华东师大版七年级数学上册 2.11《有理数的乘方》讲义设计(无答案)
- 格式:docx
- 大小:49.16 KB
- 文档页数:4
《有理数的乘方》知识点解读知识点1 乘方的意义(重点)(1)乘方的定义:求n 个相同因数a 的积的运算叫做乘方.(2)乘方的形式:....n an a a a a ⨯⨯⨯=个(3)n a 的读法与理解:n a 读作a 的n 次幂(或a 的n 次方),a 、n 与n a 的理解如图.算(相同因数的乘法运算).注意:幂是乘方运算的结果;(2)加减运算是一级运算,乘除是二级运算,乘方、开方(今后将学到)是三级运算;(3)一个数可以看作它本身的一次方;(4)当底数是负数或分数时,要先用括号将底数括上,再写指数,如23的平方为22()3,而不能写成223,-1的平方为2(1)-,而不能写成21-. 【例1】把下列各式写成乘方的形式: 33331(1);(2)3333;55554(3)(3)(3)(3);(4)222 2.⨯⨯⨯⨯⨯⨯⨯-⨯-⨯--⨯⨯⨯ 解析:本题旨在强化对乘方的意义的理解,要分清底数和指数.答案:4333433333(1)(;55555113(2)33333;444(3)(3)(3)(3)(3);(4)22222.⨯⨯⨯=⨯⨯⨯⨯=⨯=-⨯-⨯-=--⨯⨯⨯=- 规律总结:(1)底数是分数和负数时,一定要用括号把底数括起来,指数写在括号的外面.(2)相同的因数为底数,而相同因数的个数为指数.【类型突破】读出下列各数,并指出其中的底数和指数.2 73485(1)(9);(2)8;(3)2;(4)().6-- 答案:(1)读作:-9的7次方,底数是-9,指数是7;(2)读作:8的3次方,底数是8,指数是3;(3)读作:2的4次方的相反数,底数是2,指数是4;(4)读作:56的8次方,底数是56,指数是8. 知识点2 乘方的符号法则(难点)(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数,负数的偶次幂是正数.说明:①任何数的偶次幂都是非负数;②有理数的乘方运算与有理数的加减乘除一样,首先要确定幂的符号,然后再计算幂的绝对值;③由有理数的乘法法则可知:0的任何非零次幂等于0;10的几次幂等于1后面加几个0;1的任何次幂都得1.【例2 】计算:244312(1)(3);(2)3;(3)();(4).23---- 解析:根据乘方的运算的符号法则,确定幂的符号,再用乘法求幂的绝对值. 答案:4432(1)(3)(3333)81;(2)3(3333)81;11111(3)()();222282224(4).333-=+⨯⨯⨯=-=-⨯⨯⨯=--=-⨯⨯=-⨯-=-=-错因分析:乘方中的指数表示相同因数的个数,不能把底数与指数相乘.【类型突破】计算:221(1)(1);(2)(1)(.n n n +--为正整数)答案:(1)1 (2)-1。
华师大版数学七年级上册2.11《有理数的乘方》说课稿一. 教材分析《有理数的乘方》是华师大版数学七年级上册第2.11节的内容。
本节内容是在学生掌握了有理数的概念和运算法则的基础上进行教学的。
有理数的乘方是数学中一个重要的概念,它不仅在数学本身中有广泛的应用,而且在物理、化学等自然科学领域也有广泛的应用。
因此,本节课的教学对于学生理解和掌握数学知识,提高解决实际问题的能力具有重要意义。
二. 学情分析面对的是一群刚刚接触初中数学的七年级学生,他们对于有理数的概念和运算法则已经有了一定的了解,但是还不是很扎实。
因此,在教学过程中,需要教师耐心引导,让学生在原有知识的基础上,逐步理解和掌握有理数的乘方。
三. 说教学目标1.知识与技能目标:让学生理解和掌握有理数的乘方概念和运算法则,能够熟练地进行有理数的乘方运算。
2.过程与方法目标:通过观察、分析和归纳,培养学生的逻辑思维能力和自主学习能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们克服困难、解决问题的信心和决心。
四. 说教学重难点1.教学重点:有理数的乘方概念和运算法则。
2.教学难点:理解有理数乘方的实质,掌握有理数乘方的运算法则。
五. 说教学方法与手段在本节课的教学中,我将采用讲授法、引导发现法、讨论法等多种教学方法。
同时,利用多媒体教学手段,如PPT、网络资源等,为学生提供丰富的学习材料,帮助学生更好地理解和掌握有理数的乘方。
六. 说教学过程1.导入:通过一个实际问题,引出有理数的乘方概念,激发学生的学习兴趣。
2.新课讲解:讲解有理数的乘方概念和运算法则,让学生通过观察、分析和归纳,理解有理数乘方的实质。
3.例题解析:通过典型例题,讲解有理数乘方的运算法则,让学生在实践中掌握有理数乘方的运算方法。
