湖南省长沙市九年级(下)第一次月考数学试卷(3月)
- 格式:docx
- 大小:307.33 KB
- 文档页数:6
2023年湖南省永州市冷水滩区京华中学九年级下学期3月第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图, 已知O e 的圆心角80AOB ∠=o , 则圆周角ACB ∠的度数等于( )A .160oB .100oC .80oD .40o 2.下列几何体的左视图为长方形的是( )A .B .C .D . 3.如图,AB 是⊙O 直径,过⊙O 上的点C 作⊙O 切线,交AB 的延长线于点D ,若∠D =40°,则∠A 大小是( )A .20°B .25°C .30°D .35° 4.如图,AB 是O e 的直径,弦CD 交AB 于点P ,3AP =,7BP =,30APC ∠=︒,则CD 的长为( )A .B .CD .85.已知A (4,y 1),B (1,y 2),C (﹣3,y 3)在函数y =﹣3(x ﹣2)2+m (m 为常数)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 1<y 2<y 3 6.下列说法正确的是( )A .对角线相等的四边形一定是矩形B .任意掷一枚质地均匀的硬币10次,一定有5次正面向上C .如果有一组数据为5,3,6,4,2,那么它的中位数是6D .“用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形”这一事件是不可能事件 7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .图象关于直线x =1对称B .函数y =ax 2+bx +c (a ≠0)的最小值是﹣4C .﹣1和3是方程ax 2+bx +c (a ≠0)=0的两个根D .当x <1时,y 随x 的增大而增大8.已知正多边形的边心距与边长的比为12,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形 9.在平面直角坐标系中,已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②20a b -=;③930a b c ++>;④24b ac >;⑤a c b +<.其中正确的有( )A .1个B .2个C .3个D .4个 10.已知二次函数()()2y a x h k a 0=-+≠的图象与一次函数()0y mx n m =+≠的图象交于(x 1,1y )和(x 2,2y )两点,( )A .若a<0,0m <,则122x x h +> B .若0a >,0m <,则122x x h +> C .若122x x h +>,则0a >,0m > D .若122x x h +<,则0a >,0m <二、填空题11.写出一个y 关于x 的二次函数的解析式,且它的图象的顶点在x 轴上:______. 12.如图,一块飞镖游戏板是33⨯的正方形网格,假设飞镖击中每块小正方形是等可能的(若没有击中游戏板,则重投一次).任意投掷飞镖一次,击中阴影部分的概率是______.13.某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm ,底面圆的半径为10 cm ,这种圆锥的侧面展开图的圆心角度数是_____. 14.已知二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的y 与x 的部分对应值如表.当2x =时,函数值为______.15.将抛物线23y x =-先向右平移2个单位,再向下平移3个单位得到的抛物线所对应的函数表达式为_____________.16.一个几何体的三视图如图所示,这个几何体的侧面积为_____.17.如图,二次函数21y ax bx c =++与一次函数2y kx =的图象交于点A 和原点O ,点A 的横坐标为4-,点A 和点B 关于抛物线的对称轴对称,点B 的横坐标为1,则满足120y y <<的x 的取值范围是___________.18.如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合),PQ MN NE ⊥平分MNP ∠,交PM 于点E ,交PQ 于点F . (1) PF PE PQ PM+=___________________. (2)若2PN PM MN =⋅,则MQ NQ=___________________.三、解答题19.已知二次函数245y x x =--.(1)把这个二次函数化成()2y a x h =-的形式;(2)写出二次函数的对称轴和顶点坐标;(3)求二次函数与x 轴的交点坐标.20.防疫期间,全市所有学校都严格落实测温进校的防控要求.我校开设了A 、B 、C 三个测温通道,每名师生进入每个通道的机会均等.某天早晨,小颖和小明将随机通过测温通道进入校园.(1)小颖通过A 通道进入校园的概率是 ;(2)利用画树状图或列表的方法,求小颖和小明通过不同通道进入校园的概率. 21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?22.如图,O e 是ABC V 的外接圆,AB 是O e 的直径,过O 作OD AC ⊥于点E ,延长OE 至点D ,连结CD ,使D A ∠=∠.(1)求证:CD 是O e 的切线;(2)若AB CD ==AC 的长.23.如图所示,以40/m s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系式.2205h t t =-(0)t ≥解答以下问题:(1)球的飞行高度能否达到15m ?如能,需要飞行多少时间?(2)球飞行到最高点时的高度是多少m ?24.如图,△ABC 的点A ,C 在⊙O 上,⊙O 与AB 相交于点D ,连接CD ,∠A =30°,DC(1)求圆心O 到弦DC 的距离;(2)若∠ACB +∠ADC =180°,求证:BC 是⊙O 的切线.25.如图,△ABC 中,∠C =90°,AC =3,AB =5,点O 在BC 边的中线AD 上,⊙O 与BC 相切于点E ,且∠OBA =∠OBC .(1)求证:AB 为⊙O 的切线;(2)求⊙O 的半径;(3)求tan ∠BAD .26.综合与探究如图,在平面直角坐标系xOy 中,抛物线24y ax bx =++交x 轴于A ,B 两点(点B 在点A 的左边),交y 轴于点C ,其中()1,0A ,2OB OA =.(1)求抛物线的函数表达式;(2)连接BC ,点P 为线段BC 上一个动点,过点P 作//PD y 轴交抛物线于点D ,当线段PD 的值最大时,求点P 的坐标;(3)在(2)的条件下,是否在y 轴上存在点Q ,使CPQ V 与BOC V相似?若存在,请直接写出点Q 的坐标;若不存在,说明理由.。
长沙市立信中学2023-2024学年第二学期第一次核心素养初三数学学科试卷时量:120分钟 总分:120分注意事项:1.答题前,请先将自己的姓名、班级、考场号、座位号填写清楚;2.必须在答卷上答题,在草稿纸、试题卷上答题无效;3.请注意卷面,保持字体工整、笔迹清晰、卷面清洁;4.答卷上不准使用涂改液、涂改胶和贴纸一、单选题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10小题,每小题3分,共30分)1.春节期间,贴春联、送祝福一直是我们的优良传统,下列用篆书书写的春联中“五福临门”四个字,其中可以看成中心对称图形的是()A .B .C .D .2.下列运算结果正确的是( )A .B .C .D .3.如图的几何体,从左面看,得到的平面图是()A .B .C .D .4.在党的二十大报告中总结了新时代十年的非凡成就,包括我国建成世界上规模最大的社会保障体系,基本养老保险覆盖亿人,其中亿用科学记数法可表示为( )A .B .C .D .5.如图,直线l 1∥l 2,l 3与l 1、l 2分别相交于A 、C 两点,BC ⊥l 3交l 1于点B ,若,则∠2的度数为( )A .20°B .30°C .40°D .50°6.如图,将△ABC 绕点A 逆时针旋转角α()得到△ADE ,点B的对应点D 恰好落在BC 边上,左面正面326a a a⋅=()32628aa =()211a a a +=+()32a a a a +÷=10.410.4810.410⨯910.410⨯81.0410⨯91.0410⨯170∠=︒0180α<<︒2C BAl 3l 2l 1若DE ⊥AC ,,则旋转角α的度数是( )A .40°B .50°C .60°D .70°(第6题图)(第9题图)(第10题图)7.2023年9月5日是第八个“中华慈善日”,主题为“携手参与慈善,共创美好生活”.某校为了响应中华慈善总会的号召,举行捐款活动。
湖南省长沙市长郡教育集团2020-2021学年度初三年级第一学期第一次月考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的绝对值是()A.﹣2020B.﹣C.D.20202.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.3a+2b=5ab4.对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小5.如图,某石油公司计划在三条公路围成的一块平地上建一个加油站,综合各种因素,要求这个加油站到三条公路的距离相等,则应建在()A.△ABC的三条内角平分线的交点处B.△ABC的三条高线的交点处C.△ABC三边的中垂线的交点处D.△ABC的三条中线的交点处6.如图,在⊙O中,∠BOD=120°,则∠BCD的度数是()A.60°B.80°C.120°D.150°7.用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.每一个内角都大于90°C.有一个内角小于或等于90°D.每一个内角都小于90°8.如图,在△ABC中,∠C=64°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A.42°B.48°C.52°D.589.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.10.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)11.二次函数y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠0 12.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.B.3C.D.二、填空题(本大题共有4小题,每小题3分,共12分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.把多项式4x﹣4x3因式分解为:.14.使得有意义的x的取值范围是.15.如图,P A、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则P A=cm.16.如图,在正方形ABCD中,AB=8,点M在CD边上,且DM=2,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.三、解答题(本大题共9小题,共72分)17.计算:.18.先化简,再求值:÷(﹣x+1),其中x=4.19.求满足不等式组并把解集在数轴上表示出来.20.2020年是特殊的一年,新年以来我们经历了新型冠状病毒肺炎,举国上下众志成城,共同抗疫.严酷战疫中,我们又一次感受到祖国的强大.口罩也成为人们防护防疫的必备武器.临高县某药店有2500枚口罩准备出售.从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)统计的这组数据的平均数为,众数为,中位数为;(3)根据样本数据,估计这2500枚口罩中,价格为2.0元的约有为枚.21.如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于点E,当OE=1,MD=4时,求⊙O的半径.22.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC绕点A逆时针旋转90°得到△A1B1C1;(2)作△A1B1C1关于点O成中心对称的△A2B2C2;(3)B1B2的长=;四边形C2B2C1B1的面积为.23.如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.24.某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求y与x的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润;(3)若物价部门规定该商品销售单价不能超过a元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.25.已知抛物线y=ax2+bx+c与x轴交于A(3,0),与y轴交于C(0,3),又经过点B(4,1).(1)求抛物线的函数关系式;(2)如图1,连接AB,在题1中的抛物线上是否存在点P,使△P AB的外接圆圆心恰好在P A上?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.湖南省长沙市长郡教育集团2020-2021学年度初三年级第一学期第一次月考数学试卷参考答案与试题解析一.选择题(共12小题)1.﹣的绝对值是()A.﹣2020B.﹣C.D.2020【分析】﹣的绝对值等于它的相反数,据此求解即可.【解答】解:|﹣|=.故选:C.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形又是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:B.3.下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.3a+2b=5ab【分析】根据各个选项中的式子,可以计算出正确的结果,本题得以解决.【解答】解:∵﹣2(a﹣b)=﹣2a+2b,故选项A错误;∵2c2﹣c2=c2,故选项B错误;∵x2y﹣4yx2=﹣3x2y,故选项C正确;∵3a+2b不能合并,故选项D错误;故选:C.4.对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小【分析】根据抛物线的性质由a=﹣2得到图象开口向下,根据顶点式得到顶点坐标为(﹣3,0),对称轴为直线x=﹣3,当x<﹣3时,y随x的增大而增大.【解答】解:二次函数y=﹣2(x+3)2的图象开口向下,顶点坐标为(﹣3,0),对称轴为直线x=﹣3,当x<﹣3时,y随x的增大而增大,故A、B、C正确,D不正确,故选:D.5.如图,某石油公司计划在三条公路围成的一块平地上建一个加油站,综合各种因素,要求这个加油站到三条公路的距离相等,则应建在()A.△ABC的三条内角平分线的交点处B.△ABC的三条高线的交点处C.△ABC三边的中垂线的交点处D.△ABC的三条中线的交点处【分析】三条公路围成一个三角形,三角形中到三边的距离相等的点是三角形的内心,即三条内角平分线的交点.【解答】解:三角形中到三边的距离相等的是三角形的内心,即为三条内角平分线的交点.故选:A.6.如图,在⊙O中,∠BOD=120°,则∠BCD的度数是()A.60°B.80°C.120°D.150°【分析】根据圆周角定理得出∠A=∠DOB=60°,根据圆内接四边形的性质得出∠A+∠BCD=180°,代入求出即可.【解答】解:∵对的圆周角是∠A,对的圆心角是∠DOB,又∵∠BOD=120°,∴∠A=∠DOB=60°,∵A、B、C、D四点共圆,∴∠A+∠BCD=180°,∴∠BCD=180°﹣60°=120°,故选:C.7.用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.每一个内角都大于90°C.有一个内角小于或等于90°D.每一个内角都小于90°【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明“四边形中至少有一个内角大于或等于90°”时,假设每一个内角都小于90°,故选:D.8.如图,在△ABC中,∠C=64°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A.42°B.48°C.52°D.58【分析】根据旋转的性质,可以得到AC=AC′,然后根据∠C=64°,即可得到旋转角的度数,然后三角形内角和,即可得到∠B′C′B的度数.【解答】解:∵将△ABC绕着点A顺时针旋转后,得到△AB′C′,∠C=64°,∴AC=AC′,∠CAC′=∠BAB′,∠B=∠B′,∴∠C=∠AC′C=64°,∴∠CAC′=52°,∴∠BAB′=52°,∴∠B′AD=52°,∵∠B=∠B′,∠BDC′=∠B′DA,∴∠BC′D=∠B′AD=52°,即∠B′C′B的度数为52°,故选:C.9.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.【分析】由y=ax2+bx+c的图象判断出a<0,b<0,于是得到一次函数y=ax+b的图象经过二,三,四象限,即可得到结论.【解答】解:∵y=ax2+bx+c的图象的开口向下,∴a<0,∵对称轴在y轴的左侧,∴b<0,∴一次函数y=ax+b的图象经过二,三,四象限.故选:C.10.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)【分析】作出对应点连线的垂直平分线,它们的交点就是M点.【解答】解:如图,点M的坐标是(1,﹣1),故选:B.11.二次函数y=kx2﹣8x+8的图象与x轴有交点,则k的取值范围是()A.k<2B.k<2且k≠0C.k≤2D.k≤2且k≠0【分析】直接利用△=b2﹣4ac≥0,进而求出k的取值范围.【解答】解:∵二次函数与y=kx2﹣8x+8的图象与x轴有交点,∴△=b2﹣4ac=64﹣32k≥0,k≠0,解得:k≤2且k≠0.故选:D.12.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.B.3C.D.【分析】过点O作OE⊥AB于E,由垂径定理易知E是AB中点,得OE是△ABC中位线,则BC=2OE,而OE≤OP,故BC≤2OP,即可得出答案.【解答】解:过点O作OE⊥AB于E,如图:∵O为圆心,∴AE=BE,∴OE=BC,∵OE≤OP,∴BC≤2OP,∴当E、P重合时,即OP垂直AB时,BC取最大值,∴弦BC的最大值为:2OP=2.故选:A.二.填空题(共4小题)13.把多项式4x﹣4x3因式分解为:4x(1+x)(1﹣x).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=4x(1﹣x2)=4x(1+x)(1﹣x).故答案为:4x(1+x)(1﹣x).14.使得有意义的x的取值范围是x>﹣1且x≠1.【分析】根据分式有意义的条件、二次根式有意义的条件和零指数幂的定义得出x﹣1≠0且x+1>0,再求出不等式的解集即可.【解答】解:要使有意义,必须x﹣1≠0且x+1>0,解得:x>﹣1且x≠1,故答案为:x>﹣1且x≠1.15.如图,P A、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则P A=5cm.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为P A、PB的长,然后再进行求解.【解答】解:如图,设DC与⊙O的切点为E;∵P A、PB分别是⊙O的切线,且切点为A、B;∴P A=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=P A+PB=10(cm);∴P A=PB=5cm,故答案为:5.16.如图,在正方形ABCD中,AB=8,点M在CD边上,且DM=2,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为10.【分析】连接BM.先判定△F AE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD =AB=8,CM=6,利用勾股定理即可得到,Rt△BCM中,BM=10,进而得出EF的长.【解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD,∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE,∴∠F AE=∠MAB,∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=8.∵DM=2,∴CM=6.在Rt△BCM中,BM===10,∴EF=10,故答案为:10.三.解答题(共1小题)17.计算:.【分析】分别根据零指数幂,负指数幂、绝对值、二次根式的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1﹣,=﹣1﹣+1+4﹣,=4﹣.18.先化简,再求值:÷(﹣x+1),其中x=4.【考点】分式的化简求值.【专题】分式;运算能力.【答案】原式=,原式=﹣.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷(﹣x+1)====,当x=4时,原式==﹣.19.求满足不等式组并把解集在数轴上表示出来.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【答案】﹣1≤x<3,.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式组的解集表示在数轴上即可.【解答】解:,解不等式①得x≥﹣1.解不等式②得x<3.所以不等式组的解集为﹣1≤x<3,在数轴上表示不等式组的解集如图:20.2020年是特殊的一年,新年以来我们经历了新型冠状病毒肺炎,举国上下众志成城,共同抗疫.严酷战疫中,我们又一次感受到祖国的强大.口罩也成为人们防护防疫的必备武器.临高县某药店有2500枚口罩准备出售.从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)统计的这组数据的平均数为,众数为,中位数为;(3)根据样本数据,估计这2500枚口罩中,价格为2.0元的约有为枚.【考点】用样本估计总体;加权平均数;中位数;众数.【专题】统计的应用;数据分析观念.【答案】(1)28;(2)1.52元,1.8元,1.5元;(3)200.【分析】(1)根据扇形统计图中的数据,可以计算出m%的值,从而可以得到m的值;(2)根据扇形统计图中的数据可以得到这组数据的平均数,然后根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为2.0元的约多少枚.【解答】解:(1)m%=1﹣10%﹣22%﹣32%﹣8%=28%,即m的值是28,故答案为:28;(2)平均数是:1.0×10%+1.2×22%+1.5×28%+1.8×32%+2.0×8%=1.52元,∵本次调查了5+11+14+16+4=50枚,中位数是:1.5元,众数是1.8元;故答案为:1.52元,1.8元,1.5元;(3)2500×8%=200(枚),答:价格为2.0元的约200枚.故答案为:200.21.如图,MB,MD是⊙O的两条弦,点A,C分别在,上,且AB=CD,M是的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于点E,当OE=1,MD=4时,求⊙O的半径.【考点】勾股定理;垂径定理;圆心角、弧、弦的关系.【专题】与圆有关的计算;应用意识.【答案】见试题解答内容【分析】(1)想办法证明=即可解决问题.(2)连接OM,利用勾股定理垂径定理解决问题即可.【解答】(1)证明:∵AB=CD,∴=,∵M是的中点,∴=,∴=,∴BM=DM.(2)解:如图,连接OM.∵DM=BM=4,OE⊥BM,∴EM=BE=2,∵OE=1,∠OEM=90°,∴OM===,∴⊙O的半径为.22.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC绕点A逆时针旋转90°得到△A1B1C1;(2)作△A1B1C1关于点O成中心对称的△A2B2C2;(3)B1B2的长=;四边形C2B2C1B1的面积为.【考点】勾股定理;作图﹣旋转变换.【专题】平移、旋转与对称;几何直观.【答案】(1)、(2)见解答;(3)10;12.【分析】(1)利用网格特点和旋转的性质画出B、C的对应点B1、C1即可;(2)利用网格特点,分别延长A1O、B1O、C1O,使A2O=A1O、B2O=B1O、C2O=C1O,从而得到A2、B2、C2;(3)利用勾股定理计算B1B2的长;利用平行四边形的面积公式计算四边形C2B2C1B1的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)B1B2的长=2=10;四边形C2B2C1B1的面积=2×6=12.故答案为10,12.23.如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.【考点】圆的综合题.【专题】几何综合题.