温度场的接点称为工作端,另一接点称为冷端(也称自由端),冷端可以是室温值也可以是经过补偿后的0℃、25℃的模拟温度场。
热电偶是一种温差测量传感器。
为直接反映温度场的摄氏温度值,需对其自由端进行温度补偿。
热电偶冷端温度补偿的方法有:冰水法、恒温槽法、自动补偿法、电桥法,常用的是电桥法(图3-2),它是在热电偶和测温仪表之间接入一个直流电桥,称冷端温度补偿器,补偿器电桥在0℃时达到平衡(亦有20℃平衡)。
当热电偶自由端(a、b)温度升高时(>0℃)热电偶回路的电势Uab下降,由于补偿器中PN结呈负温度系数,其正向压降随温度升高而下降,促使Uab上升,其值正好补偿热电偶因自由端温度升高而降低的电势,达到补偿目的。
热电阻用于测温时利用了导体电阻率随温度变化这一特性,对于热电阻要求其材料电阻温度系数大,稳定性好、电阻率高,电阻与温度之间最好有线性关系。
常用的有铂电阻和铜电阻,热电阻阻值Rt与温度t的关系为:Rt=R0(1+At+Bt2)本实验采用的是Pt100铂电阻,它的R0=100Ω,A=3.9684×10-2/℃,B=5.847×10-7/℃2,铂电阻采用三线连接法,其中一端接二根引线主要为了消除引线电阻对测量的影响。
三、需用器件与单元:K型、E型热电偶、温度源、温度控制仪表、温度控制测量仪(9000型)。
温度传感器实验模板、冷端温度补偿器、直流±15V、外接+5V电源适配器。
Pt100铂热电阻。
四、实验步骤:1、将热电偶插到温度源两个传感器插孔中任意一个插孔中,(K型、E型已装在一个护套内),K型热电偶的自由端接到主控箱面板上温控部分的Ek端,用它作为标准传感器,配合温控仪表用于设定温度,注意识别引线标记,K型、E型及正极、负极不要接错。
热电偶、热电阻自动检定系统产品名称:热电偶、热电阻自动检定系统热电偶热电阻自动检定系统主要用于工作用热电偶、工业热电阻、玻璃液体温度计、双金属温度计、压力式温度计等温度传感器的自动检定/校准。
系统由计算机控制多通道低电势扫描器、数字万用表、热电偶检定炉、恒温油(水)槽等设备,实现热电偶、热电阻检定/校准的控温、数据采集、数据处理、报表生成与打印、以及数据存储的完全自动化。
系统功能与技术指标完全符合JJF1098-2003《热电偶、热电阻自动测量系统校准规范》要求。
一、检定项目自动检定S、R、B、K、N、J、E、T、EA-2、短型S、短型R等分度号工作热电偶。
自动检定Pt10、Pt100、Cu50、Cu100、Pt-X、Cu-X热电阻,包括两线制、三线制和四线制热电阻。
自动检定玻璃液体温度计、双金属温度计、压力式温度计等,自动进行数据处理,生成记录表格二、系统技术指标多通道扫描开关寄生电势:≤0.2μV通道间数据采集差值:≤1μV 2mΩ测量重复性:≤1.5μV 6mΩ热电偶检定炉恒温性能:恒温≤0.5℃/6min 测量≤0.1℃/min恒温油、水槽恒温性能:恒温≤0.04℃/10min 测量≤0.02℃/min热电偶参考端补偿范围: 0℃-50℃分辨率0.1℃五、系统软硬件特点◆检定装置软、硬件操作自动化设计:系统除捆扎、装炉(槽)、接线、参数设定外,其它工作(如查线、控温、检定、数据保存等)均由系统自动完成。
◆标准化、模块化的设计:该装置能兼容您已有设备如油(水)槽、检定炉、数字多用表、计算机等,组成先进可靠、自动化程度高的自动化检定系统,可同时检定热电偶和热电阻及其它膨胀式温度计。
热电阻检定统一接线,自动进行线制(二、三、四)转换。
专用半导体零度恒温器提供方便、稳定、可靠的冷端补偿能力,使热电偶检定稳定性和检定效率大大提高。
◆优化的热电阻测量方法;多通道扫描器内含四线制换向开关,通过特有的正、反向测量切换功能,有效消除测量回路中的寄生电势对测量结果的影响。
热电偶与热电阻区别对比热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于:一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热偶,是产生感应电压的变化,他随温度的改变而改变。