4.巩固练习:让学生进行自主练习,及时巩固所学知识。
5.课堂小结:总结本节课的主要内容,让学生明确有理数的乘方概念和运算法则。
6.课后作业:布置适量作业,让学生进一步巩固所学知识。
华东师大版 七年级 数学上册课题2.11有理数的乘方课型新授课型授课教师课时1课时教材内容 《有理数的乘方》这节课选自华东师范版《数学》七年级上册第二章第11节的内容,乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
教学目标 知识与技能:理解乘方的意义,能进行有理数的乘方运算。
过程与方法:经历探索有理数乘方的过程,培养转化的思想方法。
情感、态度与价值观:通过类比、观察、归纳得出正确的结论,培养探索,猜想的习惯。
学生情况分析七年级共有43人,从知识基础方面来看,学生已经有了两个方面良好的基础,一是在生物学中学习细胞的分裂,使学生能很好的理解乘方的意义和记法,实现知识的正迁移与学科间的联系;二是学生刚学完有理数的乘法不久,具备良好的运算基础,对于准确理解有理数乘方的符号法则具有很重要的作用,缺点是从小养成了重结果、轻过程的习惯,基础知识不够扎实,计算准确性不够。
对于2)5(-与25-这类型运算易混淆。
重点 有理数的乘方的运算 难点 带各种符号的乘方运算教学流程教学内容教师活动学生活动设计意图 创设情景出示目标知识与技能:理解乘方的意义,能进行有理数的乘方运算。
过程与方法:经历探索有理数乘方的过程,培养转化的思想方法。
情感、态度与价值观:通过类比、观察、归纳得出正确的结论,培养探索,猜想的习惯。
利用幻灯片出示目标 明确本节所要达到的目标让学生对本节要学习的内容有大体的认识,并且带着目的走进课堂提出问题某种细胞每过30分钟便由1个分裂成2个,如图2-11-1所示.经过5小时,这种细胞由1个能分裂成多少个?5小时分裂10次,分裂成 个,该式子是10个2的积,有没有一种简便记法来表示这个结果呢?通过本节课的学习,你将会得到问题的答案! 教师提出问题,安排学生思考。
一个具有实际意义的最大的数13310你知道世界上哪一个数最大吗?要回答这个问题可真不容易,因为自然数列是无限的,任何人也无法说出一个最大而又不能再加一的自然数.可是,现在有人发现了一个奇怪的大数,它可以用来表示人类现今的知识领域中所能想象出来的一切事物而绰绰有余.这个数既有物理意义,也是目前所能知道的最大的大数,它就是133 10.为什么说它是目前人们所能知道的最大的数呢?为了说明这个问题,让我们先介绍一下在此以前,由美国数学家卡斯纳发现的——“古怪尔”数吧!地球上到处都充满了砂子,如果把所有的砂粒加起来,总该是一个大得惊人的数了吧?并不!如果假定在每立方毫米里装10粒砂子,那么当全地球都充满砂子时,总数也不过是3110粒,这比“古怪尔”数小多了.那么,用宇宙间的数值来比,是否会使数更大些呢?光年是计算星际间距离的一个单位.一光年约等于95万亿公里,即9.5×1210公里.如果我们不用光年,而用微米来度量宇宙间的距离,那该是一个多么大的数值啊!但这个数还是比“古怪尔”数小.因为从地球到银河系最远的星球,也只有3710微米.地球、月球、太阳以至宇宙的年龄,都是用“亿年”来计算的,如果我们把这个时间单位再缩小,改用比秒还短得多的时间单位来计算宇宙星球的年龄,那这个数又有多大呢?目前最短的时间单位叫光核,就是光线穿过原子核所需的时间.这样计算下来,宇宙的年龄也不过才4010光核.那么,把宇宙间所有的质子加起来该有多少呢?经计算其总数为8810,还是比“古怪尔”数小得多!于是,卡斯纳推断说:“古怪尔”数——10010是世界上最大最大的数.但是随着人们对宏观世界和微观世界观测的日趋深入,数的领域也在不断扩大.六十年代以来,天文学家观测到了一种离我们极其遥远的似星非星的天体——类星体.它以极快的速度远离我们而去.其中一种代号为OQ172的类星体离我们足足有160亿光年,即1.5×2810厘米远.最近,澳大利亚和英国天文学家又发现了一颗距离更远的类星体,离我们有200亿光年,即1.9×2810厘米.这是目前我们所能观测到的最远的天体了.如果我们用这个最远的距离1.9×2810厘米和在微观世界中最小的电子半径1610 厘米相比,可以得出一个比值:13310──这是迄今为止我们通过测量所得的具有意义的最大数,它比“古怪尔”数10010,还要大10亿亿亿亿倍呢!2。
有理数的乘方教学目标1.使学生理解有理数乘方的概念,掌握有理数乘方的运算。
2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神。
3.渗透分类讨论思想。
教学重点和难点重点:有理数乘方的运算。