【答案】见试题解答内容【分析】(1)连接OA,OB,OC,由AC=AB,OA=OA,OC=OB可证出△OAC≌△OAB(SSS),利用全等三角形的性质可得出∠OAC=∠OAB,即AO平分∠BAC,利用垂径定理可得出AO⊥BC,结合AD∥BC可得出AD⊥AO,由此即可证出AD是⊙O的切线;(2)①连接AE,由圆内接四边形对角互补结合∠BCE=90°可得出∠BAE=90°,由同角的余角相等可得出∠BAG=∠AEB,结合∠ABC=∠ACB=∠AEB可得出∠BAG=∠ABC,再利用等角对等腰可证出AG=BG;②由∠ADC=∠AFB=90°,∠ACD=∠ABF,AC=AB可证出△ADC≌△AFB(AAS),利用全等三角形的性质可求出AF,BF的长,设FG=x,在Rt△BFG中,利用勾股定理可求出x的值,此题得解.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)①证明:如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.②解:在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.24.某公司销售一种商品,成本为每件20元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求y与x的关系式;(2)若物价部门规定每件商品的利润率不得超过100%,求公司销售该商品获得的最大日利润;(3)若物价部门规定该商品销售单价不能超过a元,并且由于某种原因,该商品每件成本变成了之前的2倍,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.【考点】二次函数的应用.【专题】二次函数的应用;数据分析观念.【答案】(1)y=﹣x+120;(2)公司销售该商品获得的最大日利润为1600元;(3)a=70.【分析】(1)用待定系数法即可求解;(2)公司销售该商品获得的最大日利润为w元,则w=(x﹣20)y=(x﹣20)(﹣x+120)=﹣(x﹣70)2+2500,进而求解;(3)由题意得:w=(x﹣20×2)(﹣x+120)=﹣x2+160x﹣4800=﹣(x﹣80)2+1600,当w最大=1500时,﹣(x﹣80)2+1600=1500,解得x1=70,x2=90,而40≤x≤a,进而求解.【解答】解:(1)设函数的表达式为y=kx+b,将(40,80)、(60,60)代入上式得:,解得,故y与x的关系式为y=﹣x+120;(2)公司销售该商品获得的最大日利润为w元,则w=(x﹣20)y=(x﹣20)(﹣x+120)=﹣(x﹣70)2+2500,∵x﹣2≥0,﹣x+120≥0,x﹣20≤20×100%,∴20≤x≤40,∵﹣1<0,故抛物线开口向下,故当x<70时,w随x的增大而增大,∴当x=40(元)时,w的最大值为1600(元),故公司销售该商品获得的最大日利润为1600元;(3)由题意得:w=(x﹣20×2)(﹣x+120)=﹣x2+160x﹣4800=﹣(x﹣80)2+1600,当w最大=1500时,﹣(x﹣80)2+1600=1500,解得x1=70,x2=90,∵20≤x≤a,∴有两种情况,①a<80时,在对称轴左侧,w随x的增大而增大,∴当x=a=70时,w最大=1500,②a≥80时,在40≤x≤a范围内w最大=1600≠1500,∴这种情况不成立,∴a=70.25.已知抛物线y=ax2+bx+c与x轴交于A(3,0),与y轴交于C(0,3),又经过点B(4,1).(1)求抛物线的函数关系式;(2)如图1,连接AB,在题1中的抛物线上是否存在点P,使△P AB的外接圆圆心恰好在P A上?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图2,连接AC,E为线段AC上任意一点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.【考点】二次函数综合题.【专题】综合题;数形结合;待定系数法;一次方程(组)及应用;一元二次方程及应用;一次函数及其应用;二次函数图象及其性质;等腰三角形与直角三角形;几何直观;运算能力;推理能力.【答案】(1)抛物线的函数关系式为y=x2﹣x+3;(2)点P的坐标为(﹣1,6);(3)点E的坐标为(,).【分析】(1)将A(3,0),C(0,3),B(4,1)代入y=ax2+bx+c,用待定系数法求解即可;(2)先用圆周角定理及勾股定理的逆定理验证∠ABP=90°,∠CAB=90°,再过点B 作BP∥AC,写出直线AC的解析式,再解得BP的解析式,然后将直线BP和抛物线的解析式联立,解方程组并根据题意作出取舍,即可得出点P的坐标;(3)过点B作BH⊥x轴于点H,求得∠EOF=90°,设点E(x,﹣x+3),由勾股定理OE2,进而表示出S△OEF,从而得出关于x的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【解答】解:(1)将A(3,0),C(0,3),B(4,1)代入y=ax2+bx+c得:,解得:,∴抛物线的函数关系式为y=x2﹣x+3;(2)在题1中的抛物线上存在点P,使△P AB的外接圆圆心恰好在P A上.∵△P AB的外接圆圆心恰好在P A上,∴∠ABP=90°,∵A(3,0),C(0,3),B(4,1),∴AC==3,AB==,BC==2,∴AC2+AB2=BC2,∴∠CAB=90°,过点B作BP∥AC,交抛物线于点P,如图1所示:∵A(3,0),C(0,3),∴直线AC的解析式为y=﹣x+3,设直线BP的解析式为y=﹣x+b,则﹣4+b=1,解得b=5.∴直线BP的解析式为y=﹣x+5,联立,解得,,又∵点B(4,1),∴点P的坐标为(﹣1,6);(3)过点B作BH⊥x轴于点H,如图2所示:∵A(3,0),C(0,3),B(4,1),∴∠OAE=45°,∠OAF=∠BAH=45°,又∵∠OFE=∠OAE,∠OEF=∠OAF,∴∠OEF=∠OFE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,∵点E在直线AC上,直线AC的解析式为y=﹣x+3,∴设点E(x,﹣x+3),由勾股定理得:OE2=x2+(﹣x+3)2=2x2﹣6x+9,∴S△OEF=OE•OF=OE2=x2﹣3x+=+,∴当x=时,S△OEF取最小值,此时﹣x+3=﹣+3=,∴点E的坐标为(,).。
2024-2025学年九年级数学上学期第一次月考卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九年级上册第二十一章~第二十二章。
5.难度系数:0.8。
第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )A.m≠2B.m=2C.m≥2D.m≠02.将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为( )A.(﹣4,﹣1)B.(﹣4)C.(2,1)D.(2,﹣2)3.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A.0B.﹣1C.1D.不能确定4.延时课上,4个同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是( )A.小张B.小王C.小李D.小赵5.关于x的一元二次方程x2+bx﹣8=0的根的情况,下列判断正确的是( )A.只有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根6.已知a,b,c为实数,且b+c=5﹣4a+3a2,c﹣b=1﹣2a+a2,则a,b,c之间的大小关系是( )A.a<b≤c B.b<a≤c C.b≤c<a D.c<a≤b7.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( )A.13(1﹣x)2=12.8B.13(1﹣x2)=12.8C.12.8(1﹣x2)=13D.13(1+x)2=12.88.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )A.B.C.D.9.已知抛物线y=ax2﹣2ax+b(a<0)的图象上三个点的坐标分别为A(3,y1),,C,则y1,y2,y3的大小关系为( )A.y3<y1<y2B.y2<y1<y3C.y1<y3<y2D.y1<y2<y310.点A(a,b1),B(a+2,b2)在函数y=﹣x2+2x+3的图象上,当a≤x≤a+2时,函数的最大值为4,最小值为b1,则a的取值范围是( )A.0≤a≤2B.﹣1≤a≤2C.﹣1≤a≤1D.﹣1≤a≤011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论有( )A.1个B.2个C.3个D.4个12.如图所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是( )A.4B.C.3D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。
九年级(下)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.|﹣3|﹣1的值等于()A.4B.﹣4C.±4D.22.下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(a+1)2=a2+1D.(﹣a2)2=a43.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.0.675×105吨D.67.5×103吨4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°6.下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形7.如图,已知AB、AD是⊙O的弦,∠B=20°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=15°,则∠BAD的度数是()A.30°B.45°C.20°D.35°8.若实数x,y满足条件2x2﹣6x+y2=0,则x2+y2+2x的最大值是()A.14B.15C.16D.不能确定二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:═.10.化简:=.11.分解因式:3x2﹣6x+3=.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.6,那么摸出黑球的概率是.13.若关于x的分式方程﹣=1解为非负数,则a的范围.14.已知圆锥的底面半径为1cm,母线长为3cm,则其侧面积为cm2.(结果保留π)15.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为.16.在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果BC=6,那么线段AG的长为.17.在关于x,y的二元一次方程组中,若a(2x+3y)=2,则a=.18.如图,矩形ABCD中,AB=2,BC=4,P,Q分别是BC,AB上的两个动点,AE=1,△AEQ沿EQ 翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算(1)|﹣1|﹣﹣(1﹣)0+4sin30°(2)解不等式组:.20.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23.(10分)某文化用品商店用1000元购进一批“晨光”套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=45°,AC=4,求图中阴影部分的面积.25.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.26.(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?27.(12分)平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣2,﹣2),(,)…,都是梦之点,显然梦之点有无数个.(1)若点P(3,b)是反比例函数y=(n为常数,n≠0)的图象上的梦之点,则这个反比例函数解析式为;(2)⊙O的半径是2,①⊙O上的所有梦之点的坐标为;②已知点M(m,3),点Q是(1)中反比例函数y=图象上异于点P的梦之点,过点Q的直线q与y轴交于点A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥q,求出m的取值范围.28.(12分)如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.九年级(下)第一次月考数学试卷参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.D;2.D;3.B;4.B;5.C;6.A;7.D;8.B;二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.4;10.﹣1;11.3(x﹣1)2;12.0.2;13.a≤﹣4且a≠﹣8;14.3π;15.(0,﹣1);16.2;17.2或﹣1;18.4;三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)21.560;26.26;27.y=;(,)、(﹣,﹣);。
2019-2020学年湖南省长沙市开福区青竹湖湘一外国语学校九年级(下)第一次段考数学试卷一.选择题(共12小题)1.下列实数中,是无理数的是()A.0B.﹣3C.D.2.不等式组的解集在数轴上表示为()A.B.C.D.3.下列立体图形中,俯视图不是圆的是()A.B.C.D.4.若m>n,下列不等式不一定成立的是()A.m+3>n+3B.﹣3m<﹣3n C.>D.m2>n25.一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四6.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分7.下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为78.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为()A.B.C.D.9.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m10.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>211.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.012.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4B.3C.7D.8二.填空题(共6小题)13.分解因式:x4﹣4x2=.14.在函数y=中,自变量x的取值范围是.15.如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.16.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.17.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.18.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.三.解答题(共6小题)19.计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.20.先化简,再求值(﹣1)÷,然后选一个你喜欢的的数代入求值.21.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.23.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?24.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.参考答案与试题解析一.选择题(共12小题)1.下列实数中,是无理数的是()A.0B.﹣3C.D.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.2.不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣2≤0,得:x≤1,则不等式组的解集为﹣1<x≤1,故选:B.3.下列立体图形中,俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的上面看物体,所得到的图形,分析每个几何体,解答出即可.【解答】解:A、圆柱的俯视图是圆;故本项不符合题意;B、圆锥的俯视图是圆;故本项不符合题意;C、立方体的俯视图是正方形;故本项符合题意;D、球的俯视图是圆;故本项不符合题意.故选:C.4.若m>n,下列不等式不一定成立的是()A.m+3>n+3B.﹣3m<﹣3n C.>D.m2>n2【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都加3,不等号的方向不变,故A正确,不符合题意;B、不等式的两边都乘以﹣3,不等号的方向改变,故B正确,不符合题意;C、不等式的两边都除以3,不等号的方向不变,故C正确,不符合题意;D、如m=2,n=﹣3,m>n,m2<n2;故D错误,符合题意;故选:D.5.一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【分析】根据题目中的函数解析式和一次函数的性质可以解答本题.【解答】解:∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限,故选:C.6.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.7.下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.【解答】解:A.打开电视机,正在播放“张家界新闻”是随机事件,故A错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B错误;C.两组数据平均数相同,则方差大的更不稳定,故C错误;D,数据5,6,7,7,8的中位数与众数均为7,正确.故选:D.8.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为()A.B.C.D.【分析】根据已知可得到△ADE∽△ABC,从而可求得其面积比,则不难求得的值.【解答】解:根据三角形的中位线定理,△ADE∽△ABC,DE:BC=1:2,所以它们的面积比是1:4,所以=,故选:C.9.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m【分析】在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【解答】解:在Rt△ABC中,∵BC=10m,tan A=1:,∴AC=BC÷tan A=10m,∴AB==20(m).故选:C.10.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.11.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.0【分析】根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.12.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4B.3C.7D.8【分析】连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,根据勾股定理和题意求得OP=2,则AB的最小长度为4.【解答】解:连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,∵C(3,4),∴OC==5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OC﹣3=2,∴OP=OA=OB=2,∵AB是直径,∴∠APB=90°,∴AB长度的最小值为4,故选:A.二.填空题(共6小题)13.分解因式:x4﹣4x2=x2(x+2)(x﹣2).【分析】先提取公因式再利用平方差公式进行分解,即x4﹣4x2=x2(x2﹣4)=x2(x+2)(x﹣2);【解答】解:x4﹣4x2=x2(x2﹣4)=x2(x+2)(x﹣2);故答案为x2(x+2)(x﹣2);14.在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.15.如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光所以P(灯泡发光)=.故本题答案为:.16.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.17.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.18.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.三.解答题(共6小题)19.计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.【分析】分别计算出(3.14﹣π)0=1,|﹣1|=﹣1,2cos45°=2×=,+(﹣1)2019=1即可求解;【解答】解:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019=1+﹣1﹣2×﹣1=﹣1;20.先化简,再求值(﹣1)÷,然后选一个你喜欢的的数代入求值.【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【解答】解:原式=(﹣)•=•=•=,当x=8时,原式==.21.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.【分析】(1)根据平行线的性质得到∠DAF=∠E,根据线段中点的定义得到DF=CF,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD=EC,等量代换得到AD=BC,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.23.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.24.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD =90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=a,则由勾股定理可得AC的长.【解答】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB∽△DAC,∴,∴,∴DA=2,∴AB=AD﹣BD=2﹣1=1,设BC=a,AC=a,由勾股定理可得:,解得:a=,∴.。