二、两种传感器检测的温度范围不一样,热阻一般检测-250至500度温度范围,最高测量范围可达600度左右。
热偶可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。
三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热偶是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。
1.热电偶的测量原理:热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。
将它插入待测温度的介质中;而热电偶的另一端(参比端或自由端)则与显示仪表相连。
如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。
2.热电阻的测量原理:热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上或通过激光溅射工艺在基片形成。
当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。
3.如何选择热电偶和热电阻?根据测温范围选择:500℃以上一般选择热电偶,500℃以下一般选择热电阻;,根据测量精度选择:对精度要求较高选择热电阻,对精度要求不高选择热电偶;根据测量范围选择:热电偶所测量的一般指“点”温,热电阻所测量的一般指空间平均温度;4.热电偶和热电阻优劣对比热电偶对温度较敏感,响应速度快。
但因自身特性所限,测温时对外在条件要求较高,如:线径变化、稳定的冷端等。
热电偶热电阻的校验一、热电偶校验1、基本原理热电偶的校验基本原理是以标准热电偶作为比较校验物,比较被检热电偶与标准热电偶的温度输出的大小和温差值,以此判定被检热电偶的准确度,温度输出的大小和温差值受温度物的影响。
2、工作环境检测环境应温度应控制在(+5~+30)℃,湿度应小于90%,检验期间必须保持稳定的环境条件。
3、校验设备校验时应使用标准、高精度的万用表,温度计、温度控制器、温度计表头等,并应加装校准温度量程,温度计要求排湿性能好、耐湿性能强,并保证其精度。
4、校验方法(1)将标准热电偶和被检测热电偶各装置在相同的热杯中,通过温度控制器分别控制其热源温度,并将两热电偶的模拟量输出连接到万用表,用万用表测量标准热电偶和被检热电偶之间温差是否符合要求,被检热电偶的温差值应控制在标准热电偶的±1℃范围内,经过核对后即可得出被检热电偶的准确度。
(2)在校准过程中,应改变热源温度以检验热电偶的温差值,可以使温差值在标准热电偶的±1℃范围内,可定义出被检热电偶的数值,进行准确校验。
二、热电阻校验1、基本原理热电阻的校验基本原理是以标准热电阻作为比较校验物,比较被检热电阻与标准热电阻的温度输出的大小和温差值,以此判定被检热电阻的准确度。
2、工作环境检测环境应温度应控制在(+5~+30)℃,湿度应小于90%,检验期间必须保持稳定的环境条件。
3、校验设备校验时应使用标准、高精度的温度表、热电阻表头、电源等,并应加装精确的校准量程,保证测量的准确度。
4、校验方法(1)将标准热电阻和被检的热电阻同时连接到温度表的模拟量输出接口上,并控制热电阻的热源温度,以此来比较两者的温差值,被检热电阻的温差值应小于标样热电阻的±1℃范围,通过核对后即可得出被检热电阻的准确度。
(2)在校准过程中,应改变热源温度以检验热电阻的温差值,可以使温差值在标准热电阻的±1℃范围内,可定义出被检热电阻的数值,进行准确校验。
热电偶/热电阻的区别热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于:一、信号的性质,热电阻本身是电阻,温度的变化,使电阻产生正的或者是负的阻值变化;而热耦,是产生感应电压的变化,他随温度的改变而改变。
二、两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围,最高测量范围可达600度左右(当然可以检测负温度)。
热耦可检测0-1000度的温度范围(甚至更高)所以,前者是低温检测,后者是高温检测。
三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热耦是双金属材料,既两种不同的金属,由于温度的变化,在两个不同金属丝的两端产生电势差。
四、PLC 对应的热电阻和热电偶的输入模块也是不一样的,这句话是没问题,但一般PLC 都直接接入4~20ma 信号,而热电阻和热电偶一般都带有变送器才接入PLC 。
要是接入DCS 的话就不必用变送器了!热电阻是RTD 信号,热电偶是TC 信号!五、PLC 也有热电阻模块和热电偶模块,可直接输入电阻和电偶信号。
六、热电偶有J 、T 、N 、K 、S 等型号,有比电阻贵的,也有比电阻便宜的,但是算上补偿导线,综合造价热电偶就高了。
热电阻是电阻信号, 热电偶是电压信号。
七、热电阻测温原理是根据导体(或半导体)的电阻随温度变化的性质来测量的,测量范围为负00~500度,常用的有铂电阻(Pt100、Pt10 、铜电阻Cu50(负50-150度)。
热电偶测温原理是基于热电效应来测量温度的,常用的有铂铑——铂(分度号S ,测量范围0~1300度)、镍铬——镍硅(分度号K ,测量范围0~900度)、镍铬——康铜(分度号E ,测量范围0~600度)、铂铑30——铂铑6(分度号B ,测量范围0~1600度)。
热电偶与热电阻均属于温度测量中的接触式测温, 尽管其作用相同都是测量物体的温度, 但是他们的原理与特点却不尽相同.首先, 介绍一下热电偶, 热电偶是温度测量中应用最广泛的温度器件, 他的主要特点就是测温范围宽, 性能比较稳定, 同时结构简单, 动态响应好, 更能够远传4-20mA 电信号, 便于自动控制和集中控制。
热电偶与热电阻热电偶和热电阻是测量温度的两种常用传感器。
热电偶是利用不同金属热电势产生温度电动势来测量温度的一种传感器,而热电阻则是利用其自身电阻随温度变化而变化来测量温度的一种传感器。
热电偶主要由两种不同金属导线制成,这两种不同金属导线的接头被称为热电接头。
当温度发生变化时,热电接头中的两种金属导线的热电势也会相应地发生变化,从而产生一定的电信号输出,通过对电信号进行变换和放大,就可以得到相应的温度值。
热电偶具有灵敏度高、量程宽、测量点多、响应速度快、抗干扰能力强等特点,被广泛应用于各种工业和科学领域。
热电阻则是利用其自身电阻随温度变化而变化来测量温度的一种传感器。
热电阻的常用材料为铂(Pt100)和镍铬(Ni100),它们的电阻随温度的变化规律是非常稳定的,在一定温度范围内几乎呈线性变化趋势。
当温度发生变化时,热电阻的电阻值也会相应地发生变化,通过对电阻进行测量和计算,就可以得到相应的温度值。
热电阻具有精度高、稳定性好、响应速度快、线性度好等特点,被广泛应用于温度测量的各种场景中。
在应用上,热电偶和热电阻各有优劣,需要根据具体的场合和需求来选择。
例如,在较高温度场合下,热电偶的响应速度较快,抗干扰能力也较强,在高温场合中更为适用;而在精度要求较高的场合,热电阻由于其稳定性好、线性度高等特点,更为适用。
此外,也有一些场合需要同时采用热电偶和热电阻进行交叉验证,以提高温度测量的准确性和稳定性。
总之,热电偶和热电阻是测量温度的两种主要传感器,它们在不同的场合和需求下都具有各自的优劣和适用性。
在进行温度测量时,需要根据具体需求合理选择并进行有效应用,以确保温度测量结果的准确性和稳定性。
热电偶和热电阻有相同的地方是:都是测量温度的传感器,也叫一次仪表。
它们不同的是:1热电偶作为温度传感器它输出的是和温度对应的电势,多为毫伏级的伩号。
用不同的金属材料制成的热电偶,在同样温度下,输出的电势是不同的。
比如用铂铑-铂丝制成的热电偶,我们称s分度,它在0度时输出0mv,1000度时输出9.585mv,1600度时输出16.771mv (环境温度为0度时)。
如果用镍铬-镍硅丝制成的热电偶,我们称k分度。
它在0度时输出0mv,1000度时输出39.816mv,1300度时输出50.950mv(环境温度为0度)。
热电偶一般用来测量“点”的温度。
根据要测量不同高低的温度等和其它要求选用不同材质的热点偶。