湖南省长沙市华益中学2023-2024学年九年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中属于无理数的是()A .3.14159265 BC .227D 2.2024中国甲辰(龙)年金银纪念币共13枚,其中15克圆形银质纪念币为精制币,成色99.9%,最大发行量300000枚,数字300000用科学记数法表示为( ) A .5310⨯ B .6310⨯ C .4310⨯ D .43010⨯ 3.第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,下列巴黎奥运会项目图标中,轴对称图形是( )A .B .C .D .4.高速公路是指专供汽车高速行驶的公路.高速公路在建设过程中,通常要从大山中开挖隧道穿过,把道路取直以缩短路程.其中的数学原理是( )A .两点之间线段最短B .两点确定一条直线C .平行线之间的距离最短D .平面内经过一点有无数条直线5.不等式组 137315x x -≤⎧⎨<-⎩的解集在数轴上表示正确的是( ) A .B .C .D .6.如图,已知AB AD =,那么添加下列一个条件后,不能判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒ 7.下列说法正确的是( )A .“经过有交通信号灯的路口,遇到红灯”是必然事件B .已知某篮球运动员投篮投中的概率为0.7,则他投10次一定可以投中7次C .调查全国数学老师对初中数学核心素养的了解情况,应采用全面调查D .数据9,7,2,6,3,4的中位数是58.已知圆弧的度数为120︒,弧长为12π,则圆的半径为( )A .2B .6C .8D .189.如图,已知ABC V 与DEF V 位似,位似中心为点O ,若ABC V 的周长与DEF V 的周长之比为3:2,则:OA OD 是( )A .9:4B .3:5C .3:2D .5:210.长沙市体育中考由三个项目组成,田径项目15分,基础项目10分,球类项目15分.①田径运动:1000米跑(男)、800米跑(女)、分值15分.②基础项目:引体向上(男)或一分钟仰卧起坐(女)、实心球、立定跳远、一分钟跳绳(学生自选其中一项,报考前确定),分值10分,③球类项目,篮球运球、足球运球、排球向上垫球、200米游泳(学生自选其中一项,报考前确定),分值15分.比如:男生小益选择了“1000米跑(男),实心球,排球”作为中考体育项目.请问,对于2024年参加体育中考的小华(女)而言,她总共可以有( )种不同选择.A .8B .10C .16D .32二、填空题11.分解因式:mn 2﹣m=.12.对甲、乙两个小麦品种各100株小麦的株高x (单位:m )进行测量,算出平均数和方差为:0.95x =甲,2 1.01s =甲,0.95x =乙,2 1.35s =乙,于是可估计株高较整齐的小麦品种是.13.若菱形的两条对角线长分别是6cm ,8cm ,则该菱形的面积是cm 2.14.已知蓄电池的电压恒定,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,流过的电流是2A ,那么此用电器的电阻是Ω.15.如图,CD 为Rt ABC △斜边AB 上的中线,E 为AC 的中点.若8AC =,5CD =,则DE =.16.如图,无人机在空中A 处测得某校旗杆顶部B 的仰角为30o ,底部C 的俯角为60o ,无人机与旗杆的水平距离AD 为6m ,则该校的旗杆高约为m .1.≈,结果精确到0.1)三、解答题17.计算:()0π20241tan60-+︒.18.先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中1x =,1y .19.阅读材料,完成下面问题:如图,点A 是直线EF 外一点,利用直尺和圆规按如下步骤作图.(1)利用MBC NBC △≌△,可得到BC 平分ABF ∠,请根据作图过程,直接写出这两个三角形全等的判定依据______;A .SASB .SSSC .AASD .ASA(2)求证:AD EF P .20.随着新课程标准的颁布,为落实立德树人根本任务,我省各学校组织了丰富多彩的研学活动,得到家长、社会的一致好评.某中学为进一步提高研学质量,着力培养学生的核心素养,选取了A .“青少年科技馆”,B .“渡江战役纪念馆”,C .“徽文化园”,D .“长江白紧豚保护研究所”四个研学基地进行研学.为了解学生对以上研学基地的喜欢情况,随机抽取部分学生进行调查统计(每名学生只能选择一个研学基地),根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在本次调查中,一共抽取了________名学生,并将条形统计图补充完整;(2)学校想从选择研学基地D 的学生中选取两名学生了解他们对研学活动的看法,已知选择研学基地D 的学生中恰有两名女生,请用列表法或画树状图的方法求出所选两人中恰有一名男生和一名女生的概率.21.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC∥交AB 于点E ,F 是AC 上的一点,且CF AE =,连接EF .(1)求证:四边形CDEF 是矩形.(2)若2,30AF B =∠=︒,求ABD △的面积.22.某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同.(1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?23.如图,在Rt ABC △中,90ACB ∠=︒,O 为AC 边上一点,连结OB ,以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =;(2)若OB OA =,2AE =,①求半圆O 的半径;②求图中阴影部分的面积.24.我们不妨约定:若点Q 的横纵坐标分别是点P 横纵坐标的k 倍()1k ≠,则把点Q 称为点P 的“k 阶位似点”.若一个函数的图象上至少存在这样的一组不重合的P Q -两点,则称该函数为“k 阶位似函数”.例如,点()2,4Q -是()1,2P -的“2阶位似点”,点P ,点Q 均在函数2y x =-图象上,所以一次函数2y x =-可以叫做“2阶位似一次函数”,仔细审题,认真回答下列问题:(1)下列说法,正确的打“√”,错误的打“⨯”.①点()1,3P 的“3阶位似点”在二次函数225y x x =-+的图象上.( )②无论k 取何值()1k ≠,一次函数31y x =+都不可能是“k 阶位似一次函数”.( ) ③若反比例函数()0m y m x=≠是一个“k 阶位似反比例函数”,则k 的值只能等于1-.( )(2)已知点Q 是点01,2P y ⎛⎫ ⎪⎝⎭的“k 阶位似点”,且均在“k 阶位似二次函数”224y x x c =-+的图象上,点(),M k c 在反比例函数8y x=的图象上,且点M 在第一象限,求0y 的值; (3)已知关于x 的“k 阶位似二次函数”()2212y t x t x t =-++-(其中k ,t 是常数,0k <)的顶点为M ,与y 轴交于点C ,直线MC 与坐标轴围成的三角形的面积为S ,若关于x 的一次函数320242y t x ⎛⎫=-+ ⎪⎝⎭随x 的增大而减小,求S 的取值范围. 25.如图1,在平面直角坐标系xOy 中,已知点B 的坐标为()0,2-,点A 是x 轴正半轴上一点,M e 是AOB V 的外接圆,点C 是劣弧OA 的中点,M e 的半径是2.(1)求AOB V 的周长;(2)如图2.连接AC ,BC .BC 与x 轴交于点D ,记BOD V 的面积为1S ,ACD V 的面积为2S ,求12S S 的值; (3)如图3,连接OM 交BC 于点K ,点P 为线段BM 上一点,连接PK 交OC 于点E ,交y 轴于点Q ,记BP 的长度为()02m m <<,BQ 的长度为n ,请求出n 关于m 的函数关系式.。
2025届高三月考试卷(三)数学(答案在最后)命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在x ∈Z ,220x x m ++”的否定是A.存在x ∈Z ,220x x m ++>B.不存在x ∈Z ,220x x m ++>C.任意x ∈Z ,220x x m ++D.任意x ∈Z ,220x x m ++>2.若集合{}2341,i ,i ,i A =(i 是虚数单位),{}1,1B =-,则A B ⋂等于A.{}1- B.{}1 C.{}1,1- D.∅3.已知奇函数()()22cos x x f x m x -=+⋅,则m =A.-1B.0C.1D.124.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是A.m l ⊥,m β⊂,l α⊥ B.m l ⊥,l αβ⋂=,m α⊂C.m l ,m α⊥,l β⊥ D.l α⊥,m l ,m β5.已知函数()()4cos (0)f x x ωϕω=+>图象的一个最高点与相邻的对称中心之间的距离为5,则6f ϕπ⎛⎫-= ⎪⎝⎭A.0B.2ϕC.4D.2ϕ6.已知M 是圆22:1C x y +=上一个动点,且直线1:30l mx ny m n --+=与直线2:30l nx my m n +--=(m ,n ∈R ,220m n +≠)相交于点P ,则PM 的取值范围为A.1,1⎤-+⎦ B.1⎤-⎦C.1,1⎤-⎦D.1⎤⎦7.P 是椭圆2222:1(0)x y C a b a b+=>>上一点,1F ,2F 是C 的两个焦点,120PF PF ⋅= ,点Q 在12F PF ∠的角平分线上,O 为原点,1OQ PF ,且OQ b =.则C 的离心率为 A.12B.33C.63D.328.设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ++++”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数()f x 满足()()22f x f x ππ+=-,()()0f x f x ππ++-=,并且当()0,x π∈时,()cos f x x =,则下列关于函数()f x 说法正确的是A.302f π⎛⎫=⎪⎝⎭B.最小正周期2T π=C.()f x 的图象关于直线x π=对称D.()f x 的图象关于(),0π-对称11.若双曲线22:145x y C -=,1F ,2F 分别为左、右焦点,设点P 是在双曲线上且在第一象限的动点,点I 为12PF F △的内心,()0,4A ,则下列说法不正确的是A.双曲线C 的渐近线方程为045x y±=B.点I 的运动轨迹为双曲线的一部分C.若122PF PF =,12PI xPF yPF =+ ,则29y x -=D.不存在点P ,使得1PA PF +取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为________.13.ABC △各角的对应边分别为a ,b ,c ,满足1b ca c a b+++,则角A 的取值范围为________.14.对任意的*n ∈N ,不等式11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪⎪+⎝⎭⎝⎭(其中e 是自然对数的底)恒成立,则a 的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设n S 为正项等比数列{}n a 的前n 项和,21332S a a =+,416a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足11b =,1222log log n nn n b a b a ++=,求数列{}n b 的前n 项和n T .16.(本小题满分15分)如图,在四棱锥P ABCD -,BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2DE PE ==.(1)若F 为线段PE 的中点,求证:BF平面PCD ;(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 所成夹角的余弦值.17.(本小题满分15分)已知函数()21ln 2f x x x ax =+-有两个极值点为1x ,()212x x x <,a ∈R .(1)当52a =时,求()()21f x f x -的值;(2)若21e x x (e 为自然对数的底数),求()()21f x f x -的最大值.18.(本小题满分17分)已知抛物线2:2(0)E x py p =>的焦点为F ,H 为E 上任意一点,且HF 的最小值为1.(1)求抛物线E 的方程;(2)已知P 为平面上一动点,且过P 能向E 作两条切线,切点为M ,N ,记直线PM ,PN ,PF 的斜率分别为1k ,2k ,3k ,且满足123112k k k +=.①求点P 的轨迹方程;②试探究:是否存在一个圆心为()0,(0)Q λλ>,半径为1的圆,使得过P 可以作圆Q 的两条切线1l ,2l ,切线1l ,2l 分别交抛物线E 于不同的两点()11,A s t ,()22,B s t 和点()33,C s t ,()44,D s t ,且1234s s s s 为定值?若存在,求圆Q 的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量1a ,2a ,3a ,…,n a(N n ∈且3n ),令123n n S a a a a =++++ ,如果存在{}()1,2,3,,p a p n ∈,使得pn p a S a - ,那么称p a是该向量组的“长向量”.(1)设(),2n a n x n =+,n ∈N 且0n >,若3a是向量组1a,2a,3a的“长向量”,求实数x 的取值范围;(2)若sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭,n ∈N 且0n >,向量组1a ,2a ,3a ,…,7a 是否存在“长向量”?给出你的结论并说明理由;(3)已知1a ,2a ,3a 均是向量组1a ,2a ,3a 的“长向量”,其中()1sin ,cos a x x = ,()22cos ,2sin a x x =.设在平面直角坐标系中有一点列1P ,2P ,3P ,…,n P ,满足1P 为坐标原点,2P 为3a的位置向量的终点,且21k P +与2k P 关于点1P 对称,22k P +与21k P +(k ∈N 且0k >)关于点2P 对称,求10151016P P 的最小值.参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C【解析】集合{}i,1,1,i A =--,{}1,1B =-,{}1,1A B ⋂=-.故选C.3.A 【解析】()f x 是奇函数,()()22cos xxf x m x -=+⋅,()()()2222xx x x f x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =,()()122cos 0x x m x -∴++=,10m ∴+=,1m =-.故选A.4.D【解析】有可能出现α,β平行这种情况,故A 错误;会出现平面α,β相交但不垂直的情况,故B 错误;m l ,m α⊥,l βαβ⊥⇒ ,故C 错误;l α⊥,m l m α⇒⊥ ,又由m βαβ⇒⊥ ,故D 正确.故选D.5.C【解析】设()f x 的最小正周期为T ,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有224254T ⎛⎫+= ⎪⎝⎭,得12T =,则有212πω=,解得6πω=,所以()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭,所以664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭.故选C.6.B 【解析】依题意,直线()()1:310l m x n y ---=恒过定点()3,1A ,直线()()2:130l n x m y -+-=恒过定点()1,3B ,显然直线12l l ⊥,因此,直线1l 与2l 交点P 的轨迹是以线段AB 为直径的圆,其方程为:22(2)(2)2x y -+-=,圆心()2,2N ,半径2r =,而圆C 的圆心()0,0C ,半径11r =,如图:12NC r r =>+,两圆外离,由圆的几何性质得:12min1PM NC r r =--=,12max1PMNC r r =++=,所以PM 的取值范围为1⎤-⎦.故选B.7.C【解析】如图,设1PF m =,2PF n =,延长OQ 交2PF 于点A,由题意知1OQ PF ,O 为12F F 的中点,故A 为2PF 中点,又120PF PF ⋅= ,即12PF PF ⊥,则2QAP π∠=,又由点Q 在12F PF ∠的角平分线上得4QPA π∠=,则AQP △是等腰直角三角形,故有2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩化简得2,2,m n b m n a -=⎧⎨+=⎩即,,m a b n a b =+⎧⎨=-⎩代入2224m n c +=得222()()4a b a b c ++-=,即2222a b c +=,又222b ac =-,所以2223a c =,所以223e =,63e =.故选C.8.D 【解析】因为0i x =或1i x =,所以若1234513x x x x x ++++,则在()1,2,3,4,5i x i =中至少有一个1i x =,且不多于3个.所以可根据i x 中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为2315C 2N =⋅,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为3225C 2N =⋅,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为435C 2N =⋅,所以共有23324555C 2C 2C 2130N =⋅+⋅+⋅=种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为422616-=,故A 正确;1070%7⨯=,结合A 选项可知第70百分位数为第7个数和第8个数的平均数,即353836.52+=,故B 不正确;这10年粮食年产量的平均数为()13232302835384239263533.710⨯+++++++++=,故C 正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量的方差,故D 正确.故选ACD.10.AD 【解析】由于()0,x π∈时,()cos f x x =,并且满足()()22f x f x ππ+=-,则函数()f x 的图象关于直线2x π=对称.由于()()0fx f x ππ++-=,所以()()fx f x ππ+=--,故()()()()()22f x f x f x f x ππππ--+=+=--=-,故()()()24f x f x f x ππ=-+=+,故函数的最小正周期为4π,根据()()0fx f x ππ++-=,知函数()f x 的图象关于(),0π对称.由于()0,x π∈时,()cos f x x =,3cos 022222f f ff πππππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=--=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故A 正确,由于函数的最小正周期为4π,故B 错误;由函数()f x 的图象关于(),0π对称,易知()f x 的图象不关于直线x π=对称,故C 错误;根据函数图象关于点(),0π对称,且函数图象关于直线2x π=对称,知函数图象关于点()3,0π对称,又函数的最小正周期为4π,则函数图象一定关于点(),0π-对称,故D 正确.故选AD.11.ABD 【解析】双曲线22:145x y C -=,可知其渐近线方程为02x ±=,A 错误;设1PF m =,2PF n =,12PF F △的内切圆与1PF ,2PF ,12F F 分别切于点S ,K ,T ,可得PS PK =,11F S FT =,22F T F K =,由双曲线的定义可得:2m n a -=,即12122F S F K FT F T a -=-=,又122FT F T c +=,解得2F T c a =-,则点T 的横坐标为a ,由点I 与点T 的横坐标相同,即点I 的横坐标为2a =,故I 在定直线2x =上运动,B 错误;由122PF PF =,且1224PF PF a -==,解得18PF =,24PF =,1226F F c ==,126436167cos 2868PF F ∠+-∴==⨯⨯,则12sin 8PF F ∠==,1215tan 7PF F ∠∴=,同理可得:21tan PF F ∠=,设直线()115:37PF y x =+,直线)2:3PF y x =-,联立方程得(P ,设12PF F △的内切圆的半径为r ,则()12115186846282PF F S r =⨯⨯⨯=⨯++⋅△,解得153r =,即152,3I ⎛⎫⎪ ⎪⎝⎭,2152,3PI ⎛∴=-- ⎝⎭ ,(17,PF =-,(21,PF =- ,由12PI xPF yPF =+,可得27,,3x y -=--⎧⎪⎨-=-⎪⎩解得29x =,49y =,故29y x -=,C 正确;1224PF PF a -== ,12244PA PF PA PF AF ∴+=+++,当且仅当A ,P ,2F 三点共线取等号,易知()1min549PA PF +=+=,故存在P 使得1PA PF +取最小值,D 错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90【解析】523x x ⎛⎫+ ⎪⎝⎭展开式的通项公式为()()521031553C C 3rr r rr r r T xx x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,令1034r -=,解得2r =,所以展开式中4x 的系数为225C 310990⋅=⨯=.13.0,3π⎛⎤ ⎥⎝⎦【解析】从所给条件入手,进行不等式化简()()1b cb a bc a c a c a b+⇒+++++()()222a c a b b c a bc ++⇒++,观察到余弦定理公式特征,进而利用余弦定理表示cos A ,由222b c aac +-可得2221cos 22b c a A bc+-=,可得0,3A π⎛⎤∈ ⎥⎝⎦.14.11ln2-【解析】对任意的*n ∈N ,不等式11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭(其中e 是自然对数的底)恒成立,只需11e n an +⎛⎫+ ⎪⎝⎭恒成立,只需()1ln 11n a n ⎛⎫++ ⎪⎝⎭恒成立,只需11ln 1a n n -⎛⎫+ ⎪⎝⎭恒成立,构造()()11ln 1m x x x=-+,(]0,1x ∈,()()()()()22221ln 11ln 1x x x m x x x x ++-=++',(]0,1x ∈.下证()(]22ln 1,0,11x x x x +<∈+,再构造函数()()22ln 11x h x x x=+-+,(]0,1x ∈,()()()2221ln 12(1)x x x xh x x ++-'-=+,(]0,1x ∈,设()()()221ln 12F x x x x x=++--,()()2ln 12F x x x =+-',(]0,1x ∈,令()()2ln 12G x x x =+-,(]0,1x ∈,()21xG x x=-+',(]0,1x ∈,在(]0,1x ∈时,()0G x '<,()G x 单调递减,()()00G x G <=,即()0F x '<,所以()F x 递减,()()00F x F <=,即()0h x '<,所以()h x 递减,并且()00h =,所以有()22ln 11x x x+<+,(]0,1x ∈,所以()0m x '<,所以()m x 在(]0,1x ∈上递减,所以()m x 的最小值为()111ln2m =-.11ln2a ∴-,即a 的最大值为11ln2-.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为{}n a 是正项等比数列,所以10a >,公比0q >,因为21332S a a =+,所以()121332a a a a +=+,即21112320a q a q a --=,则22320q q --=,解得12q =-(舍去)或2q =,······················································(3分)又因为3411816a a q a ===,所以12a =,所以数列{}n a 的通项公式为2n n a =.··············································································(6分)(2)依题意得1222222log log 2log log 22n n n n n n b a nb a n +++===+,························································(7分)当2n 时,()324123112311234511n n b b b b n b b b b n n n --⨯⋅⋅⋅=⨯⨯⨯⨯=++ ,所以()121n b b n n =+,因为11b =,所以()21n b n n =+,当1n =时,1n b =符合上式,所以数列{}n b 的通项公式为()21n b n n =+.····························(10分)因为()211211n b n n n n ⎛⎫==- ⎪++⎝⎭,所以1111112212221223111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭ .··························(13分)16.【解析】(1)设M 为PD 的中点,连接FM ,CM ,因为F 是PE 中点,所以FMED ,且12FM ED =,因为AD BC ,1AB BC ==,3AD =,2DE PE ==,所以四边形ABCE 为平行四边形,BC ED ,且12BC ED =,所以FM BC ,且FM BC =,即四边形BCMF 为平行四边形,所以BFCM ,因为BF ⊄平面,PCD CM ⊂平面PCD ,所以BF 平面PCD .