热电阻故名思意,它的电阻的阻值是随着温度变化而变化的,比如,用线性比较好的铂丝;铜丝作的电阻。
比如用铜丝作的,分度号Cu50。
它在0度时,阻值是50欧姆,100度时是71.400欧姆。
如用铂丝做成的,其分度号称Pt100。
它的阻值在0度时为100欧姆,负200度时为18.52欧姆,200度时为175.86欧姆,800度时为375.70欧姆。
环境温度对热电偶的影响较大,所以在使用热电偶时要对环境温度进行补偿。
而使用,要注意连接到和仪表之间连线的阻值要一样。
(一般用三线制)同样也要根据要测量的温度,来选用铜电阻还是铂电阻。
过去,因为PLC发展较仪表慢一些,输如到PLC的伩号一般是0-10ma或0-10v,4-20ma所以要把的电阻值变成上说的伩号,以使PLC能接受;所以要用变送器。
一用变送器,就有2线制和4线制之分。
2线制是电源和信号就用2根线传送;比如4-20ma的仪表,就用2线制传送。
4线制,是电源和信号各用2根线来传送,互相隔离,比如0-10ma;0-10v都用4线制。
随着PLC的飞速发展PLC已有输入模块和热电偶的输入模块,只要把直接连到模块就行了。
热电偶就更方便,温度补偿以及线性校正都可以在模块里完成。
热电偶、热电阻操作规程1、设备简介及系统组成HT-04型热电偶、热电阻自动检定装置是由计算机、打印机、高精度数字万用表、低电势扫描开关等组成(图1),是集计算机技术、微电测技术和自动测试技术于一体的新一代智能化计量标准装置,用于自动检定各种工作用热电偶、热电阻。
图12、热电偶检定操作步骤2.1扫描器与数字表、热电偶连接方法:1.使用标准热电偶检定各种分度号热电偶时(检定温度在300℃以上)按以下要求接线。
图22.2检定工作用热电偶的步骤1.热电偶检定系统安装、接线;2.装炉,完成信号线与扫描器、信号线与标准电偶或电阻、与被检电偶的连接;3.系统设备给电,包含扫描器、数字表、检定炉;4.启动计算机进入操作系统,双击桌面上的“检定.exe”进入系统主界面,其中功能模块区包括系统、显示、热电偶检定、热电阻检定、启动任务、参数配置。
5.完成“参数配置”中的“通讯端口设置”以及“标准热电偶一览”的相关设置;6.完成热电偶任务向导,填写相应的设置;7.热电偶检定模块中包括两个子菜单贵金属热电偶和廉金属热电偶,依次展开如下贵金属热电偶(S,R,B)1)点击“贵金属热电偶(S,R,B)”后进入贵金属热电偶任务向导模式,用户可以在此界面进行被检热电偶的型号、等级、检定点、冷端补偿、检定环境等相关信息的设置。
廉金属热电偶(K,N,E,J,T)2)廉金属热电偶任务向导模式中的相关设置与贵金属基本相同;而对于含有低温段的廉金属热电偶,需要另外增加标准铂电阻的选择项。
8.检定过程一般无需人工干预,当对将要进行的任务设置完成并启动任务后,系统便自动进入检定主界面开始检定工作,在检定主界面中有以下几个显示模块包含温度显示、数字表读数、设定温度、温度变化率、温度差值、参考端温度、运行情况、本段时间及扫描器位置等显示模块。
9.检定完成后,弹出“检定完成”的对话框并自动停止热电偶检定炉加热,任务完成且系统生成的记录表格、证书、曲线自动保存后系统会有检定结束的提示信息,之后应断开控温仪的供电电源确保安全;:10.关闭其他设备的电源;11. 等检定炉冷却后,取出标准、被检电偶,检定工作完成。
热电偶检定规程一、热电偶检定的定义1)热电偶测量可以利用热电偶来进行,它是一种采用温度信号进行测量的设备,它包含一对相对温度探针,它们会产生几种不同的输出信号,可用来测量温度;2)热电偶检定是指为了保证测量准确性,将热电偶经过精确的检定验证,以便验证它的测量精度。
二、热电偶检定的步骤1)热电偶测试准备:首先需要确定检定所需的普罗范德热电偶,检定标准温度、采用的温度计信号等;2)热电偶的接线:将热电偶正确接入温度计中,当温度计正常工作时,才有可能正确地进行热电偶检定;3)测量热电偶电阻:将温度导线与测量仪表接上并测量热电偶电阻,并用温度计将其与温度信息对比;4)实时记录:测量温度值时,必须及时将其记录下来,以便在实验结束时能得到可靠的测量结果;5)标定结果检查:在实验结束后,对测量出的温度值进行校核,核对和检查,确保温度值的准确性;6)验证检定结果:完成测量、校验、检查、验证之后,可以验证热电偶的检定结果,并鉴定其准确度、可靠性和性能。
三、热电偶检定的注意事项1)器材的保养:在检定前,应对器材进行完好的保养,以确保检定精度;2)环境条件:检定热电偶前,要确保环境条件相对稳定,以免受此种影响而使测试温度出现偏差;3)标准探头:必须使用定标探头检定,否则会影响检定的精度;4)规范的温度应用:检定过程中,温度应采用规范的方式进行检定,实验中应避免大幅度测量,否则会影响热电偶寿命;5)标定结果记录:在实验完成后,必须按照规定记录测量结果,以保证下次实验的有效性;6)热电偶检定前:还必须做出热电偶的参数保存,以备下次实验使用。
四、热电偶检定要求1)热电偶测量准确性:由于热电偶是一种带有对数特性的测量仪器,因此在实验的过程中,应注意测量的准确性;2)温度范围:热电偶检定的温度范围根据热电偶的规格和型号而定,一般是-200℃到1300℃的温度范围;3)测量精度:热电偶检定要求较高,测量精度一般为±0.5℃;4)测量记录:在正常实验过程中要及时记录测量结果,便于反复检验检定;5)常规检定:热电偶检定还应该定期进行常规检定,以重新确认误差值。
热电偶的检定实验报告一、热电偶的检定实验1、实验目的对电极温度传感器(热电偶)进行精密检定,以确定其准确度与稳定性。
2、检定规则根据JIS热电偶标准C1602-1995中所规定的原理,经由对配热电位器及连结电缆进行校准,再结合模拟量测量装置、会计计算机及电脑程式进行特定条件下精密测量,计算测量结果,比较其与说明书中规定的实际范围,以证明该热电偶的性能及技术指标的合乎要求,从而来保证其实用性和可靠性。
3、实验装备该实验需要配备配热电阻、测试试验面板,和量测计算机,或安装专用程序支持的计算机。
4、实验过程首先,选用满足JIS热电偶标准要求的配热电阻作为校准样品,并将配热电阻连接到测试面板上,将实验样本连接到测试面板上。
接着,运用测试面板上安装的数据获取卡对实验样本进行电极温度检测,并将测得的数据输入计算机,经过专用程序分析处理,得出实验样本的工作参数,并将其与厂家规定的参数进行比较,以确定实验样本的性能是否符合规定的要求。
二、实验数据1、配热电阻校验配热电阻用于测试实验样本前,对其进行校准,测得校准完成后,其电位与温度值需合乎:电位曲线Y=0.00479.X+0.39,其温度范围为-25℃~850℃。
2、测试结果将实验样本连接到测试面板上,运用数据获取卡在实验样本的两端进行温度测量,经过分析处理得出其工作参数,与厂家规定的参数对比,结果表明所测量的热电偶性能完全符合要求。
三、实验结论本次实验测试的结果表明,所用热电偶的性能能够完全符合JIS热电偶标准要求,满足实际使用要求,因此本次实验认定热电偶可以通过质量检测。
实验人:xx实验日期:xxx。
热电偶检定易忽视问题热电偶是一种常用的温度测量仪器,其原理是利用热电效应将被测温度转换为电压信号。
由于热电偶在工业生产中具有重要作用,因此检定热电偶的准确性也十分重要。
但是,在检定过程中存在一些容易被忽视的问题,本文将从以下几个方面进行介绍。
1. 温度控制检定热电偶时,必须要对温度进行控制。
在温度控制不当的情况下,可能会导致测得的温度值不准确,从而影响产品的质量。
因此,在检定过程中,需要确保温度控制的精度和稳定性。
2. 电阻检测热电偶的检定需要通过电阻检测来确保其准确性。
在进行电阻检测时,需要注意以下几个问题:(1)干扰问题在电阻检测过程中,可能会出现干扰,导致检测出的电阻值不准确。
此时,需要在检定过程中进行屏蔽和干扰的控制,确保检定数据的准确性。
(2)接触问题在电阻检测时,热电偶与测量仪器之间的接触也会影响检定结果。
为了避免此类问题的发生,需要对接头进行认真清洁和装配,确保热电偶和测量仪器之间的良好接触。
(3)误差问题在电阻检测过程中,要注意误差的问题。
误差包括线路误差、仪器误差、非线性误差和温漂误差等。
对于每一项误差,都需要进行仔细的分析和评估,以确保检定数据的准确性。
3. 检定环境在进行热电偶检定时,需要特别注意检定环境的影响。