················(6分)(2)因为AB ⊥平面PAD ,所以CE ⊥平面PAD ,又PE AD ⊥,所以EP ,ED ,EC 相互垂直,································································································································(7分)以E为坐标原点,建立如图所示的空间直角坐标系,则()0,0,2P ,()0,1,0A -,()1,1,0B -,()1,0,0C ,()0,2,0D ,所以()1,0,0AB = ,()0,1,2AP = ,()1,0,2PC =- ,()1,2,0CD =-,····························(9分)设平面PAB 的一个法向量为()111,,m x y z =,则1110,20,m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 取11z =-,则()0,2,1m =- ,·················································(11分)设平面PCD 的一个法向量为()222,,n x y z =,则222220,20,n PC x z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 取21z =,则()2,1,1n = ,···················································(13分)设平面PAB 与平面PCD 所成夹角为θ,则cos 30m nm nθ⋅====⋅ .········(15分)17.【解析】(1)函数()21ln 2f x x x ax =+-的定义域为()0,+∞,则()211x ax f x x a x x -+=+-=',当52a =时,可得,()()2152122x x x x f x x x'⎛⎫---+ ⎪⎝⎭==,············································(2分)当10,2x ⎛⎫∈ ⎪⎝⎭或()2,x ∈+∞时,()0f x '>;当1,22x ⎛⎫∈ ⎪⎝⎭时,()0f x '<;所以()f x 在区间10,2⎛⎫ ⎪⎝⎭,()2,+∞上单调递增,在区间1,22⎛⎫ ⎪⎝⎭上单调递减;·······················(4分)所以12x =和2x =是函数()f x 的两个极值点,又12x x <,所以112x =,22x =;所以()()()211115152ln225ln 2ln222848f x f x f f ⎛⎫⎛⎫-=-=+--+-=- ⎪ ⎪⎝⎭⎝⎭,即当52a =时,()()21152ln28f x f x -=-.····································································(6分)(2)易知()()()()22221212111ln2x f x f x x x a x x x -=+---,又()21x ax f x x-+=',所以1x ,2x 是方程210x ax -+=的两个实数根,则2Δ40a =->且120x x a +=>,121x x =,所以2a >,·············································(9分)所以()()()()()()()2222222121212112211111lnln 22x x f x f x x x a x x x x x x x x x x -=+---=+--+-()()222222221212111121121111lnln ln 222x x x x x x x x x x x x x x x x ⎛⎫=--=-⋅-=-- ⎪⎝⎭,···························(11分)设21x t x =,由21e x x ,可得21e x t x =,令()11ln 2g t t t t ⎛⎫=-- ⎪⎝⎭,e t ,··························(13分)则()222111(1)1022t g t t t t -⎛⎫=-+=-< ⎪⎝⎭',所以()g t 在区间[)e,+∞上单调递减,得()()11e 1e 1e 12e 22eg t g ⎛⎫=--=-+ ⎪⎝⎭,故()()21f x f x -的最大值为e 1122e -+.··········(15分)18.【解析】(1)设抛物线E 的准线l 为2py =-,过点H 作1HH ⊥直线l 于点1H ,由抛物线的定义得1HF HH =,所以当点H 与原点O 重合时,1min 12pHH ==,所以2p =,所以抛物线E 的方程为24x y =.···················································································(4分)(2)①设(),P m n ,过点P 且斜率存在的直线():l y k x m n =-+,联立()24,,x y y k x m n ⎧=⎪⎨=-+⎪⎩消去y ,整理得:24440x kx km n -+-=,由题可知()2Δ164440k km n =--=,即20k mk n -+=,所以1k ,2k 是该方程的两个不等实根,由韦达定理可得1212,,k k m k k n +=⎧⎨=⎩··································(6分)又因为()0,1F ,所以31n k m -=,0m ≠,由123112k k k +=,有121232k k k k k +=,所以21m m n n =-,因为0m ≠,12n n -=,1n ∴=-,所以点P 的轨迹方程为()10y x =-≠.②由①知(),1P m -,设()14:1l y k x m =--,()25:1l y k x m =--,1m ≠±且0m ≠,·······(9分)联立()244,1,x y y k x m ⎧=⎪⎨=--⎪⎩消去y ,整理得2444440x k x k m -++=,又()11,A s t ,()22,B s t ,()33,C s t ,()44,D s t ,由韦达定理可得12444s s k m =+,同理可得34544s s k m =+,所以()()()212344515454444161616s s s s k m k m k k m m k k =++=+++,·····························(11分)又因为1l 和以圆心为()0,(0)Q λλ>,半径为1的圆相切,1=,即()()2224412120m k m k λλλ-++++=.同理()()2225512120m k m k λλλ-++++=,所以4k ,5k 是方程()()22212120m k m k λλλ-++++=的两个不等实根,所以由韦达定理可得()452245221,12,1m k k m k k m λλλ⎧++=-⎪⎪-⎨+⎪=⎪-⎩································································(14分)所以()()()22222123445452216161616162221621611m m s s s s k k m m k k m m λλλλ=+++=+--+=-+--,若1234s s s s 为定值,则220λ-=,又因为0λ>,所以λ=,······································(16分)所以圆Q的方程为22(1x y +-=.··········································································(17分)19.【解析】(1)由题意可得:312a a a +40x -.·······································································································································(3分)(2)存在“长向量”,且“长向量”为2a,6a,····························································(5分)理由如下:由题意可得1n a ==,若存在“长向量”p a,只需使1n pS a -,又()()712371010101,01010100,1S a a a a =++++=+-+++--+++-+=-,故只需使71p S a -=== ,即022cos12p π+,即11cos 22p π--,当2p =或6时,符合要求,故存在“长向量”,且“长向量”为2a ,6a.···························(8分)(3)由题意,得123a a a +,22123a a a + ,即()22123a a a +,即222123232a a a a a ++⋅ ,同理222213132a a a a a ++⋅,222312122a a a a a ++⋅,·····················(10分)三式相加并化简,得2221231213230222a a a a a a a a a +++⋅+⋅+⋅,即()21230a a a ++ ,1230a a a ++ ,所以1230a a a ++=,设()3,a u v = ,由1220a a a ++=得sin 2cos ,cos 2sin ,u x x v x x =--⎧⎨=--⎩·················································(12分)设(),n n n P x y ,则依题意得:()()()()()()212111222222222121,2,,,,2,,,k k k k k k k k x y x y x y x y x y x y ++++++⎧=-⎪⎨=-⎪⎩·····························(13分)得()()()()2222221122,2,,,k k k k x y x y x y x y ++⎡⎤=-+⎣⎦,故()()()()2222221122,2,,,k k x y k x y x y x y ++⎡⎤=-+⎣⎦,()()()()2121221122,2,,,k k x y k x y x y x y ++⎡⎤=--+⎣⎦,所以()()()212222212221221112,4,,4k k k k k k P P x x y y k x y x y k PP++++++⎡⎤=--=-=⎣⎦,22212(sin 2cos )(cos 2sin )58sin cos 54sin21PP x x x x x x x =--+--=+=+ ,当且仅当()4x t t ππ=-∈Z 时等号成立,·····································································(16分)故10151016min1014420282P P =⨯= .··············································································(17分)。
九年级数学(考试时间:60分钟,满分:100分)一、选择题(本大题共5小题,每小题2分,共10分).1.已知O e 的半径为4,平面内有一点M .若5OM =,则点M 与O e 的位置关系是( ).A .在圆内B .在圆上C .在圆外D .不能确定2.已知x=2是关于x 的一元二次方程x 2+ax=0的一个根,则a 的值为( )A .-2B .2C .12D .12-3.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是 AC 上的点.连接AC ,若20BAC =°∠,则D Ð的度数为( ).A .100°B .110°C .120°D .130°4.某商品经过连续两次降价,销售单价由原来200元降到160元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .200(1-x )2=160B .200(1+x )2=160C .160(1+x )2=200D .160(1-x )2=2005.如图,四边形ABCD 内接于O e ,AE CB ^交CB 的延长线于点E ,若BA 平分DBE Ð,6AD =,4CE =,则AE 的长为( ).A .2B .3C .D .二、填空题(本大题共10小题,每小题3分,共30分)6.方程230x x -=的根为 .7.用配方法解方程2250x x --=时,原方程应变形为__________.8.写一个一元二次方程,使得它的两个根为1-,3,该方程为 .9.如图,等边△ABC 内接于⊙O ,AD 是直径,则∠CBD= °.10.如图,C 为O e 的劣弧AB 上一点,若124AOB Ð=o ,则ACB =∠ .11.若1x 、2x 是一元二次方程2210x x +-=的两个实数根,则12122x x x x +-的值为 .12.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.54A OC CD Ð=°=,,的长为 .13.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程()2(2)20a xb xc -+-+=的解为 .14.已知O e 的半径1OA =,弦AB ,若在O e 上找一点C ,则BCA Ð= °.15.如图,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,若142Ð=°,则AOC Ð= °.三、解答题(本大题共7小题,共60分)16.解下列方程(1)2316x x-=(2)2(21)63x x -=-.17.已知关于x 的方程x 2+kx -2=0.(1)求证:不论k 取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.18.如图,AD 、BC 是O e 的弦,且AD BC =,AC 是直径,求证:四边形ABCD 是矩形.19.已知关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x .(1)若2,8p q =-=-,则24p q -的值是 ,方程的解是 ;(2)若123,2x x ==-,求24p q -的值;(3)用含12,x x 的代数式表示24p q -,下列结论中正确的是( )A. 22124()p q x x -=+B. 22124()p q x x -=C. 22124()p q x x -=- D. 2212124()p q x x x x -=++20.某商店经销的某种商品,每件成本为40元.调查表明,这种商品的售价为50元时,可售出200件;售价每增加5元,其销售量将减少50件.为了实现2000元的销售利润,这种商品的售价应定为多少元?21.如图,已知点A 、B 是平面内两点,线段a 长度一定,在平面内作O e 使得它过点A 、B 且半程长为a (尺规作图,保留作图痕迹,写出必要的作图说明).22.如图,四边形ABCD 是O e 的内接四边形,AC BD ^,OF AB ^,垂足分别是E 、F .(1)直接写出OF 与CD 的数量关系__________,并证明你的结论;(2)若AB AC ==8BC =.求CD 的长.1.C【分析】本题考查了点与圆的位置关系:设圆的半径为r ,点P 到圆心的距离OP 为d ,当d r >时,则点P 在圆外;当d r =时,点P 在圆上;当d r <时,点P 在圆内,根据点P 与圆的位置关系的判定方法对点M 与O e 位置关系进行判断.【详解】解:∵O e 的半径为4,5OM =∴点M 到圆心的距离大于圆的半径,∴点M 在圆外.故选:C .2.A【分析】把x=2代入x 2+ax=0,即可求解.【详解】∵x=2是关于x 的一元二次方程x 2+ax=0的一个根,∴2220a +=,解得:a=-2.故选A.【点睛】本题主要考查一元二次方程的根的定义,理解方程的根的定义,是解题的关键.3.B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出ADB Ð及BDC Ð的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴90ADB Ð=°,∵20BAC =°∠,∴20BDC BAC Ð=Ð=°,∴9020110ADC ADB BDC Ð=Ð+Ð=°+°=°,故选:B .4.A【分析】根据某商品经过连续两次降价,销售单价由原来200元降到160元,平均每次降价的百分率为x ,可以列出相应的方程,本题得以解决.【详解】解:由题意可得,200(1-x )2=160,故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.5.D【分析】连接AC ,根据圆内接四边形对角互补得到ABE ADC Ð=Ð,根据 AD AD =得到ABD ACD Ð=Ð结合角平分线得到ABE ABD Ð=Ð,即可得到:ADC ACD Ð=Ð,从而得到AC AD =,结合勾股定理即可得到答案;【详解】解:连接AC ,∵四边形ABCD 内接于O e ,∴180ADC ABC Ð+Ð=°,∵180ABE ABC Ð+Ð=°,∴ABE ADC Ð=Ð,∵ AD AD =,∴ABD ACD Ð=Ð,∵BA 平分DBE Ð,∴ABE ABD Ð=Ð,∴ADC ACD Ð=Ð,∴AC AD =,∵AE CB ^,6AD =,4CE =,∴6AC =∴AE ==故选:D .【点睛】本题考查勾股定理及圆内接四边形对角互补,同弧所对的圆周角相等,等角对等边等知识,掌握这些知识是解题的关键.6.120,3x x ==【详解】解:x (x -3)=0 ,解得:x 1=0,x 2=3.故答案为:x 1=0,x 2=3.7.()216x -=【分析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】移项得:x 2﹣2x =5,配方得:x 2﹣2x +1=5+1,即(x ﹣1)2=6.故答案为(x ﹣1)2=6.【点睛】本题考查了用配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.2230x x --=(答案不唯一)【分析】本题主要考查一元二次方程的根与系数的关系,根据一元二次方程的根与系数的关系可得出122b x x a +=-=,123c x x a ×==-,令1a =,则2b =-,3c =-则可得出一个符合条件的一个一元二次方程.【详解】解:∵一元二次方程的两个根为1-,3,∴122b x x a+=-=,123c x x a ×==-,令1a =,则2b =-,3c =-∴符合条件的一个一元二次方程为:2230x x --=,故答案为:2230x x --=.9.30°.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠C=∠BAC =60°,根据圆周角定理得:∠D=∠C=60°,∵AD 为直径,∴∠ABD=90°,∴∠BAD=30°∴∠CAD=∠BAC-∠BAD=90°-60°=30°∴∠CBD=∠CAD=30°.故答案为:30°10.118°【分析】本题考查了圆周角定理和圆内接四边形性质的应用,能正确作辅助线是解此题的关键.作圆周角ADB Ð,根据圆周角定理求出D Ð的度数,根据圆内接四边形性质求出C Ð即可.【详解】解:如图作圆周角ADB Ð,使D 在优弧上,124AOB Ð=°Q ,1622D AOB \Ð=Ð=°,A Q 、D 、B 、C 四点共圆,180ACB D \Ð+Ð=°,118ACB \Ð=°,故答案为:118°.11.0【分析】根据一元二次方程根与系数的关系求得1212,x x x x +的值,代入代数式即可求解.【详解】解:解:∵1x 、2x 是一元二次方程2210x x +-=的两个实数根,∴122x x +=-,121x x =-.∴12122x x x x +-()2210=--´-=,故答案为:0.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=¹的两根,12b x x a +=-,12c x x a=.12.【分析】本题考查了垂径定理,等腰直角三角形的性质和圆周角定理.解题的关键是熟练掌握以上知识点,根据圆周角定理得245BOC A Ð=Ð=°,由于圆O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以CE ==然后利用2CD CE =进行计算.【详解】解:∵22.5A Ð=°,∴245BOC A Ð=Ð=°,∵圆O 的直径AB 垂直于弦CD ,∴CE DE =,则OCE △为等腰直角三角形,∵OC∴CE ==∴2CD CE ==.故答案为:13.11x =,25x =【分析】本题考查一元二次方程的解的概念,将第二个方程中的()2x -看成一个整体,则由第一个方程的解可知,21x -=-或3,从而可得出答案.【详解】解:∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴方程()2(2)20a x b x c -+-+=的解为21x -=-或3,解得:11x =,25x =,故答案为:11x =,25x =.14.45°或135°.【分析】本题考查了圆周角定理,圆内接四边形的性质,勾股定理逆定理,先由勾股定理逆定理求出90AOB Ð=°,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,则145BC A Ð=°,然后根据圆内接四边形的性质可求出2135BC A Ð=°,掌握知识点的应用是解题的关键.【详解】解:∵1OA OB ==,AB =,∴222OA OB AB +=,∴90AOB Ð=°,如图,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,∴145BC A Ð=°,∵四边形12AC BC 是圆内接四边形,∴12180BC A BC A Ð+Ð=°,∴2135BC A Ð=°,故答案为:45°或135°.15.84【分析】本题主要考查线段的垂直平分线的性质,多边形内角和定理,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.连接BO ,并延长BO 到P ,根据线段的垂直平分线的性质得AO OB OC ==,90BDO BEO Ð=Ð=°,根据四边形的内角和为360°得180DOE ABC +=°∠∠,根据外角的性质得AOP A ABO COP C OBC Ð=Ð+ÐÐ=Ð+Ð,,相加可得结论.【详解】解:连接BO ,并延长BO 到P ,∵线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,∴AO OB OC ==,90BDO BEO Ð=Ð=°,∴180DOE ABC +=°∠∠,∵1180DOE +=°∠∠,∴142ABC Ð=Ð=°,∵AO OB OC ==,∴A ABO Ð=Ð,OBC C Ð=Ð,∵AOP A ABO Ð=Ð+Ð,COP C OBC Ð=Ð+Ð,∴24284AOC AOP COP A ABC C Ð=Ð+Ð=Ð+Ð+Ð=´°=°;故答案为:84.16.(1)11x =21x =(2)112x =,22x =.【分析】本题考查了解一元二次方程.(1)根据配方法解一元二次方程;(2)先移项,然后根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2316x x -=,2361x x -=,2123x x -=,24213x x -+=,()2413x -=,1x -=11x =21x =(2)解:2(21)63x x -=-,()()2213210x x ---=,()()212130x x ---=,∴210x -=或240x -=,∴112x =,22x =.17.(1)见解析;(2)它的另一个根为-1.【分析】(1)求判别式b 2-4ac =k 2+8>0即可证明;(2)利用根与系数的关系即可求解.【详解】(1) ∵a =1 ,b =k ,c =-2 ,∴b 2-4ac =k 2+8 ,∵不论k 取何实数,k 2≥0 ,∴k 2+8>0即b 2-4ac >0 ,∴不论k 取何实数,该方程总有两个不相等的实数根;(2) ∵a =1 ,c =-2, x 1=2,∴ x 1g x 2=-2,2x 2=-2,∴ x 2=-1,∴另一个根为-1.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握一元二次方程的根存在性的判别方法及一元二次方程的根与系数的关系是解题的关键.18.见详解【分析】本题主要考查了直径所对的圆周角等于90度,矩形的判定,勾股定理,根据直径所对的圆周角等于90度,可得出90D B Ð=Ð=°,根据勾股定理可得出2222AB BC CD AD +=+,再由AD BC =即可得出AB CD =.进而可得出四边形ABCD 是平行四边形,结合90D Ð=°即可证明.【详解】证明:∵AC 为O e 的直径,∴90D B Ð=Ð=°,在Rt ABC △中,222AB BC AC +=,在Rt ADC V 中,222CD AD AC +=,∴2222AB BC CD AD +=+,由∵AD BC =,∴AB CD =,∴四边形ABCD 是平行四边形,又∴90D Ð=°,∴四边形ABCD 是矩形.19.