如环境温度、气压、湿度和电磁干扰等都会对热电偶的检定结果产生影响,因此需要对其进行实时监控和控制。
4. 人为因素除了上述因素外,人为因素也是热电偶检定过程中容易被忽视的问题。
例如,操作员的技术水平、经验和态度,都会对检定结果产生影响。
因此,在检定过程中需要加强人员培训和监督,确保检定结果的准确性和可信度。
综上所述,热电偶检定是一项非常重要的工作,需要特别注意上述因素。
只有经过仔细的准备和实践,才能确保热电偶检定结果的准确性和可靠性。
K分度号铠装热电偶校验方法:1、经外观检查合格的新制热电偶,在检定示值前,应在最高检定点温度下,退火2 h 后,随炉冷却至250℃以下,使用中的热电偶不退火。
2、热电偶的测量端应处于检验炉最高温区中心;标准热电偶应与管式炉轴线位置一致。
3、检验炉炉口沿热电偶束周围,用绝缘耐火材料堵好。
4、检定顺序,由低温向高温逐步升温检定,炉温偏离检定点温度不应超过±5℃。
5、当炉温升到检定点温度,炉温变化小于0.2℃/min时,可以开始读取数据和测量信号。
6、读数应迅速准确,时间间隔应相近,测量读数不应小于4次,测量炉炉温度变化不大于±0.25℃。
7、测量时将所有测量数据填写在工作用热电偶检定记录表上(见附表)8、详细请参见《JJG351--96工作用廉金属热电偶检验规程》。
在线取出热电偶操作方法1、常温下直接取出热电偶即可。
2、高温下不能直接取出热电偶,高温下每取出10cm等待5分钟直至全部取出。
3、将取出的热电偶拿到校验炉进行校验,并把校验结果填入工作用热电偶检定记录表。
网带表面温度测量方法:测量时网带上需无产品1、把铠装热电偶端头用扎丝固定在网带中间,开动网带以正常速度前进。
2、向前行进2.5m后停止网带,在离铠装热电偶端头2m的位置再加扎丝固定后继续开启网带前进。
在后面可以视铠装热电偶行进情况在适当位置加扎丝固定。
3、当网带行进到氧化第一区位置时,停止网带5分钟待仪表显示数稳定后读出数据记录到表格上,同时也读出该温区仪表显示值记录到表格。
4、按上面方法测量其它区温度并记录表格中。
5、测量完毕后抽出铠装热电偶和除去网带上残留的扎丝。
本期其他学习:热电阻热电偶检定(参考国家质量技术监督局发布的检定规程)1工作用廉金属热电偶检定1.1规程使用条件:适用于长度不小于750mm的新制造和使用中的分度号为K的镍铬-镍硅热电偶、分度号为N的镍铬硅-镍硅热电偶、分度号为E的镍铬、铜镍热电偶、分度号为J 的铁-铜镍热电偶(以下分别简称K、N、E、J型热电偶)在-40~1300℃范围内的检定。
此次试验检定的是使用中的E型热电偶;1.2技术要求1.2.1不同等级热电偶在规定温度范围内,其允差应符合表2规定;表21.2.2热电偶外观满足要求:新制热电偶的电极应平直、无裂痕、直径应均匀;使用中的热电偶电极不应有严重的腐蚀和明显缩径等缺陷;热电偶测量端的焊接要牢固、呈球状,表面应光滑、无气孔、无夹渣。
1.3检定条件1.3.1标准器1等、2等标准铂铑10-铂热电偶各一支;测量范围为:(-30~300)℃的2等标准水银温度计一组,也可选用2等标准铂电阻温度计;1.3.2仪器设备低电势直流电位差计一套,准确度不低于0.02级、最小步进值不大于1µV,或具有同等准确度的其他设备;多点转换开关,寄生电势不大于1µV;参考端恒温器,恒温器内温度为(0±0.1)℃;油恒温槽,在有效工作区域内温差小于0.2℃;管式炉,其长度为600mm,加热管内径约为40mm;(管式炉常用最高温度为1200℃,最高均匀温场中心与炉子几何中心沿轴线上偏离不大于10mm;在均匀温场长度不小于60mm,半径为14mm范围内,任意两点间温差不大于1℃;为保证管式炉温场符合检定要求,可在炉中心置一耐高温恒温快;均匀温场测试方法在检定规程附录中有详细说明;允许使用符合上述要求的其他检定设备)控温设备,应符合检定要求;热电偶测量端焊接设备;钢卷尺、游标卡尺;读数望远镜或3~5倍放大镜;1.3.3电测设备环境条件应符合使用要求1.4检定项目和检定方法1.4.1热电偶的几何尺寸与外观,用钢卷尺、游标卡尺和目力检查,应符合要求;1.4.2经外观检查合格的新制热电偶,在检定示值前,应在最高检定点温度下,退火2h后,随炉冷却至250℃以下,使用中的热电偶不退火;1.4.3热电偶的示值检定点温度,按热电偶丝材及电极直径粗细决定1.4.4300℃以下点的检定,在油恒温槽中,与2等标准水银温度计进行比较,检定时油槽温度变化不超过±0.1℃;1.4.5将热电偶的两电极分别套上高铝绝缘瓷珠,约500mm左右,尾部穿塑料套管,并在尾端露出20mm左右,以链接参考端引线;1.4.6热电偶参考端的引线,应使用铜材质的铜导线进行连接,接触要良好。
铜导线在20℃时的电阻率应小于0.01724µΩ·m;1.4.7在热电偶的测量端套上玻璃保护管,插入油恒温槽中,插入深度不应小于300mm,玻璃管口沿热电偶周围,用脱脂棉堵好;1.4.8将热电偶的参考端插入装有变压器油或酒精的玻璃管或塑料管中,再分散插入冰点恒温器内,插入深度不应小于150mm;1.4.9检定顺序,由低温向高温逐点升温检定。
炉温偏离检定点温度不应超过±5℃;1.4.10检定时的连接线路,直接测量标准与被检热电偶的热电动势。
当炉温升到检定点温度,炉温变化小于0.2℃/min时,自标准热电偶开始,依次测量各被检热电偶的热电动势;读数应迅速准确,时间间隔应相近,测量读数不应少于4次,测量时管式炉温度变化不大于±0.25℃;1.4.11检定时热电偶的热电动势误差计算:300℃以下热电动势误差用下式:被被检分—被检热电偶在检定点附近温度下,测得的热电动势算术平均值;被—被检热电偶在某检定点温度的微分热电动势;被—被检热电偶分度表上查得的某检定点温度的某检定点温度的热电动势值;分示值误差用下式:被检定点温度与实际温度差值:检检检实—检定点温度;检—实际温度(读数平均值+修正值)实;修正值为-检1.5检定结果处理和检定周期1.5.1经检定符合本规程要求的热电偶发给检定证书;不合格的热电偶,发给检定结果通知书;如有需要,可给出热电偶在各检定点的修正值;1.5.2热电偶的检定周期一般为半年,特殊情况下可根据使用条件来确定。
1.6热电偶用补偿导线的检定方法1.6.1参考检定规程中详细表格中补偿导线的热点特性要求;一般用补偿导线检定100℃点,耐热用补偿导线检定100℃、200℃点,也可根据需要在其他温度点检定(本次E型采用100℃);1.6.2将补偿导线的两端的护层和绝缘层取出(10~20)mm,并将两个电极表面绝缘物清除赶紧,使其一端焊接成一支热电偶,参照300摄氏度温度下点的检定;1.6.3带补偿导线热电偶的检定方法:只限检定Ⅱ级允差热电偶;需选用经检定的延长型补偿导线,允差为:(100±0.2)℃;参考接点温度不得超过100℃;热电偶长度不小于350mm,热电偶加补偿导线的总长度不小于750mm;1.6.4补充说明:补偿导线和热电偶型号需一一对应,部分热电偶对应的补偿导线绝缘层颜色见表3:表32.1规程使用条件:适用于新制造、使用中和修理后的使用温度为-200~+850℃部分或整个范围内的工业热电阻(以下简称热电阻)和感温元件检定;2.2技术要求2.2.1热电阻的装配质量和外观应符合下列要求:1、各部分装配应正确、可靠、无缺件;2、不得断路、短路;3、感温元件不得破裂,不得有显著的弯曲现象(不可拆卸的热电阻不作此项检查);4、保护管应完整无损,不得有凹痕、划痕和显著锈蚀;5、外表涂层应牢固;6、热电阻应有铭牌,铭牌应具有以下标志:制造厂名或商标、热电阻型号、分度号、允许偏差等级、适用温度范围、出厂日期及制造计量器具许可证标志;7、当环境温度为15~35℃、相对湿度不大于80%时,铂热电阻的感温元件与保护管之间以及多支感温元件之间的绝缘电阻应不小于100MΩ;铜热电阻应不小于50MΩ。
8、热电阻实际电阻值对分度表标称电阻值以温度表示的允许偏差E i见表4。
表4注 1.表4中|t|是以摄氏度表示的温度的绝对值。
2.A级允许偏差不适用于采用二线制的铂热电阻。
3.对R(0℃)=100.00Ω的铂热电阻,A级允许偏差不适用t>650℃的温度范围。
4.二线制的热电阻偏差的检定,包括内引线的电阻值,对具有多支感温元件的二线制的热电阻,如要求只对感温元件进行偏差检定,则制造厂必须提供内引线的电阻值。
2.2.2电阻温度系数α与标称值的偏差应符合表5中的Δα的规定。