(1)36,124,2x x ==-(2)25(3)C【分析】(1)先把2,8p q =-=-,代入24p q -,可得2436p q -=,再代入原方程,再利用因式分解法,即可求解;(2)根据一元二次方程根与系数的关系,即可求解;(3)根据一元二次方程根与系数的关系,再利用完全平方公式的变形,即可求解.【详解】(1)解:∵2,8p q =-=-,∴()()22424836p q -=--´-=,∴方程为228=0x x --,∴()()420x x -+= ,解得:124,2x x ==-;(2)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∵123,2x x ==-,∴()()32,32p q -=+-=´- ,∴1,6p q ==- ,∴()22414625p q -=-´-=;(3)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∴()()()222222221212112212112212444242p q p q x x x x x x x x x x x x x x x x -=--=+-×=+×+-×=-×+=-.故选:C【点睛】本题主要考查了解一元二次方程和一元二次方程根与系数的关系,熟练掌握一元二次方程的解法和一元二次方程根与系数的关系是解题的关键.20.这种商品的售价应定为50元或60元.【分析】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出方程.设这种商品的售价应定为x 元,利用销售总利润等于每件利润乘以销售数量,即可得出关于x 的一元二次方程,解方程即可得到答案.【详解】解:设这种商品的售价应定为x 元,根据题意列方程得:50(40)2005020005x x éù-æö--=ç÷êúèøëû 整理得:2x 110x 30000-+=解得:150x =,260x =,答:这种商品的售价应定为50元或60元.21.见详解【分析】本题主要考查了作图,画圆,作线段垂直平分线,连接AB ,作AB 的垂直平分线CD ,以点A 为圆心线段a 为半径画弧交CD 于点O ,再以点O 为圆心线段AO 为半径作圆即为所求.【详解】解:如下图:O e 即为所求:22.(1)12OF CD =,证明见详解(2)【分析】(1)连接AO 并延长交O e 于点G ,连接BG ,证明OF 是ABG V 的中位线,则有12OF BG =,再根据同弧所对的圆周角相等可得AGB ECB Ð=Ð,直径所对的圆周角是直角可得90ABG Ð=°,则有90BAG AGB Ð+Ð=°,根据AC BD ^,90ECB EBC Ð+Ð=°,从而可得BAG EBC Ð=Ð,BG CD =,继而可得12OF CD =;(2)先证明AG BC ^,由等腰三角形三线合一的性质得出142BH HC BC ===,再由勾股定理求出AH ,再证明AHC BHG ∽V V ,由相似三角形的判定以及性质即可得出答案.【详解】(1)解:12OF CD =,证明如下:连接AO 并延长交O e 于点G ,连接BG ,∵OF AB ^,∴AF BF =,∵AO GO =,∴OF 是ABG V 的中位线,∴12OF BG =,∵AG 是O e 的直径,∴90ABG Ð=°,∴90BAG AGB Ð+Ð=°,∵AC BD ^,∴90CEB Ð=°,∴90ECB EBC Ð+Ð=°,∵ AB AB =,∴AGB ECB Ð=Ð,∴BAG EBC Ð=Ð,∴BG CD =,∴12OF CD =;(2)∵AB AC =,∴ACB ABC Ð=Ð,∵ACB AGB Ð=Ð,∴ABC AGB Ð=Ð,∵90ABC CBG AGB GBC Ð+Ð=Ð+Ð=°∴AG BC ^,∵AB AC =,8BC =,∴142BH HC BC ===,∴8AH ===,∵ACB HGB Ð=Ð,AHC BHG Ð=Ð,∴AHC BHG ∽V V ,AH BH,84=,∴BG =∴CD BG ==.【点睛】本题主要考查了直径所对的圆周角是90°,同弧所对的圆周角相等,三角形中位线的判定以及性质,等腰三角形的性质,相似三角形的判定以及性质,勾股定理等知识, 掌握这些性质以及判定是解题的关键.。
2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
2022-2023学年湖南省长沙市雨花区广益中学九年级(下)月考数学试卷(3月份)一、选择题(本大题共4小题,每小题3分,满分12分)(每题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内)二、填空题(本大题共12小题,每小题4分,满分48分)A .B .C .D .1.(3分)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )A .a ≥2B .a ≤2C .a ≥-2D .a ≤-22.(3分)关于x 的一元二次方程x 2-ax +a -2=0的两个根中,只有一个正根,则( )A .1B .2C .kD .k 23.(3分)若函数y =kx (k >0)与函数y =1x的图象相交于A ,C 两点,AB 垂直x 轴于B ,则△ABC 的面积为( )A .12B .13C .14D .154.(3分)设△ABC 的面积为1,D 是边AB 上一点,且AD AB =13,若在边AC 上取一点E ,使四边形DECB 的面积为34,则CE EA 的值为( )5.(4分)因式分解:3x 2-xy -y 2= .6.(4分)已知:5x 2-4xy +y 2-2x +1=0,求(x -y )2007的值 .7.(4分)某商品连续两次降价10%以后的售价为a 元,则该商品的原价为 元.8.(4分)矩形纸片ABCD 中,AD =4cm ,AB =10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE = cm .三、解答题(本大题共4小题,满分40分)9.(4分)公民的月收入超过800元时,超过部分须依法缴纳个人所得税.当超过部分在500元以内(含500元)时,税率为5%;当超过部分在500~2000元之内时,税率为10%.某人1月份应缴纳税款80元,则他当月工资是 元.10.(4分)观察下列各式:223=2+23,338=3+38,4415=4+415,针对上述各式反映的规律,写出用n (n 为自然数,且n ≥2)表示的等式 .√√√√√√11.(4分)抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C .若△ABC 是直角三角形,则ac = .12.(4分)如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A ″B ″C ″的位置,设BC =1,AC =3,则顶点A 运动到点A ″的位置时,点A 经过的路线与直线l 所围成的面积是.(计算结果保留π)√13.(4分)“这家商店中所有展出的商品都是出售的”,如果这是一句错话,那么下列说法中哪些必定正确的序号是①在这家商店中展出的所有商品不是供出售的.②在这家商店中展出的商品中有一些是不出售的.③在这家商店中没有一件展出的商品是出售的.④在这家商店中不是所有展出的商品都是出售的.14.(4分)两圆相交,公共弦长为16cm ,若两圆中有一圆的半径为10,另一个圆的半径为17cm ,则两圆的圆心距为 .15.(4分)在期中考试中,同学甲、乙、丙、丁分别获班级第一、第二、第三、第四名.在期末考试中,他们又是班级的前四名.如果他们的排名都与期中考试的排名不同,那么排名情况可能有 种.16.(4分)若三个数a 、b 、c 满足b a =c b,则称a 、b 、c 为等比数列,现有一个正数,其小数部分,整数部分,和其自身依次成等比数列,则该正数是 .17.(8分)△ABC 中,M 、N 分别是AC 、BC 上的点,BM 与AN 交于点O ,若S △OMA =3,S △OAB =2,S△OBN =1,求S △CMN ?18.(10分)如图,二次函数y =x 2+bx +c 的图象与x 轴只有一个公共点P ,与y 轴的交点为Q .过点Q 的直线y =2x +m 与x 轴交于点A ,与这个二次函数的图象交于另一点B ,若S △BPQ =3S △APQ ,求这个二次函数的解析式.,的函数关系式你认为销售单价应定为多少元?与点A、B不重合),。
湖南省长沙市北雅中学2022-2023学年九年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣的相反数是( )25A .﹣B .C .﹣D .252552522.如图的几何体,从左面看的平面图是( )A .B .C .D .3.我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数21500000用科学记数法表示为( )A .B .C .D .72.1510⨯90.21510⨯82.1510⨯721.510⨯4.下列说法正确的是( )A .“三角形内角和为”是不可能事件180︒B .抛一枚质地均匀的硬币,正面朝上的概率为12C .“明天的降水概率是”,是指明天有的时间在下雨90%90%D .了解一批灯泡的使用寿命,应采用全面调查5.下列各式计算正确的是( )A .B .3412a a a ⋅=()222x y x y +=+C .D .33x x -=743x x x ÷=6.若点,则点P 关于原点的对称点的坐标是( )()8,3P -A .B .C .D .()8,3()8,3--()8,3-()8,3-7.已知直线,将一块含角的直角三角板,其中,按如图所m n ∥30︒ABC 30ABC ∠=︒示方式放置,其中A 、B 两点分别落在直线m 、n 上,若,则的度数是128∠=︒2∠( )A .B .28︒30︒C .D .58︒60︒8.如图,点,,是上的点,若,则的度数为( )A B C O 49ACB ∠=︒AOB ∠A .B .C .D .49︒41︒98︒82︒9.为了践行“绿水青山就是金山银山”的理念,某地计划将亩荒山进行绿化,实际450绿化时,工作效率是原计划的倍,进而比原计划提前天完成绿化任务,设原来平均1.53每天绿化荒山亩,可列方程为( )x A .B .45045031.5x x-=45045031.5x x+=C .D .1514504503x x -= 1.514504503x x +=10.已知一次函数,其中,,那么一次函数的图象不经过第y kx b =+0k b +<0kb >( )象限.A .一B .二C .三D .四二、填空题11.因式分解:______.39a a -=12在实数范围内有意义,则实数的取值范围是______.x 13.若正n 边形的每一个外角都等于,则________.90︒n =14.若关于x 的一元二次方程x 2+2x +a =0有实数根,则a 的取值范围是______.15.已知圆锥的母线长为5,底面圆半径为2,则此圆锥的侧面积为__.16.图中各正方形中的四个数之间都有相同的规律,则根据这种规律,第四个正方形中的n 与最后一个正方形中的m 之和,________.n m +=三、解答题17.计算:()11202312cos302π-⎛⎫+---︒⎪⎝⎭18.先化简,再求值:,其中.()()()()234422x x x x x -++-+-12x =-19.【探究三角形中边与角之间的不等关系】学习了等腰三角形,我们知道在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等,那么,不相等的边所对的角之间的大小关系怎样呢?大边所对的角也大吗?下面是丫丫同学的证明过程.如图1,在中,已知.求证.ABC AB AC >C B ∠>∠证明:如图2,将折叠,使边落在上,点C 落在上的点处,折痕ABC AC AB AB C 'AD 交于点D .则.BC AC D C '∠=∠∵ ① ( ② )AC D '∠=BDC '+∠∴AC D B'∠>∠∴(等量代换)C B ∠>∠类似地,应用这种方法可以证明“在一个三角形中,大角对大边,小角对小边”的问题.下面是小鹿同学的证明过程.如图3,在中,已知.求证.ABC C B ∠>∠AB AC >证明:如图4,将折叠,使点B 落在点C 上,折痕交于点D ,交于点ABC DE AB BC E .则.CD BD =∵( ③ )CD AD AC +>∴(等量代换)BD AD AC +>即AB AC>请大家将上述证明空白部分补充完整.20.某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:A 、绘画;B 、唱歌;C 、书法;D 、数独.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图,请结合统计图中的信息解决下列问题:(1)抽查的学生人数是________人;(2)将条形统计图补充完整;(3)在扇形统计图中,选课程A 的人数所对的圆心角的度数为________°;(4)如果该校共有1600名学生,请你估计该校报课程B 的学生约有多少人?21.如图,菱形的对角线和交于点O ,分别过点C 、D 作,ABCD AC BD CE BD ∥,和交于点E .DE AC ∥CE DE(1)判断四边形的形状并说明理由;ODEC (2)连接,交于点F ,当,时,求的长.AE CD 60ADB ∠=︒2AD =AE 22.为了响应习主席提出的“足球进校园”的号召,某中学开设了“足球大课间活动”,该中学购买A 种品牌的足球30个,B 种品牌的足球20个,共花费3100元,已知B 种品牌足球的单价比A 种品牌足球的单价高30元.(1)求A 、B 两种品牌足球的单价各多少元?(2)根据需要,学校决定再次购进A 、B 两种品牌的足球50个,正逢体育用品商店“优惠促销”活动,A 种品牌的足球单价优惠4元,B 种品牌的足球单价打8折.如果此次学校购买A 、B 两种品牌足球的总费用不超过2750元,且购买B 种品牌的足球不少于24个,则有几种购买方案?为了节约资金,学校应选择哪种方案?23.如图,一次函数的图象与反比例函数的图象交于点,.1y x =-ky x=(),1A n ()1,B m -(1)求函数的表达式;ky x=(2)根据图象写出使一次函数值大于反比例函数值时x 的取值范围;(3)点C 是反比例函数的图象上第一象限内的一个动点,当的面积等于ky x=ABC 的面积时,求C 点的坐标.ABO 24.【定义】对于函数图象上的任意一点,我们把称为该点的“雅和”,把函(),P x y x y +数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点的“雅和”为________;(直接写出答案)()9,10P ②一次函数的“礼值”为________;(直接写出答案)()3213y x x =+-≤≤(2)二次函数交轴于点,交轴于点,点与点的()()2035y x bx c bc x =-+≠≤≤x A y B A B “雅和”相等,若此二次函数的“礼值”为,求,的值;1b -b c (3)如图所示,二次函数的图象顶点在“雅和”为的一次函数的图象上,四2y x px q =-+0边形是矩形,点的坐标为,点为坐标原点,点在轴上,当二次函OABC B ()5,3-O C x 数的图象与矩形的边有四个交点时,求的取值范围.2y x px q =-+p 25.如图,的直径弦于点E ,,,点P 是延长线上异O AB ⊥CD 10AB =8CD =CD于点D 的一个动点,连接交于点Q ,连接交于点F ,连接.AP O CQ AB AC DQ,(1)判断下列结论是否正确,对的画“√”,错的画“×”;①;②;③;ACQ CPA ∠=∠12QD CD =PAC CAQ △∽△(2)若,求的长;4PD =CQ (3)若,.PD x =QAC QDCS y S =△△①求y 与x 之间的函数关系式;②求的最大值.AQ DQ ⋅参考答案:1.B【详解】分析:直接利用相反数的定义分析得出答案.详解:-的相反数是:.2525故选B .点睛:此题主要考查了相反数,正确把握相反数的定义是解题关键.2.D【分析】根据从左面看得到的图形(是左视图),可得答案.【详解】解:从左面看第一层是两个小正方形,第二层右边是一个小正方形,左边没有,故选D .【点睛】本题考查了三视图,熟记三视图的定义是解题关键.3.A【分析】科学记数法的表示形式为的形式,其中,n 为整数.确定n 的10n a ⨯110a ≤<值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正整数;当原数的绝对值时,n 是负整数.10≥1<【详解】解:将21500000用科学记数法表示为:.72.1510⨯故选:A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中10n a ⨯,n 为整数,表示时关键要正确确定a 的值以及n 的值.110a ≤<4.B【分析】直接利用概率的意义以及全面调查和抽样调查、随机事件等知识分别分析得出答案.【详解】解:A 、“三角形内角和为”是必然事件,故此选项错误;180︒B 、抛一枚质地均匀的硬币,正面朝上的概率为,故此选项正确;12C 、“明天的降水概率是”,是指明天有的可能性下雨,故此选项错误;90%90%D 、了解一批灯泡的使用寿命,应采用抽样调查,故此选项错误.故选:B .【点睛】此题主要考查了概率的意义以及全面调查和抽样调查、随机事件等知识,正确掌握相关定义是解题关键.5.D【分析】利用同底数幂的乘法、除法的法则,合并同类项的法则,完全平方公式对各项进行运算即可判断.【详解】解:A 、,本选项不符合题意;34712a a a a ⋅=≠B 、,本选项不符合题意;()222222x y x xy y x y +=++≠+C 、,本选项不符合题意;323x x x -=≠D 、,本选项符合题意;743x x x ÷=故选:D .【点睛】本题主要考查同底数幂的乘法、除法,合并同类项,完全平方公式,解答的关键是对相应的运算法则的掌握.6.C【分析】根据关于原点对称的点的特征:横坐标互为相反数,纵坐标互为相反数,进行求解即可.【详解】解:点P 关于原点的对称点的坐标是;()8,3P -故选C .【点睛】本题考查求关于原点对称的点的坐标.熟练掌握关于原点对称的点的特征:横坐标互为相反数,纵坐标互为相反数,是解题的关键.7.C【分析】利用平行线的性质,得到,即可得解.21ABC ∠=∠+∠【详解】解:∵,,,m n ∥30ABC ∠=︒128∠=︒∴;2158ABC ∠=∠+∠=︒故选C .【点睛】本题考查平行线的性质.熟练掌握两直线平行,内错角相等,是解题的关键.8.C【分析】根据圆周角定理即可求解.【详解】解:∵,, AB AB =49ACB ∠=︒∴,298AOB ACB ∠=∠=︒故选:C .【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.9.A【分析】设原来平均每天绿化荒山亩,则实际绿化时,平均每天绿化荒山亩,根据题x 1.5x 意列出分式方程即可求解.【详解】解:设原来平均每天绿化荒山亩,则实际绿化时,平均每天绿化荒山亩,根x 1.5x 据题意得,,45045031.5x x -=故选:A .【点睛】本题考查了列分式方程,找到等量关系列出方程是解题的关键.10.A【分析】根据k 、b 的符号来求确定一次函数的图象所经过的象限.y kx b =+【详解】解:∵,0kb >∴同号,k b 、∵,0k b +<∴都小于0,k b 、即一次函数中,,y kx b =+00k b <<,∴一次函数图象经过二、三、四象限,∴不经过第一象限.故选:A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线所在的位置与k 、b 的符号有直接的关系.时,直线必经过一、三象y kx b =+0k >限.时,直线必经过二、四象限.时,直线与y 轴正半轴相交.时,直线过0k <0b >0b =原点;时,直线与y 轴负半轴相交.0b <11.()()33a a a +-【分析】先提公因式,再用平方差公式分解.【详解】解:()3299(3)(3)a a a a a a a -=-=+-【点睛】本题考查因式分解,掌握因式分解方法是关键.12.2x ≥【分析】根据二次根式有意义的条件即可解得.【详解】解:在实数范围内有意义,∴,20x -≥∴.2x ≥故答案为:.2x ≥【点睛】此题考查了二次根式的意义,解题的关键是列出不等式求解.13.4【分析】根据任何多边形的外角和都是,利用360除以外角的度数就可以求出多边形360︒的边数.【详解】解:∵多边形的外角和为,每个外角都等于,360︒90︒∴n 的值是,360904÷=故答案为:4.【点睛】本题考查多边形的外角和为,正确理解多边形外角和定理是关键.360︒14.a ≤1【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b 2-4ac ≥0.据此可得△=b 2-4ac =4-4a ≥0,求解即可.【详解】解:因为关于x 的一元二次方程有实根,所以△=b 2-4ac =4-4a ≥0,解之得a ≤1.故答案为a ≤1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.10π【分析】根据圆锥的侧面积公式:,进行计算即可.S rl π=【详解】解:依题意知母线长,底面半径,5=2r =则由圆锥的侧面积公式得.5210S rl πππ==⨯⨯=故答案为:.10π【点睛】本题考查圆锥的侧面积.熟练掌握圆锥的侧面积公式,是解题的关键.16.222【分析】根据前三个正方形的规律可知,左上、左下、右上为相邻的三个偶数,右下等于左下、右上两数的积与左上的差.【详解】解:根据前三个正方形的规律可知,左上、左下、右上为相邻的三个偶数,所以;10n =最后一个正方形中,左下、右上两数分别为14、16,所以;141612212m =⨯-=所以222n m +=故答案为:.222【点睛】本题主要考查数字间的变化规律,解题的关键是要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.17.2【分析】先根据负整数指数幂,零指数幂,绝对值的性质,特殊角锐角函数值化简,再计算,即可求解.【详解】解:()11202312cos302π-⎛⎫+---︒ ⎪⎝⎭2112=+--211=+.2=【点睛】本题主要考查了负整数指数幂,零指数幂,绝对值的性质,特殊角的三角函数值,二次根式的加减,熟练掌握相关运算法则是解题的关键.18.,.27x --6-【分析】先计算乘法,再合并同类项,然后把代入,即可求解.12x =-【详解】解:()()()()234422x x x x x -++-+-222691642x x x x x =-++-+-,27x =--当时,原式.12x =-12762⎛⎫=-⨯--=- ⎪⎝⎭【点睛】本题主要考查了整式的化简求值,完全平方公式,与平方差公式,熟练掌握完全平方公式,与平方差公式是解题的关键.19.丫丫同学的证明:,三角形的外角性质;小鹿同学的证明:三角形的三边关系B ∠【分析】丫丫同学的证明:根据三角形外角的性质即可得到结论;小鹿同学的证明:根据三角形的三边关系即可得到结论.【详解】解:丫丫同学的证明:证明:如图2,将折叠,使边落在上,点C 落在上的点处,折痕交于点D .则ABC AC AB AB C 'AD BC .AC D C '∠=∠∵(三角形的外角性质),AC D '∠=B ∠BDC '+∠∴AC D B'∠>∠∴(等量代换)C B ∠>∠故答案为:,三角形的外角性质;B ∠小鹿同学的证明:证明:如图4,将折叠,使点B 落在点C 上,折痕交于点D ,交于点E .则.ABC DE AB BC CD BD =∵(三角形的三边关系),CD AD AC +>∴(等量代换),BD AD AC +>即.AB AC >故答案为:三角形的三边关系.【点睛】本题主要考查了三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角和;三角形的三边关系:任意两边之和大于第三边.20.(1)40(2)见解析(3)108(4)560【分析】(1)从两个统计图可得,“A 组”的有12人,占调查人数的30%,可求出调查人数;(2)求出“C 组”人数,即可补全条形统计图:(3)样本中,“A 组”占,因此圆心角占的,可求出度数;30%360︒30%(4)样本估计总体,样本中“B 组”占,估计总体1600人的是“B 组”的人数.14401440【详解】(1)解∶,1230%=40÷答∶ 抽查的学生人数是40人;(2)解:“C 组”的人数为(人),401214410---=补图如下:;(3)解:选课程A 的人数所对的圆心角的度数为;36030%108︒⨯=︒(4)解:,14160056040⨯=答:估计该校报课程B 的学生约有560人.【点睛】本题考查了扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.21.(1)四边形是矩形,理由见解析ODEC(2)AE =【分析】(1)先证四边形是平行四边形,然后根据菱形的对角线互相垂直,得到ODEC ,根据矩形的定义即可判定四边形是矩形.90DOC ∠=︒ODEC (2)根据含30度角直角三角形的性质、勾股定理来求的长度即可.AE 【详解】(1)解:四边形是矩形,理由如下,ODEC ∵,,CE BD ∥DE AC ∥∴四边形是平行四边形,ODEC 又∵菱形,ABCD∴,AC BD ⊥∴,90DOC ∠=︒∴四边形是矩形;ODEC (2)解:∵中,,Rt AOD 60ADB ∠=︒∴,30OAD ∠=︒∴,112OD AD ==∴AO =∴AC =∵四边形是矩形,ODEC ∴,,1EC OD ==90ACE ∠=︒∴AE ==【点睛】本题考查了平行四边形的判定、菱形的性质、矩形的判定与性质、勾股定理等,熟练掌握和灵活运用相关的性质定理与判定定理是解题的关键.22.(1)A 种品牌足球的单价是50元,B 种品牌足球的单价是80元;(2)共有2种购买方案,为了节约资金,学校应选择购买26个A 种品牌的足球,24个B 种品牌的足球.【分析】(1)设A 种品牌足球的单价是x 元,B 种品牌足球的单价是y 元,根据“购买A 种品牌的足球30个,B 种品牌的足球20个,共需3100元,B 种品牌足球的单价比A 种品牌足球的单价高30元”,可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 个B 种品牌的足球,则购买个A 种品牌的足球,根据“此次学校购买()50m -A 、B 两种品牌足球的总费用不超过2750元,且购买B 种品牌的足球不少于24个”,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为正整数,可得出共有2种购买方案,再分别求出各方案所需总费用,比较后即可得出结论.【详解】(1)解:设A 种品牌足球的单价是x 元,B 种品牌足球的单价是y 元,根据题意得:,3020310030x y y x +=⎧⎨-=⎩解得:.5080x y =⎧⎨=⎩答:A 种品牌足球的单价是50元,B 种品牌足球的单价是80元;(2)解:设购买m 个B 种品牌的足球,则购买个A 种品牌的足球,()50m -根据题意得:,()()50450800.8275024m m m ⎧--+⨯≤⎨≥⎩解得:,2425m ≤≤又∵m 为正整数,∴m 可以为24,25,∴共有2种购买方案,方案1:购买26个A 种品牌的足球,24个B 种品牌的足球,总费用为(元);(504)26800.8242732-⨯+⨯⨯=方案2:购买25个A 种品牌的足球,25个B 种品牌的足球,总费用为(元).(504)25800.8252750-⨯+⨯⨯=∵,27322750<∴为了节约资金,学校应选择购买方案1,即购买26个A 种品牌的足球,24个B 种品牌的足球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.(1)2y x=(2)或10x -<<2x >(3)或()11【分析】(1)点,在一次函数上,求出的值,待定系数法求出的(),1A n ()1,B m -,m n k y x =表达式即可;(2)找到直线在双曲线上方时,的取值范围即可;x (3)的面积等于的面积,得到点到直线的距离等于点到直线的距ABC ABO C AB O AB离,根据平行线间的距离处处相等,将直线向上或向下平移1个单位,得到直线,AB 12,l l 直线与双曲线在第一象限的交点即为点,进行求解即可.12,l l C 【详解】(1)解:∵一次函数的图象与反比例函数的图象交于点,1y x =-k y x=(),1A n ,()1,B m -∴,112,11m n =--=-=-∴,2n =∴,,()1,2B --()2,1A ∴,122k =⨯=∴;2y x=(2)解:由图象可知:当或时,直线在双曲线上方,10x -<<2x >∴一次函数值大于反比例函数值时的取值范围为:或;x 10x -<<2x >(3)解:∵的面积等于的面积,ABC ABO ∴点到直线的距离等于点到直线的距离,C AB O AB ∴将直线向上或向下平移1个单位,得到直线,直线与双曲线在第一象限的交点AB 12,l l 12,l l 即为点,如图:C ∵,1y x =-∴,,1:l y x =2:2l y x =-联立,解得:或(不合题意,舍去);2y x y x =⎧⎪⎨=⎪⎩x y ⎧⎪⎨⎪⎩x y ⎧=⎪⎨=⎪⎩∴;C 联立,解得:或;22y x y x =-⎧⎪⎨=⎪⎩11x y ⎧=⎪⎨=⎪⎩11x y ⎧=⎪⎨=-⎪⎩∴;()11C 综上:点的坐标为:或.C ()11+【点睛】本题考查反比例函数与一次函数的综合应用.正确的求出函数解析式,利用数形结合的思想进行求解,是解题的关键.24.(1)①;②192-(2)9,8b c ==(3)68p <<【分析】(1)①根据新定义计算即可求解;②先计算,设“雅和”为,根据一次函数的性质求得在的最小值即可求解.x y +w w 13x -≤≤(2)根据题意得出,,且,将点代入解析式得,①,()0,B c (),0A c 0bc ≠(),0A c 1c b =-根据此二次函数的“礼值”为,求得最小值,建立方程即可求解;1b -(3)二次函数的图象顶点在“雅和”为的一次函数的图象上,即2y x px q =-+2,24p p q ⎛⎫- ⎪⎝⎭0上,得出,结合函数图象,得出二次函数的图象与矩形的边y x =-242p p q =-2y x px q =-+有四个交点时,抛物线的顶点在直线的下方,其二次函数图象当时,,对称AB 3x =3y <-轴右侧当时,,解不等式组即可求解.5x =3y >-【详解】(1)解:①点的“雅和”为,()9,10P 91019+=故答案为:.19②∵一次函数的上的点为:,设“雅和”为,()3213y x x =+-≤≤(),32x x +w 则,3242w x x x =++=+∵,,随的增大而增大13x -≤≤40>y x ∴当时,取得最小值,最小值为,=1x -w 422-+=-根据定义可得,一次函数的“礼值”为,()3213y x x =+-≤≤2-故答案为:.2-(2)解:二次函数交轴于点,交轴于点,点与点()()2035y x bx c bc x =-+≠≤≤x A y B A B的“雅和”相等,∴,,且()0,B c (),0A c 0bc ≠将点代入解析式得,,即①(),0A c 20c bc c -+=1c b =-设此函数的“雅和”为,则,t ()21t x b x c =+-+又∵此二次函数的“礼值”为,1b -∴的最小值为,即,即t 1b -()24114c b b --=-()()()241141b b b ---=--解得:9b =则;918c =-=(3)解:∵二次函数顶点为即,2y x px q =-+24,24p q p ⎛⎫--- ⎪⎝⎭2,24p p q ⎛⎫- ⎪⎝⎭∵二次函数的图象顶点在“雅和”为的一次函数的图象上,即上,2y x px q =-+0y x =-∴,即2024p p q +-=242p p q =-∵四边形是矩形,点的坐标为,点为坐标原点,OABC B ()5,3-O ∴时,5x =2211255255254242p p p y p q p p =-+=-+-=-+时,3x =227939394242p p p y p q p p =-+=-+-=-+∵二次函数的图象与矩形的边有四个交点,2y x px q =-+则抛物线的顶点在直线的下方,其二次函数图象当时,,对称轴右侧当AB 3x =3y <-5x =时,,如图所示3y >-∴22234793421125342p q p p p p ⎧-<-⎪⎪⎪-+<-⎨⎪⎪-+>-⎪⎩①②②由①得:,又,234p q -<-242p p q =-∴, 32p -<-解得:,6p >②,279342p p -+<-解得:,68p <<③,211253042p p -++>由,211253042p p -++=解得:或(舍去,抛物线的左侧过点),8p =14p =B ∵,抛物线开口向上,104>∴的解集为:或,211253042p p -++>8p <14p >综上所述,不等式的解集为:.68p <<【点睛】本题考查了新定义运算,二次函数的性质,熟练掌握二次函数的性质是解题的关键.25.(1)①③正确;②错误;(2);CQ =(3)①y 与x 之间的函数关系式为;②的最大值为10y x=AQ DQ ⋅50-【分析】(1)连接,利用圆周角定理,垂直的意义,通过等量代换得出,BQ ACQ CPA ∠=∠可判断①;再根据,可判断③;由是定值,是一个变化的值,CAQ PAC ∠=∠142CD =QD 可判断②;(2)通过证明,可得,即可求解;CAQ PAC ∽△△AC CQ AP CP =(3)①分别求出,,即可求解;280QAC PDQ S S x=⨯△△8DCQ PDQ S S x =△△②根据和分别表示出和,然后求得的关系CAQ PAC ∽△△PDQ PAC ∽△△AQ DQ AQ DQ ⋅式,根据基本不等式求得结果.【详解】(1)证明:连接,如图,BQ∵为的直径,AB O ∴,90AQB ∠=︒∴,90QAB B ︒∠+∠=∵,PE AE ⊥∴,90QAB P ︒∠+∠=∴,P B ∠=∠∵,B ACQ ∠=∠∴,故①正确;ACQ CPA ∠=∠又∵,CAQ PAC ∠=∠∴,故③正确;PAC CAQ △∽△∵的直径弦于点E ,,O AB ⊥CD 8CD =∴是定值,142CD =而点P 是延长线上异于点D 的一个动点,则是一个变化的值,故②错误;CD QD 故①③正确;②错误;(2)解:如图,连接,OD∵,,,10AB =8CD =AB CD ⊥∴,,5AO BO OD ===4DE CE ==∴,3OE ===∴,8AE =∴.AC ===∵,4PD =∴,812PE PC ==,∴,AP ===∵,ACQ CPA CAQ CAP ∠=∠∠=∠,∴,CAQ PAC ∽△△∴,AC CQ AP CP=12CQ =∴;CQ =(3)解:①∵四边形为圆的内接四边形,AQDC ∴,PDQ QAC ∠=∠∵,ACQ CPA ∠=∠∴,PDQ CAQ ∽∴,2280PDQQAC S DP x S AC ⎛⎫== ⎪⎝⎭△△∴,280QAC PDQ S S x =⨯△△∵与是等高的三角形,PDQ DCQ ∴,8DCQPDQ S CD S PD x==△△∴,8DCQ PDQ S S x =△△∵,QACQDC S y S =△△∴,801028QACQDC S y x S x∆∆===∴y 与x 之间的函数关系式为;10y x=②在中,Rt APE,AP ==由(1)得:,PAC CAQ △∽△∴,AC AP AQ AC=∴,2AC AQ AP ==∵四边形内接于,ACDQ O ∴,PDQ PAC ∠=∠∵,P P ∠=∠∴,PDQ PAC ∽△△∴,DQ PD AC AP=∴,AC PD DQ AP ⋅==∴,1808AQ DQ x x ⋅==++∵,80x x+≥=∴50AQ DQ ⋅≤=-∴的最大值为:AQ DQ ⋅50-【点睛】本题考查了圆的有关性质,相似三角形的判定和性质,完全平方公式等知识,解决问题的关键根据相似表示出相关线段的长.。
2024年上学期3月阶段考试高一年级数学试卷(答案在最后)2024年3月时量:120分钟满分150命题:高一数学备课组审定:高一数学备课组一、单选题(本题共8个小题,每小题5分,共40分,每个小题只有一个正确答案)1.已知向量(1,2)a =- ,(,1)b λ=.若a b + 与a 平行,则λ=()A.5-B.52C.7D.12-【答案】D 【解析】【分析】根据平面向量的坐标运算和向量共线的充要条件得到方程,解出即可.【详解】(1,2)(,1)(1,3)a b λλ+=-+=-,由a b + 与a平行,可得132(1)0λ-⨯-⨯-=,解得12λ=-.故选:D.2.在ABC 中,30,2B b ==,c =A 的大小为()A.45B.135 或45C.15D.105 或15【答案】D 【解析】【分析】利用正弦定理求得角C ,根据三角形内角和,即可求得答案.【详解】由题意知ABC 中,30,2B b == ,c =故sin sin b c B C =,即sin sin30sin 22c B C b === ,由于c b >,故30C B >= ,则45C = 或135 ,故A 的大小为1803045105--= 或1803013515--= ,故选:D3.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+= .则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++ ,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .4.设集合{}(){}221,ln 1M y x y N x y x ==-==-,则M N ⋂=()A.1,2⎡⎫+∞⎪⎢⎣⎭ B.(),1-∞ C.1,12⎡⎫⎪⎢⎣⎭D.1,12⎛⎫⎪⎝⎭【答案】C 【解析】【分析】对集合,M N 化简,然后利用集合的交集运算求M N ⋂.【详解】由题意得{}{}21212102M y x y y y y y ⎧⎫==-=-≥=≥⎨⎬⎩⎭,(){}{}{}ln 1101N x y x x x x x ==-=->=<,所以112M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:C.5.已知ABC 的外接圆圆心为O ,且2,=AO AB AC OA AB =+ ,则向量AC 在向量BC上的投影向量为()A.14BC B.34BC uu u r C.14BC-D.34BC-【答案】B 【解析】【分析】根据条件作图可得ABO 为等边三角形,根据投影向量的概念求解即可.【详解】因为2AO AB AC =+,所以ABC 外接圆圆心O 为BC 的中点,即BC为外接圆的直径,如图,又||||AB AO =,所以ABO 为等边三角形,则30ACB ∠=︒,故||||cos30AC BC =︒,所以向量AC 在向量BC上的投影向量为22cos30cos 3034AC BC BC AC BC BCBCBC BC BCBC BC BC BCBC︒︒⋅⋅=⋅=⋅=.故选:B .6.已知函数()22log log 28x xf x =⋅,若()()12f x f x =(其中12)x x ≠,则12116x x +的最小值()A.34B.32C.2D.4【答案】C 【解析】【分析】根据对数函数的性质及对数的运算可得1216x x =,利用均值不等式求最值即可.【详解】因为()()()()2222222log log log 1log 3log 4log 328x x f x x x x x =⋅=--=-+,所以由()()12f x f x =可得()()2221212222log 4log 3log 4log 3x x x x -+=-+,化简可得2122log log 4x x +=,即1216x x =,因为1121122111611x x x x x x x x +=+=+,120,0x x >>,所以112111612x x x x +=+≥=,当且仅当111x x =,即121,16x x ==时,等号成立.故选:C7.已知函数()f x 是定义在R 上的偶函数,函数()g x 是定义在R 上的奇函数,且()f x ,()g x 在[)0,∞+上单调递减,则()A.()()()()23ff f f > B.()()()()23fg f g <C.()()()()23g g g g > D.()()()()23g f g f <【答案】D 【解析】【分析】根据题意,利用函数的单调性以及函数的奇偶性,判断各选项的正负,即可求解.【详解】因为()f x ,()g x 在[)0,∞+上单调递减,()f x 是偶函数,()g x 是奇函数,所以()g x 在R 上单调递减,()f x 在(],0-∞上单调递增,对于A 中,由()()23f f >,但无法判断()()2,3f f 的正负,所以A 不正确;对于B 中,因为()g x 是定义在R 上的奇函数,可得()00g =,又因为()g x 在[)0,∞+上单调递减,可得()()023g g >>,因为()f x 在[)0,∞+上单调递减,且()f x 为偶函数,所以()f x 在(,0)-∞上为增函数,所以()()()()23f g f g >,所以B 不正确;对于C 中,由()()23g g >,()g x 在R 上单调递减,所以()()()()23g g g g <,所以C 不正确;对于D 中,由()()23f f >,()g x 在R 上单调递减,()()()()23g f g f <,所以D 正确.故选:D.8.在ABC 中,()2221sin ,224B A a c b -=+=,则sin C =()A.23B.32C.12D.1【答案】C【解析】【分析】利用余弦定理的边角变换得到2cos 2cos a B b A c -=-,再利用正弦定理的边角变换与三角函数的和差公式即可得解.【详解】因为22222a c b +=,所以22222a b c -=-,因为2222222cos ,2cos a c b ac B b c a bc A +-=+-=,两式相减,得222222cos 2cos ,2cos 2cos a b ac B bc A c a B b A c -=-=-∴-=-,由正弦定理,得2sin cos 2sin cos sin A B B A C -=-,即()2sin sin B A C --=-,因为()1sin 4B A -=,所以1sin 2C =.故选:C.二、多选题(本题共3个小题,每小题6分.共18分.在每个小题给出的选项中,有多个选项符合题目的要求.全部选对得6分,部分选对得部分分,有选错得0分)9.x ∀∈R ,223x x a ++>恒成立,a 的值可以为()A.134B.72C.174D.5【答案】CD 【解析】【分析】x ∀∈R ,223x x a ++>恒成立转换为2230x x a ++->恒成立,然后应用一元二次函数的性质解题即可.【详解】x ∀∈R ,223x x a ++>恒成立,即2230x x a ++->恒成立,所以Δ0<,即()4430a --<,解得4a >,故选:CD .10.已知函数π()cos()(0,)20,||f x A x A ωωϕϕ>>=+<的部分图象如图所示,则()A.0.5A =B.2ω=C.π3ϕ=-D.()204f =【答案】AB 【解析】【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由余弦函数的图象的对称中心坐标求出ϕ的值,可得函数的解析式,【详解】由图可知πππ0.5,2362T A ⎛⎫==--= ⎪⎝⎭,则2ππ||T ω==,因为0ω>,所以2ω=.由π03f ⎛⎫=⎪⎝⎭,得2ππ2π()32k k ϕ+=+∈Z ,得π2π()6k k ϕ=-+∈Z ,因为||2ϕπ<,所以π6ϕ=-,所以ππ3()0.5cos 2,(0)0.5cos 664f x x f ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭.故选:AB11.如图,在梯形ABCD 中,//AD BC ,AD CD ⊥,4=AD ,2BC =,23CD =,E 为线段CD 的中点,F 为线段AB 上一动点(包括端点),EF CD BA λμ=+,则下列说法正确的是()A.4AB =B.若F 为线段AB 的中点,则1λμ+=C.32λ=-D.FC FD ⋅的最小值为6【答案】AC 【解析】【分析】对于选项A ,过B 作AD 的垂直,再根据条件即可求出AB ,从而判断出选项A 的正误;对于选项BCD ,通过建立平面直角从标系,求出各点坐标,逐一对BCD 分析判断即可得出结果.【详解】选项A ,过B 作AD 的垂直,交AD 于G ,所以//BG CD ,又//AD BC ,AD CD ⊥,4=AD ,2BC =,CD =所以4AB =,故选项A 正确;建立如图所示平面直角坐标系,则(4,0)A,(2,B,C,E ,选项B ,因为F 为线段AB的中点,则F ,(3,0)EF =,(0,CD =-(2,BA =-,所以(2,)CD BA λμμ=-+- ,由EF CD BA λμ=+,得到0--=,所以0λμ+=,故选项B 错误;设(01)AF t AB t =≤≤,则(42,)F t -,(42,EF t =--,选项C ,由EF CD BA λμ=+,得到422t μ-=⎧⎪⎨-=--⎪⎩,解得32λ=-,故选项C 正确;选项D,(24,)FC t =-,(24,)FD t =--,所以22(24))162816FC FD t t t ⋅=--=-+,令2162816y t t +=-,对称轴为78t =,又[]0,1t ∈,当78t =时,所以FC FD ⋅ 的最小值为154,故选项D错误;故选:AC.三、填空题(本题共3个小题,每题5分,共15分)12.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin 2sin ,2A B a b c =+=,则cos C =_______________.【答案】1116##0.6875【解析】【分析】由已知结合正弦定理角化边可得2a b =,从而可得三边之间的关系,利用余弦定理化简求值,即得答案.【详解】因为sin 2sin A B =,所以2a b =,又2a b c +=,所以32b c =,则222222294114cos 2416b b b a b c C ab b +-+-===.故答案为:111613.在平面斜坐标系xOy 中,60xOy ∠=︒,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+ (其中1e ,2e分别为x ,y 轴方向相同的单位向量),则P 的坐标为(),x y ,若P 关于斜坐标系xOy 的坐标为()2,1-,则OP =______【解析】【分析】由斜坐标定义用1e ,2e 表示OP,然后平方转化为数量积求得模.【详解】由题意122OP e e =-,122OP e e =-===14.定义在R 上的两个函数()f x 和()g x ,已知()()13f x g x +-=,()()33g x f x +-=.若()y g x =图象关于点()1,0对称,则()0f =___,()()()()1231000g g g g ++++= ___________.【答案】①.3②.0【解析】【分析】①根据题意,利用方程法得到()()2f x f x =--,通过赋值得到()()02f f =-,根据()y g x =的图象关于点()1,0对称得到()()110g x g x -++=,即可得到()()13f x g x -+=,再利用方程法得到()()26f x f x +-=,令0x =,得到()()026f f +-=,然后求()0f 即可;②利用方程法得到()()2g x g x =--,整理可得()()4g x g x =-,得到4是()g x 的一个周期,然后根据()()2g x g x =--得到()()()()12340g g g g +++=,最后再利用周期求()()()()1231000g g g g ++++ 即可.【详解】由()()33g x f x +-=可得()()123g x f x -+--=,又()()13f x g x +-=,所以()()2f x f x =--,令0x =,所以()()02f f =-;因为()y g x =的图象关于点()1,0对称,所以()()110g x g x -++=,又()()13f x g x +-=,所以()()13f x g x -+=,因为()()33g x f x +-=,所以()()123g x f x ++-=,()()26f x f x +-=,令0x =,所以()()026f f +-=,则()03f =;因为()()13f x g x -+=,所以()()323f x g x ---=,又()()33g x f x +-=,所以()()2g x g x =--,()()24g x g x -=--,则()()4g x g x =-,4是()g x 的一个周期,因为()()31g g =-,()()42g g =-,所以()()()()12340g g g g +++=,因为()g x 周期是4,所以()()()()12310000g g g g ++++= .故答案为:3,0.四、解答题(本题共5个小题,共77分,解答应写出必要的文字说明证明过程或演算步骤.)15.已知平面向量,a b满足=4,8,a b a = 与b 的夹角为2π3.(1)求a b -;(2)当实数k 为何值时,()()a kb ka b +⊥-.【答案】(1)(2)32k -=【解析】【分析】(1)利用平面向量的数量积的运算性质进行运算即可;(2)根据条件得()()0a kb ka b +⋅-=,利用数量积的运算性质进行运算,化简后解方程即可.【小问1详解】因为=48a b a = ,,与b 的夹角为2π3,所以2π1cos481632a b a b ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,所以a b -===【小问2详解】因为()()a kb ka b +⊥-,所以()()()2221a kb ka b ka k a b kb+⋅-=+-⋅- ()216161640k k k =---=,化为2310k k +-=,解得32k -±=.16.已知函数()25sin cos 2f x x x x =-+;(1)确定函数()f x 的单调增区间;(2)当函数()f x 取得最大值时,求自变量x 的集合.【答案】16.()π5ππ,π1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z 17.5ππ,12x x k k ⎧⎫=+∈⎨⎬⎩⎭Z 【解析】【分析】(1)借助三角恒等变换将原函数化为正弦型函数后结合正弦型函数的单调性计算即可得;(2)借助正弦型函数的性质计算即可得.