表52.2.3铂热电阻应充分稳定,在上、下限温度各经受250h后,其0℃电阻值的变化量换算成温度值不得超过表6的规定。
表6新制的热电阻应符合本规程的全部技术要求;修理后和使用中的热电阻应符合本规程第1.1,1.2,1.3,1.6各款和第2,3,4条的要求;新制的感温元件应符合第1.2,1.3,2,3,4,5条的要求,对使用中的感温元件应符合第1.2,1.3,2,3,4条的要求。
2.3检定条件2.3.1检定热电阻的标准器和设备:二等标准铂电阻温度计;检定铜热电阻,也可采用二等标准水银温度计;成套工作的0.02级测温电桥,电桥的最小步进值应不大于1×10-4Ω,或其他同等准确度的电测设备。
检定A级铂热电阻时,电测设备应引用修正值;接触热电势小于0.4μV的四点转换开关;冰点槽;水沸点槽或油恒温槽及同等精度的100℃点恒温槽;水沸点槽插孔之间的最大温差不大于0.01℃。
油恒温槽工作区域内的垂直温差不大于0.02℃;水平温差不大于0.01℃;高温炉:高温炉在t时,工作区域内的最大和水平温差应分别不大于t时铂热电阻允许偏差的1/8和1/10;液氮杜瓦瓶;水三相点瓶及其保温容器;读数望远镜(放大倍数5~10倍);100V绝缘电阻表;万用表。
2.3.2检定是在下列条件下进行的:本身不具备恒温条件的电测设备的工作环境温度应为(20±2)℃。
对保护管可以拆卸的热电阻,在偏差检定前,应将热电阻的感温元件从内衬管和保护管中取出,并放置在玻璃试管中(检定温度高于400℃时需用石英试管)。
试管内径应与感温元件直径或宽度相适应。
为了消除试管内外空气对流,在感温元件插入试管后需用脱脂棉或耐高温材料塞紧管口。
检定时,将感温元件连同玻璃试管插入介质中检定。
检定时,通过热电阻的电流应不大于1mA。
测量热电阻在100℃的电阻值时,水沸点槽或油恒温槽的温度t b偏离100℃之值应不大于2℃;温度变化每10min应不超过0.04℃。
2.4检定项目和鉴定方法2.4.1装配质量和外观检查热电阻有无断路或短路用万用表进行检查;其余装配质量和外观直接用目力检查。
2.4.2绝缘电阻的测量热电阻的绝缘电阻用绝缘电阻表进行测量。
测量时应将热电阻各个接线端子相互短路,并接至绝缘电阻表的一个接线柱上,绝缘电阻表另一个接线柱的导线紧夹于热电阻的保护管上。
具有多支感温元件的热电阻,还应测量不同感温元件输出端之间的绝缘电阻。
2.4.3R(0℃)、R(100℃)及R(t)的检定检定点:热电阻是在0℃、100℃和必要时在t检定;当热电阻α超差而在0℃、100℃点的允许偏差均合格时,应增加在热电阻的上限温度检定。
注:当热电阻的上限温度超过300℃时,若设备条件不完善,允许用300℃点检定。
2.4.3接线方法测量二线制热电阻或感温元件的电阻值时,应在热电阻的每个接线柱或感温元件的每根引线末端接出二根导线,然后按四线制进行接线测量。
三线制热电阻,由于使用时不包括内引线电阻,因此在测定电阻时,须采用两次测量方法,以消除内引线电阻的影响(每次测量均按四线制进行)。
对铠装三线制热电阻检定时其接线原理按图1和图2,按规程图1接线测量出R1,按规程图2接线测量出R2。
图1图2详见规程2.4.4插入深度热电阻的插入深度一般不少于300mm。
2.4.5 0℃电阻值R(0℃)的测量将二等标准铂电阻温度计和被检热电阻插入盛有冰和水混合物的冰点槽内(热电阻周围的冰层厚度不小于30mm)。
30min后按下列顺序测出标准铂电阻温度计和被检热电阻的电阻值。
标准铂电阻温度计→被检1→被检2→……→被检n换↓向标准铂电阻温度计←被检1←被检2←……←被检n如此完成一个读数循环。
A级铂热电阻每次测量不得少于三个循环,B级铂热电阻及铜热电阻每次测量不得少于二个循环,取其平均值进行计算。
注:1.用二等标准水银温度计检定铜热电阻时,上述读数程序中的标准铂电阻温度计改为标准水银温度计;2.热电阻的R(0℃)也可在蒸馏水制备的冰水混合物中直接进行测定。
2.4.6100℃电阻值R(100℃)的测量将二等标准铂电阻温度计和被检热电阻插入水沸点槽或温度调定在t b的恒温油槽中,待温度稳定后,按2.4.5款所述方法进行检定。