【小问1详解】55()sin 2(1cos 2)sin 2cos 222222f x x x x x=-++=-1π5sin 225sin 2223x x x ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,由()()ππππ5π2π22πππ2321212k x k k k x k k -≤-≤+∈⇒-≤≤+∈Z Z ,∴()f x 的单调增区间为()π5ππ,π1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z ;【小问2详解】当ππ22π32x k -=+,即5ππ,12x x k k ⎧⎫=+∈⎨⎬⎩⎭Z 时,()f x 有最大值5.17.如图,在四边形ABCD 中,π2DAB ∠=,π6B =,且ABC 的外接圆半径为4.(1)若BC =AD =,求ACD 的面积;(2)若2π3D =,求BC AD -的最大值.【答案】(1)4;(2)833.【解析】【分析】(1)在三角形ABC 中,根据正弦定理求得,AC CAB ∠,再在三角形ADC 中,利用三角形面积公式即可求得结果;(2)设DAC ∠θ=,在三角形,ADC ABC 中分别用正弦定理表示,BC AD ,从而建立BC AD -关于θ的三角函数,进而求三角函数的最大值,即可求得结果.【小问1详解】因为π6B =,ABC 的外接圆半径为4,所以8sin AC B=,解得4AC =.在ABC 中,BC =428sin sin BC CAB CAB ==∠∠,解得2sin 2CAB ∠=.又π0,2CAB ⎛⎫∠∈ ⎪⎝⎭,所以π4CAB ∠=;在ACD 中,4AC =,ππ24DAC CAB ∠=-∠=,AD =,所以14422ACDS∆=⨯⨯=.【小问2详解】设DAC∠θ=,π0,3θ⎛⎫∈ ⎪⎝⎭.又2π3D=,所以π3ACDθ∠=-.因为π2DAB∠=,所以π2CABθ∠=-.在DAC△中,4AC=,由正弦定理得sin sinAC ADD ACD=∠,πsin32ADθ=⎛⎫-⎪⎝⎭,解得π1sin sin33322ADθθθ⎛⎫⎛⎫=-=-⎪⎪ ⎪⎝⎭⎝⎭4cos3θθ=-.在ABC中,4AC=,由正弦定理得sin sinAC BCB CAB=∠,即41πsin22BCθ=⎛⎫-⎪⎝⎭,解得π8sin8cos2BCθθ⎛⎫=-=⎪⎝⎭,所以4cos3BC ADθθ⎛⎫-=+⎪⎪⎝⎭πsin33θ⎛⎫=+⎪⎝⎭.又π0,3θ⎛⎫∈ ⎪⎝⎭,所以ππ2π,333θ⎛⎫+∈ ⎪⎝⎭,当且仅当ππ32θ+=,即π6θ=时,πsin3θ⎛⎫+⎪⎝⎭取得最大值1,所以BC AD-的最大值为3.18.对于函数1()f x,2()f x,()h x,如果存在实数a,b,使得12()()()h x a f x b f x=⋅+⋅,那么称函数()h x 为1()f x与2()f x的生成函数.(1)已知1()sinf x x=,2()cosf x x=,π()sin6h x x⎛⎫=-⎪⎝⎭,是否存在实数a,b,使得()h x为1()f x与2()f x 的生成函数?若不存在,试说明理由;(2)当1a b ==,()e x h x =时,是否存在奇函数1()f x ,偶函数2()f x ,使得()h x 为1()f x 与2()f x 的生成函数?若存在,请求出1()f x 与2()f x 的解析式,若不存在,请说明理由;(3)设函数()21()ln 65f x x x =++,2()ln(2)f x x m =-,1a =,1b =-,生成函数()h x ,若函数()h x 有唯一的零点,求实数m 的取值范围.【答案】(1)见解析(2)见解析(3)102[,)33--【解析】【分析】(1)根据两角差的正弦化简()h x 后可得()h x 为1()f x 与2()f x 的生成函数;(2)根据奇函数和偶函数的性质可求1()f x 与2()f x 的解析式;(3)根据生成函数的定义可求()h x ,利用对数的运算性质可求得226506523x x x x x a⎧++>⎨++=-⎩有且只有一个实数解,结合二次函数的图象可求参数的取值范围.【小问1详解】因为πππ1()sin sin cos cos sin sin cos 66622h x x x x x x ⎛⎫=-=-=- ⎪⎝⎭()()12122f x f x =-,取1,22a b ==-,故()()()12h x af x bf x =+,故存在实数1,22a b ==-,使得()h x 为1()f x 与2()f x 的生成函数.【小问2详解】若存在,则()()12e x f x f x +=,故()()12e xf x f x -+-=,所以()()12e xf x f x -+=,故()()12e e e e ,22x x x xf x f x ---+==.【小问3详解】依题意可得,2()ln(65)ln(23)h x x x x a =++--,令()0h x =,可得226506523x x x x x a⎧++>⎨++=-⎩,即2453x x a ++=-(5x <-或1x >-),令2()45g x x x =++(5x <-或1x >-),结合图象可知,当2310a <-≤时,()y g x =的图象与直线3y a =-只有一个交点,所以,实数a 的取值范围为102[,33--.19.“费马点”是由十七世纪法国数学家费马提出并征解的一个问题.该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小.”意大利数学家托里拆利给出了解答,当ABC 的三个内角均小于120︒时,使得120AOB BOC COA ∠=∠=∠=︒的点O 即为费马点;当ABC 有一个内角大于或等于120︒时,最大内角的顶点为费马点.试用以上知识解决下面问题:已知ABC 的内角,,A B C 所对的边分别为,,a b c ,且cos2cos2cos21B C A +-=(1)求A ;(2)若2bc =,设点P 为ABC 的费马点,求PA PB PB PC PC PA ⋅+⋅+⋅ ;(3)设点P 为ABC 的费马点,PB PC t PA +=,求实数t 的最小值.【答案】(1)π2A =(2)33-(3)223+【解析】【分析】(1)根据二倍角公式结合正弦定理角化边化简cos2cos2cos21B C A +-=可得222a b c =+,即可求得答案;(2)利用等面积法列方程,结合向量数量积运算求得正确答案.(3)由(1)结论可得2π3APB BPC CPA ∠=∠=∠=,设||||||,||,||PB m PA PC n PA PA x ===,推出m n t +=,利用余弦定理以及勾股定理即可推出2m n mn ++=,再结合基本不等式即可求得答案.【小问1详解】由已知ABC 中cos2cos2cos21B C A +-=,即22212sin 12sin 12sin 1B C A -+--+=,故222sin sin sin A B C =+,由正弦定理可得222a b c =+,故ABC 直角三角形,即π2A =.【小问2详解】由(1)π2A =,所以三角形ABC 的三个角都小于120︒,则由费马点定义可知:120APB BPC APC ∠=∠=∠=︒,设,,PA x PB y PC z === ,由APB BPC APC ABC S S S S ++= 得:111122222222xy yz xz ⋅+⋅+=⨯,整理得3xy yz xz ++=,则PA PB PB PC PA PC ⋅+⋅+⋅1111222233xy yz xz ⎛⎫⎛⎫⎛⎫=⋅-+⋅-+⋅-=-- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭.【小问3详解】点P 为ABC 的费马点,则2π3APB BPC CPA ∠=∠=∠=,设||||||||,||,00,,0,PB m PA PC n PA PA x m n x ===>>>,则由PB PC t PA +=得m n t +=;由余弦定理得()22222222π||2cos 13AB x m x mx m m x =+-=++,()22222222π||2cos 13AC x n x nx n n x =+-=++,()2222222222π||2cos 3BC m x n x mnx m n mn x =+-=++,故由222||||||AC AB BC +=得()()()222222211n n x m m x m n mn x +++++=++,即2m n mn ++=,而0,0m n >>,故22()2m n m n mn +++=≤,当且仅当m n =,结合2m n mn ++=,解得1m n ==+时,等号成立,又m n t +=,即有2480t t --≥,解得2t ≥+2t ≤-,故实数t 的最小值为2+【点睛】关键点睛:解答本题首先要理解费马点的含义,从而结合(1)的结论可解答第二问,解答第二问的关键在于设||||||,||,||PB m PA PC n PA PA x ===,推出m n t +=,结合费马点含义,利用余弦定理推出2m n mn ++=,然后利用基本不等式即可求解.。
2024-2025学年九年级数学上学期第一次月考卷(浙教版)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:浙教版九年级上册第1~2章(二次函数+简单事件的概率)。
5.难度系数:0.65。
第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将抛物线21y x =+向左平移3个单位长度得到抛物线( )A .()231y x =++B .()231y x =-+C .24y x =+D .22y x =-2.一只不透明的袋子中装有2个黑球和2个白球,这些球除颜色外无其他差别,从中任意摸出3个球,下列事件是随机事件的是( )A .摸出的3个球颜色相同B .摸出的3个球中有1个白球C .摸出的3个球颜色不同D .摸出的3个球中至少有1个白球3.在一个不透明的盒子里装有20个黑、白两种颜色的小球,每个球除了颜色外都相同,小红通过多次摸球试验发现,摸到黑球的频率稳定在0.2左右,则盒子里的白球的个数可能是( )A .4B .8C .10D .164.下列关于抛物线2(1)4y x =-++的判断中,错误的是( )A .形状与抛物线2y x =-相同B .对称轴是直线1x =-C .当2x >-时,y 随x 的增大而减小D .当31x -<<时,0y >5.宁夏素有“塞上江南”之美誉,这里既有古老的黄河文明,又有雄浑的大漠风光.某校开展“大美宁夏,闽宁同行”旅游主题活动.选取三个景点:A .沙坡头,B .六盘山,C .水洞沟.每位参加交流的学生都可以从中随机选择一个景点,则小明和小颖选择同一个景点的概率为( )A .19B .29C .13D .236.已知二次函数()21y a x =-,当1x <-时,y 随x 增大而减小,则实数a 的取值范围是( )A .0a >B .1a <C .1a ¹D .1a >7.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即OB 的长度)是1米.当喷射出的水流距离喷水头2米时,达到最大高度1.8米,水流喷射的最远水平距离OC 是( )A .6米B .5米C .4米D .1米8.在同一平面直角坐标系中,一次函数y ax b =+与二次函数2y ax bx =+的图像可能是( )A .B .C .D .9.如图是二次函数()20y ax bx c a =++¹图象的一部分,且经过点(2,0),对称轴是直线12x =,给出下列说法:①0abc <;②1x =-是关于x 的方程20ax bx c ++=的一个根;③若点1215,,(,33M y N y æö-ç÷èø)是函数图象上的两点,则12y y >.其中正确的个数为( )A .0B .1C .2D .310.已知抛物线22y x x m =-++交x 轴于点(,0)A a 和(,0)B b ,下列四个命题:①0m >;②对于抛物线上的一点(,)P x y ,当0x >时,y m >;③若1a =-,则3b =;④抛物线上有两点1(P x ,1)y 和2(Q x ,2)y ,若121x x <<,且122x x +>,则12y y >;其中真命题的序号是( )A .①②B .①③④C .③④D .②③④第二部分(非选择题 共90分)二、填空题:本题共6小题,每小题3分,共18分。
湖南省长沙市岳麓区2022-2023九年级数学下学期第一次月考试卷一.选择题(3×12分=36分)1.(3分)下列四个实数中是无理数的是()A.πB. C.D.02.(3分)如图图形中,是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知空气的单位体积质量为1.29×10﹣3克/厘米3,1.29×10﹣3用小数表示为()A.0.00129 B.0.0129 C.﹣0.00129 D.0.0001294.(3分)下列计算正确的是()A.a2+a2=2a4B.(2a)2=4a C.D.5.(3分)点P(4,﹣3)到x轴的距离是()A.4 B.3 C.﹣3 D.56.(3分)我区某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62 A.平均数是60 B.中位数是59 C.极差是40 D.众数是587.(3分)抛物线y=﹣2(x+1)2﹣3的顶点坐标是()A.(1,3)B.(﹣1,﹣3)C.(1,﹣3)D.(﹣1,3)8.(3分)不等式4﹣2x≥0的解集在数轴上表示为()A.B.C.D.9.(3分)已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2﹣1=0的根,则此三角形的周长为()A.10 B.12 C.14 D.12或1410.(3分)若ab>0,则函数y=ax+b与(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.11.(3分)如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5 B.4 C.3.5 D.312.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)13.(3分)因式分解:9x﹣x2= .14.(3分)已知:+(b+5)2=0,那么a+b的值为.15.(3分)如图,点A为反比例函数y=图象上一点,过A做AB⊥x轴于点B,连接OA则△ABO的面积为4,k= .16.(3分)如图,△ABC中,DE∥BC,AE:EB=2:3,则DE:BC= .17.(3分)某水库堤坝的横断面如图所示,迎水坡AB的坡度是1:,堤坝高BC=50m,则AB= m.18.(3分)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是.三、解答题(19、20每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共66分)19.(6分)计算:﹣()﹣1+(π﹣)0﹣2sin45°20.(6分)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=﹣21.(8分)新的交通法规实施后,驾校的考试规则也发生了变化,考试共设四个科目:科目1、科目2、科目3和科目4,以下简记为:1、2、3、4.四个科目考试在同一地点进行,但每个学员每次只能够参加一个科目考试.在某次考试中,对该考点各科目考试人数进行了调查统计,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有人;在被调查者中参加“科目3”测试的有人;将条形统计图补充完整;(2)该考点参加“科目4”考试的学员里有3位是教师,某新闻部门准备在该考点参加“科目4”考试的学员中随机选出2位,调查他们对新规的了解情况,请你用列表法或画树状图的方法求出所选两位学员恰好都是教师的概率.22.(8分)为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)23.(9分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W 元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?24.(9分)如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙O与BC 相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.25.(10分)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4<x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?26.(10分)如图,直线y=﹣x﹣1与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx(a ≠0)经过原点和点C(4,0),顶点D在直线AB上.(1)求这个抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使得以P、C、D为顶点的三角形与△ACD相似.若存在,请求出点P的坐标;若不存在,请说明理由;(3)点Q是x轴上方的抛物线上的一个动点,若cos∠OQC=,⊙M经过点O,C,Q,求过C点且与⊙M相切的直线解析式.湖南省长沙市岳麓区2022-2023九年级数学下学期第一次月考数学试卷一.选择题(3×12分=36分)1.(3分)下列四个实数中是无理数的是()A.πB. C.D.0【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:=4,,0是有理数,π是无理数.故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)如图图形中,是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项不合题意;D、是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知空气的单位体积质量为1.29×10﹣3克/厘米3,1.29×10﹣3用小数表示为()A.0.00129 B.0.0129 C.﹣0.00129 D.0.000129【分析】根据指数n是负数,小数点向左移动|n|个单位,可得答案.【解答】解:1.29×10﹣3用小数表示为0.00129,故选:A.【点评】本题考查了科学记数法,指数n是负数,小数点向左移动|n|个单位是解题关键.4.(3分)下列计算正确的是()A.a2+a2=2a4B.(2a)2=4a C.D.【分析】A、合并同类项,系数相加,字母和字母的指数不变;B、系数和字母都乘方;C、D 利用根式的乘除法计算.【解答】解:A、a2+a2=2a2,故A选项错误;B、(2a)2=4a2,故B选项错误;C、,此C选项正确;D、÷3=,故D选项错误.故选:C.【点评】本题主要考查了有关整式的运算,根式的运算.5.(3分)点P(4,﹣3)到x轴的距离是()A.4 B.3 C.﹣3 D.5【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点P(4,﹣3)到x轴的距离是3.故选:B.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.6.(3分)我区某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62 A.平均数是60 B.中位数是59 C.极差是40 D.众数是58【分析】分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可.【解答】解:A.平均数=(52+60+62+54+58+62)÷6=58;故此选项错误;B.∵6个数据按大小排列后为:52,54,58,60,62,62;∴中位数为:(60+58)÷2=59;故此选项正确;C.极差是62﹣52=10,故此选项错误;D.62出现了2次,最多,∴众数为62,故此选项错误;故选:B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.(3分)抛物线y=﹣2(x+1)2﹣3的顶点坐标是()A.(1,3)B.(﹣1,﹣3)C.(1,﹣3)D.(﹣1,3)【分析】由抛物线的顶点式y=(x﹣h)2+k直接看出顶点坐标是(h,k),仿照模型解题.【解答】解:因为抛物线y=﹣2(x+1)2﹣3是顶点式,根据顶点式的坐标特点可知该抛物线的顶点坐标是(﹣1,﹣3).故选B.【点评】掌握抛物线顶点式的运用.8.(3分)不等式4﹣2x≥0的解集在数轴上表示为()A.B.C.D.【分析】先根据不等式的基本性质求出其解集,并在数轴上表示出来即可.【解答】解:移项得,﹣2x≥﹣4,系数化为1得,x≤2.在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(3分)已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2﹣1=0的根,则此三角形的周长为()A.10 B.12 C.14 D.12或14【分析】求出方程的解得到原方程的解,即可能为三角形的第三边,然后利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.【解答】解:(x﹣3)2﹣1=0,x﹣3=±1,解得x1=4,x2=2.若x=4,则三角形的三边分别为4,4,6,其周长为4+4+6=14;若x=2时,6﹣4=2,不能构成三角形,则此三角形的周长是14.故选:C.【点评】此题考查了三角形的三边关系,一元二次方程的解.运用三角形的三边关系解决问题时常常把最长的边作为第三边,用剩下的两边相加与最长边比较大小来判断能否三角形.10.(3分)若ab>0,则函数y=ax+b与(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】由于ab>0,那么a、b同号,当a>0,b>0时,直线经过第一、二、三象限,双曲线经过第一、二象限,当a<0,b<0时,直线经过第二、三、四象限,双曲线经过第二、四象限,利用这些结论即可求解.【解答】解:∵ab>0,∴a、b同号,当a>0,b>0时,直线经过第一、二、三象限,双曲线经过第一、三象限,当a<0,b<0时,直线经过第二、三、四象限,双曲线经过第二、四象限,A、图中直线经过直线经过第一、四、三象限,双曲线经过第一、三象限,故A选项错误;B、图中直线经过原点,故B选项错误;C、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故C选项正确;D、图中直线经过第二、一、四象限,双曲线经过第二、四象限,故D选项错误.故选:C.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=当k>0时经过第一、三象限,当k<0时经过第二、四象限.11.(3分)如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=()A.5 B.4 C.3.5 D.3【分析】由矩形的性质得出AC=BD,OA=OC,∠BAD=90°,由直角三角形的性质得出AC=BD=2AB=8,得出OC=AC=4即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,∠BAD=90°,∵∠ADB=30°,∴AC=BD=2AB=8,∴OC=AC=4;故选:B.【点评】此题考查了矩形的性质、含30°角的直角三角形的性质.熟练掌握矩形的性质,注意掌握数形结合思想的应用.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个【分析】①由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;②由抛物线与x轴有两个交点判断即可;③分别比较当x=﹣2时、x=1时,y的取值,然后解不等式组可得6a+3c<0,即2a+c<0;又因为a<0,所以3a+c<0.故错误;④将x=1代入抛物线解析式得到a+b+c<0,再将x=﹣1代入抛物线解析式得到a﹣b+c>0,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到(a+c)2<b2,【解答】解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣3,y<0时,即9a﹣3b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×3得:12a+4c<0,即4(3a+c)<0又∵a<0,∴3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题(共6小题,每小题3分,满分18分)13.(3分)因式分解:9x﹣x2= x(9﹣x).【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:9x﹣x2=x(9﹣x).故答案为:x(9﹣x).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.(3分)已知:+(b+5)2=0,那么a+b的值为﹣3 .【分析】首先根据非负数的性质可求出a、b的值,进而可求出a、b的和.【解答】解:∵+(b+5)2=0,∴a﹣2=0,b+5=0,∴a=2,b=﹣5;因此a+b=2﹣5=﹣3.故结果为:﹣3【点评】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.15.(3分)如图,点A为反比例函数y=图象上一点,过A做AB⊥x轴于点B,连接OA则△ABO的面积为4,k= ﹣8 .【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:根据题意可知:S△AOB=|k|=4,又反比例函数的图象位于第二象限,k<0,则k=﹣8.故答案为:﹣8.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得三角形面积为|k|.16.(3分)如图,△ABC中,DE∥BC,AE:EB=2:3,则DE:BC= 2:5 .【分析】根据相似三角形的判定得出△ADE∽△ACB,根据相似三角形的性质得出=,求出AE:AB即可.【解答】解:∵AE:EB=2:3,∴AE:AB=2:5,∵DE∥BC,∴△ADE∽△ACB,∴==,故答案为:2:5.【点评】本题考查了相似三角形的性质和判定的应用,能根据相似三角形的性质得出=是解此题的关键.17.(3分)某水库堤坝的横断面如图所示,迎水坡AB的坡度是1:,堤坝高BC=50m,则AB= 100 m.【分析】根据坡比可得:BC:AC=1:,然后根据BC=50m,求出AC的长度,最后利用勾股定理求出AB的长度.【解答】解:由图可得,BC:AC=1:,∵BC=50m,∴AC=50m,∴AB==100(m).故答案为:100.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据坡度构造直角三角形,利用勾股定理求解.18.(3分)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是(2,).【分析】本题可作过A点垂直于y轴的直线,根据三角形的勾股定理列出方程,求解即可得答案.【解答】解:作AE⊥y轴于点E,连接AB,AC,则四边形ABOE为矩形,CE=CD=(4﹣1)=1.5,AC=AB=OE=1+(4﹣1)÷2=2.5,AE===2,∴点A的坐标是(2,).【点评】本题考查常用辅助线作法:连接圆心和切点,作弦心距.三、解答题(19、20每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共66分)19.(6分)计算:﹣()﹣1+(π﹣)0﹣2sin45°【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可求出值.【解答】解:原式=2﹣3+1﹣2×=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=﹣【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=x2﹣4xy+4x2﹣y2﹣4x2+4xy﹣y2=x2﹣2y2,当x=﹣2,y=﹣时,原式=4﹣=3.【点评】本题考查了整式的混合运算和求值,能根据整式的运算法则进行化简是解此题的关键.21.(8分)新的交通法规实施后,驾校的考试规则也发生了变化,考试共设四个科目:科目1、科目2、科目3和科目4,以下简记为:1、2、3、4.四个科目考试在同一地点进行,但每个学员每次只能够参加一个科目考试.在某次考试中,对该考点各科目考试人数进行了调查统计,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有50 人;在被调查者中参加“科目3”测试的有10 人;将条形统计图补充完整;(2)该考点参加“科目4”考试的学员里有3位是教师,某新闻部门准备在该考点参加“科目4”考试的学员中随机选出2位,调查他们对新规的了解情况,请你用列表法或画树状图的方法求出所选两位学员恰好都是教师的概率.【分析】(1)根据选择科目1的人数是15,所占的百分比是30%即可求得总人数,然后根据百分比的意义求得科目4的人数,进而求得科目3的人数,补全直方图;(2)利用树状图法即可列举出出现的所有情况,然后利用概率公式即可求解.【解答】解:(1)调查的总人数是:15÷30%=50(人),参加科目4的人数是:50×10%=5(人),则被调查者中参加“科目3”测试的有:50﹣15﹣20﹣5=10(人).故答案是:50,10.;(2)三位教师用A1、A2、A3表示,另两位学员用B、C表示.则共有20种情况,所选两位学员恰好都是教师的有6种情况,则概率是:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.(1)求BT的长(不考虑其他因素).(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)【分析】(1)在直角△ACT中,根据三角函数的定义,若AT=3x,则CT=5x,在直角△ABT 中利用三角函数即可列方程求解;(2)求出正常人作出反应过程中电动车行驶的路程,加上刹车距离,然后与BT的长进行比较即可.【解答】解:(1)根据题意及图知:∠ACT=31°,∠ABT=22°∵AT⊥MN∴∠ATC=90°在Rt△ACT中,∠ACT=31°∴tan31°=可设AT=3x,则CT=5x在Rt△ABT中,∠ABT=22°∴tan22°=即:解得:∴,∴;(2),,∴该车大灯的设计不能满足最小安全距离的要求.【点评】本题考查了解直角三角形,正确利用三角函数列出方程进行求解,正确理解方程思想是关键.23.(9分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W 元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以写出W与x的函数关系式;(3)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,哪种方案获利最大,最大利润是多少.【解答】解:(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,,解得,,即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)由题意可得,W=6x+,化简,得W=4x+100,即W与x之间的函数关系式是:W=4x+100;(3),解得,10≤x≤12.5,故有三种购买方案,由W=4x+100可知,W随x的增大而增大,故当x=12时,,即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.24.(9分)如图,△ABC中,∠C=90°,AC=3,AB=5,点O在BC边的中线AD上,⊙O与BC 相切于点E,且∠OBA=∠OBC.(1)求证:AB为⊙O的切线;(2)求⊙O的半径;(3)求tan∠BAD.【分析】(1)作OF垂直AB于点F,然后根据角平分线的性质定理即可证得OE=OF,从而证得结论;(2)根据勾股定理求得BC,进而求得CD=DB=2,设⊙O的半径为r,然后根据S△ACD+S△COB+S △AOB=S△ABC,得到AC•CD+BD•r+,解关于r的方程即可求得半径;(3)证得Rt△ODE∽Rt△ADC,根据相似三角形的性质求得DE=,即可求得BF=BE=,AF=AB﹣BF=,解直角三角形即可求得tan∠BAD==.【解答】(1)证明:如图,作OF垂直AB于点F,∵⊙O与BC相切于点E,∴OE⊥BC又∠OBA=∠OBC,∴OE=OF,∴AB为⊙O的切线(2)解:∵∠C=90°,AC=3,AB=5,∴BC==4,又D为BC的中点,∴CD=DB=2,∵S△ACD+S△COB+S△AOB=S△ABC设⊙O的半径为r,即AC•CD+BD•r+∴6+2r+5r=12∴r=∴⊙O的半径为(3)解:∵∠C=90°,OE⊥BC,∴OE∥AC,∴Rt△ODE∽Rt△ADC,∴,∴DE=,∴BF=BE=,∴AF=AB﹣BF=,∴tan∠BAD==.【点评】本题考查了切线判定和性质,角平分线的性质,三角形相似的判定和性质以及解直角三角形等,熟练掌握性质定理是解题的关键.25.(10分)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4<x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.26.(10分)如图,直线y=﹣x﹣1与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx(a ≠0)经过原点和点C(4,0),顶点D在直线AB上.(1)求这个抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使得以P、C、D为顶点的三角形与△ACD相似.若存在,请求出点P的坐标;若不存在,请说明理由;(3)点Q是x轴上方的抛物线上的一个动点,若cos∠OQC=,⊙M经过点O,C,Q,求过C点且与⊙M相切的直线解析式.【分析】(1)先确定出点D的坐标,进而用待定系数法即可得出结论;(2)先确定出∠ACD=∠EDC=45°,再分两种情况讨论计算即可得出结论;(3)先利用同弧所对的圆周角相等得出∠ONC=∠OQC,进而得出ON与NC的关系,即可用勾股定理求出ON即可得点N的坐标,即可得出结论.【解答】解:(1)由题知:D点的横坐标为2∴y=﹣×2﹣1=﹣2,∴D(2,﹣2)把C、D代入抛物线:解之得:,∴抛物线的解析式为:y=x2﹣2x(2)存在.如图1,设对称轴与x轴交于点E,P点(2,m)易知:E(2,0),A(﹣2,0),B(0,﹣1),∴∠ACD=∠EDC=45°,情况1:P点在D点上方,则∠PDC=∠ACD若△PDC∽△ACD,则,∴=1解得:m=4∴P(2,4)若△PDC∽△DCA,则∴解得:y=﹣∴P'(2,﹣)情况2:若P在D点的下方,则△PDC没有一个角会为45°,∴△PDC与△DCA不可能相似,综上可知:存在点 P(2,4),P'(2,﹣);(3)如图2,设⊙M与y轴交于点N,连NC交抛物线对称轴于一点,即为圆心M点在Rt△ONC中,cos∠ONC=cos∠OQC=,∴∠ONC=∠OQC,∴设ON=2t,NC=t则:(t)2﹣(2t)2=16 解得:t=4∴ON=8,∴点N坐标为(0,8)∴直线NC的解析式为y=﹣2x+8设过点C且与⊙M相切的直线为 y=x+c把C点代入有:×4+c=0,解得:c=﹣2∴过点C且与⊙M相切的直线为 y=x﹣2.【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,圆的性质,切线的性质,勾股定理,用方程的思想解决问题是解本题的关键.。
2022年湖南省长沙市中考数学试卷(真题)一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.﹣6的相反数是()A.﹣B.﹣6 C.D.62.如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.3.下列说法中,正确的是()A.调查某班45名学生的身高情况宜采用全面调查B.“太阳东升西落”是不可能事件C.为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D.任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.下列计算正确的是()A.a7÷a5=a2B.5a﹣4a=1C.3a2•2a3=6a6D.(a﹣b)2=a2﹣b25.在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是()A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)6.《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4.则这组数据的众数和中位数分别是()A.3,4 B.4,3 C.3,3 D.4,47.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为()A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元8.如图,AB∥CD,AE∥CF,∠BAE=75°,则∠DCF的度数为()A.65°B.70°C.75°D.105°9.如图,PA,PB是⊙O的切线,A、B为切点,若∠AOB=128°,则∠P的度数为()A.32°B.52°C.64°D.72°10.如图,在△ABC中,按以下步骤作图:①分别过点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若AB=2,则AM的长为()A.4 B.2 C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.若式子在实数范围内有意义,则实数x的取值范围是.12.分式方程的解为.13.如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.14.关于x的一元二次方程x2+2x+t=0有两个不相等的实数根,则实数t的值为.15.为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有名.16.当今大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1024,103=1000,所以我估计2200比1060大.其中对2200的理解错误的网友是(填写网名字母代号).三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.计算:|﹣4|+()﹣1﹣()2+20350.18.解不等式组:.19.为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB表示该小区一段长为20m的斜坡,坡角∠BAD=30°,BD⊥AD于点D.为方便通行,在不改变斜坡高度的情况下,把坡角降为15°.(1)求该斜坡的高度BD;(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)20.2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题为“推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.频数频率成绩x/分15 0.160≤x<70a0.270≤x<8045 b80≤x<9090≤x<60 c100(1)表中a=,b=,c=;(2)请补全频数分布直方图;(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.21.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.22.电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.②刘三姐的姐妹们给出的答案是唯一正确的答案.③该歌词表达的数学题的正确答案有无数多种.(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.23.如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=,AO=2,求BD的长及四边形ABCD的周长.24.如图,四边形ABCD内接于⊙O,对角线AC,BD相交于点E,点F在边AD上,连接EF.(1)求证:△ABE∽△DCE;(2)当=,∠DFE=2∠CDB时,则﹣=;+=;+﹣=.(直接将结果填写在相应的横线上)(3)①记四边形ABCD,△ABE,△CDE的面积依次为S,S1,S2,若满足=+,试判断△ABE,△CDE的形状,并说明理由.(2)当=,AB=m,AD=n,CD=p时,试用含m,n,p的式子表示AE•CE.25.若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.。
2024年下学期学科素质诊断(一)九年级数学1.中国“二十四节气”已被列入联合国教科文组织人类非物质文化遗产代表作名录,下列四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.公元前5世纪,古希腊数学家毕达哥拉斯首次提出了关于一元二次方程的概念.下列关于x的方程中,是一元二次方程的为()A. x2+2x=1B. x2−xx=0C. xx2+xx=0(a、b为常数)D. x2+1x=03.下列运动中不属于旋转的是()A.摩天轮的转动B.气球升空的运动C.酒店旋转门的转动D.电风扇叶片的转动4.如图,由点P引出的PA、PB、PC、PD为OO的四条弦,其中最长的是()A. PAB. PBC.PCD. PD5.关于x的一元二次方程x2+xx−10=0的一个根为2,则b的值为()A. -3B.2C.7D. 36.已知二次函数x=−2(x−1)2−3,下列说法正确的是()A.抛物线开口向上B.函数的最大值是3C.顶点坐标为(1,-3)D.对称轴为直线x=-17.关于一元二次方程x2−4x+3=0的根的情况,下列说法正确的是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断8.在某足球邀请赛中,参赛的每两个队之间都要比赛一场,共赛10场,求参加比赛的球队数量.设有x个队参赛,根据题意可列方程为()A.x(x-1)=10B. x(x+1)=10C. 12x(x−1)=10 D. 12x(x+1)=109.已知二次函数y=3(x+1)2−8的图像上有三点A(1,y1)B(2, y2),C(-2, y3)则y1,y2,y3的大小关系为()A. y2>y1>y3B. y1>y2>y3C. y3>y1>y2D. y3>y2>y110.如图,已知二次函数y=ax2+bx+c的图象与x轴交于(-3,0),顶点是(-1,m),则以下结论:m..其中正确的有()个①abc<0; ②a+b+c=0 ③若y≤c,则-2≤x≤0. ④a+c =12.A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)11.若点M(a,(a,-2) N(3, 关于原点对称,则a+b=12.把抛物线y=x2向下平移4个单位,所得的抛物线的函数关系式为13.已知x1x2是一元二次方程x2−3x−2=0的两根,则x1+x2=14.若y=(m−2)x|m|+1是关于x的二次函数,则m=15.如图,在ΘO中,弦AB的长为4,圆心O到弦AB的距离为2,则∠AOC的度数为__.15题10题19题16.在一次游戏活动中,钟老师将三个颜色不同的小球分发给小雅、小培和小粹三个同学,其中有一个小球颜色是红色.小雅说:“红色球在我手上”;小培说:“红色球不在我手上”;小粹说:“红色球肯定不在小雅手上”。
湖南省长沙市九年级(下)第一次月考数学试卷(3月)
一、选择题(本大题共10个小题,每小题3分,共30分)
1.﹣的相反数是()
A.﹣B.C.D.﹣
2.下列立体图形中,俯视图与主视图不同的是()
A.B.C.D.
3.“你是那夜空中最美的星星,照亮我一路前行.”这首朗朗上口的湖南本土励志原创歌曲《早安隆回》成为了全球华人圈的超级神曲,该歌曲抖音单日最高播放量超过了4.5亿,数据450000000用科学记数法表示为()
A.0.45×109B.4.5×108C.4.5×109D.4.5×107
4.关于x的一元二次方程x2﹣4x+2=0的根的情况是()
A.有两个不相等的实数根B.没有实数根
C.有两个相等的实数根D.不能确定
5.如图所示,P是等边△ABC内的一点,若将△PBC绕点B旋转到△P′BA,则∠P′BP 的度数为()
A.45°B.60°C.90°D.120°
6.对于一组统计数据3,3,6,5,3.下列说法错误的是()
A.众数是3B.平均数是4C.中位数是6D.方差是1.6
7.如图所示,该数轴表示的不等式组的解集为()
A.x>1B.x≥﹣1C.﹣3<x≤﹣1D.x>﹣3
8.如图,四边形ABCD内接于⊙O,已知点C为的中点,若∠A=50°,则∠CBD的度
数为()
A.25°B.30°C.40°D.50°
9.在平面直角坐标系中,将直线y=2x+b沿x轴向右平移2个单位后恰好经过原点,则b 的值为()
A.2B.﹣2C.4D.﹣4
10.卡塔尔世界杯已经结束,阿根延捧得大力神杯!我们知道,世界杯小组赛分成8个小组,每小组4个队,小组内进行单循环赛(两支球队间只比赛一场),已知胜一场积3分,平一场积1分,负一场积0分,小组赛结束后,积分前两名(相同积分比较净胜球)进入16强.
下表是世界杯E组积分表.
排名球队积分
1日本6
2西班牙4
3德国4
4哥斯达黎加?
根据此表,可以推断哥斯达黎加的积分是()
A.0B.1C.2D.3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若代数式在实数范围内有意义,则x的取值范围是.
12.若分式与分式的值相等,则x=.
13.已知m,n是一元二次方程x2+2x2﹣5=0的两个根,则m2+mn+2m的值是.14.如图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC,若AB=1,∠AOB=30°,tan∠BOC=,则BC的长为.
15.如图,点A在反比例函数的图象上,AB⊥x轴于点B,点C在x轴上,且CO=OB,△ABC的面积为2,则m的值为.
16.刘徽是我国魏晋时期卓越的数学家,他首次提出“割圆术”,利用圆内接正多边形逐步逼近圆来近似计算圆周率.如图,多边形A1A2A3…A n是⊙O的内接正n边形.已知⊙O 的半径为r,∠A1OA2的度数为α,点O到A1A2的距离为d,△A1OA2的面积为S.下面四个推断中,
①当n变化时,α随n的变化而变化,α与n满足函数关系.
②若α为定值,当r变化时,d随r的变化而变化,d与r满足正比例函数关系.
③无论n,r为何值,总有nS=πr2.
④若n为定值,当r变化时,S随r的变化而变化,S与r满足二次函数关系.
其中错误的是(填序号).
三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分)
17.计算:.
18.先化简,再求值:,其中a=2023.
19.如图所示,一轮船由西向东航行,在A处测得小岛P在北偏东75°的方向上,轮船行驶40海里后到达B处,此时测得小岛P在北偏东60°的方向上.
(1)求BP的距离;
(2)已知小岛周围22海里内有暗礁,若轮船仍向前航行,有无触礁的危险?
20.某校为了解学生参加“第二课堂”社团活动的情况,对报名参加A:足球,B:象棋,C:羽毛球,D:舞蹈这四项社团活动的学生(每人必选且只能选修一项)中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中A所占扇形的圆心角为36°.
根据以上信息,解答下列问题:
(1)这次被调查的学生共有人,并将条形统计图补充完整;
(2)若该校共有1000学生加入“第二课堂”社团活动,请你估计这1000名学生中有多少人参加了羽毛球社团;
(3)在象棋社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加市级象棋大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.
21.如图,已知四边形ABCD是平行四边形,△AOB是等边三角形.
(1)求证:四边形ABCD是矩形.
(2)若AB=5,求四边形ABCD的周长.
22.卡塔尔世界杯期间,某商店特购进世界杯吉祥物“拉伊卜”摆件和挂件共90个进行销
售.已知“拉伊卜”摆件的进价为40元/个,“拉伊卜”挂件的进价为25元/个.
(1)若购进“拉伊卜”摆件和挂件共花费了2850元,请分别求出购进“拉伊卜”摆件和挂件的数量.
(2)该商店计划将“拉伊卜”摆件售价定为50元/个,“拉伊卜”挂件售价定为30元/个,若购进的90个“拉伊卜”摆件和挂件全部售完,且至少盈利725元,求购进的“拉伊卜”挂件不能超过多少个?
23.如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且BE平分∠FBA,过点E作EF⊥BC于点F,延长FE和BA的延长线交于点.
(1)证明:GF是⊙O的切线;
(2)若AB=8,,求DB的长;
(3)在(2)的基础上,求图中阴影部分的面积.
24.我们不妨约定:在平面直角坐标系中,横、纵坐标互为倒数的点为“倒数点”.(1)若点是“倒数点”,则r=;
(2)若一次函数y=kx+2图象上有两个“倒数点”M、N,若△MON的面积为,求k的值;
(3)如图,已知顶点为D的二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B(x2,0)两点,且x1<0<x2,交y轴于点C,过C、D两点的直线交x轴于点E,满足∠ACE
=∠CBE;
①求ac的值;
②若点D(m,n)是“倒数点”,且当m≤x≤m+1时,y的最小值为0,求二次函数的解
析式.
25.如图,在半径为4的扇形AOB中,∠AOB=90°,C为上一动点(不与点A、B重合),连接AC、BC,点D、E分别是弦AC、BC的中点,连接OD、OE.
(1)求∠DOE的大小;
(2)连接AB,分别交OD、OE于点M、N,判断AN•BM是否为定值,若是,求出该定值;若不是,请说明理由.
(3)连接DE,分别记△ODE,△CDE的面积为S1,S2.
①求证:S1﹣S2为定值;
②当﹣=8+8时,求的值.。