难点:有理数乘方运算的符号法则。
教学过程一、创设情境,揭示目标: 1.计算: (1) 3439÷⎪⎭⎫ ⎝⎛-; (2) ()()⎪⎭⎫ ⎝⎛-÷-÷-51146 2. 在小学我们已经学习过a ·a ,记作a2,读作a 的平方(或a 的二次方);a ·a ·a 作a3,读作a 的立方(或a 的三次方);那么,a ·a ·a ·a 可以记作什么?读作什么?a ·a ·a ·a ·a 呢?个n a a a a ⋅⋅ (n 是正整数)呢?学习目标:1、理解有理数乘方的概念;2、掌握有理数乘方的运算。
二、自学指导(课件出示)认真阅读教科书第57—58页1、掌握几个概念:乘方、幂、底数、指数等;2、阅读课本例题会进行乘方运算。
三、学生自学,教师巡视。
学生看书,教师巡视,确保人人独立认真看书。
四、引导更正,指导运用1.概念:一般地,我们有:n 个相同的因数a 相乘,即个n a a a a ⋅⋅,记作na 。
例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4。
这种求几个相同因数的积的运算,叫做乘方(involution),乘方的结果叫做幂(power)。
在an 中,a 叫作底数,n 叫做指数,很重an 读作a 的n 次方,an 看作是a 的n 次方的结果时,也可读作a 的n 次幂。
例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂。
一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写。
2.例题:例1:计算:(1) ()32-; (2) ()42-; (3) ()52-。
有理数的乘方尊重的列位评委、列位教师:你们好!今天我说课的题目是《有理数的乘方》。
《有理数的乘方》是华师大版《义务教育课程标准实验教科书·数学·七年级(上)》第二章第十一节的内容。
依照新课标的理念,关于本节课,我将从教材分析、教学目标、教学方式、教学进程、板书设计这五个方面加以说明。
一、教材分析:乘方是有理数的一种大体运算,在此之前学生已经学习过了有理数的加、减、乘、除,乘方既是有理数乘法的推行和延续,又为后续学习有理数的混合运算、科学记数法、开方和整式的幂的运算做了铺垫,起到继往开来的作用。
基于对教材的明白得和分析,结合新课标对本节课的要求,我将本节课的教学重点确信为:有理数的乘方、幂、底数、指数的概念及意义;有理数乘方的运算;乘方的符号法那么。
教学难点确信为:乘方的符号法那么及其探讨进程。
二、教学目标:依照新课标的要求,教学目标应包括知识技术、数学试探、问题解决,情感态度这四个方面,而这四维目标又应是紧密联系的一个有机整体,因此,我将四维目标进行整合,确信本节课的教学目标为:知识技术:让学生明白得并把握有理数的乘方、幂、底数、指数的概念及意义,能够正确进行有理数的乘方运算。
数学试探与问题解决:在熟悉的问题中让学生取得有理数乘方的初步体会,培养学生观看、分析、归纳、归纳的能力;经历从乘法到乘方的推行进程和乘方的符号法那么探讨进程,从中感受类比,从特殊到一样,转化和分类讨论的数学思想方式。
情感与态度目标:让学生通过主动探讨,合作交流,归纳归纳出有理数乘方的符号法那么,感受探讨的乐趣,体验成功的喜悦,增进学生学好数学的自信心,体会数学的合理性和严谨性。
三、教学方式:依照初一学生好动、好问、好奇的心理特点,结合本节课的内容特点,课堂上采纳启发诱导、实践探讨的教学方式,以问题的提出、问题的解决为主线,提倡学生主动参与教学实践活动,在合作交流中培育学生学习的踊跃性和主动性,使学习方式由“学会”变成“会学”。
华师大版数学七年级上册《2.11 有理数的乘方》说课稿一. 教材分析华师大版数学七年级上册《2.11 有理数的乘方》这一节主要介绍了有理数的乘方概念、性质和运算法则。
通过本节课的学习,学生能够掌握有理数乘方的基本概念,理解有理数乘方的性质,掌握有理数乘方的运算法则,并能够运用这些知识解决一些实际问题。
在教材中,首先介绍了有理数乘方的概念,即一个数自乘若干次的运算。
接着介绍了有理数乘方的性质,包括乘方的定义、乘方的零次幂、乘方的负次幂等。
然后介绍了有理数乘方的运算法则,包括同底数乘法、幂的乘法、幂的除法等。
最后通过一些巩固练习,帮助学生加深对有理数乘方的理解和运用。
二. 学情分析在教学前,我通过观察和了解,发现学生在学习这一节内容时,存在以下几个问题:1.对有理数乘方的概念理解不清晰,容易与幂的乘法混淆。
2.对有理数乘方的性质和运算法则理解不深刻,容易在实际运算中出错。
3.缺乏实际应用有理数乘方知识解决问题的能力。
三. 说教学目标根据教材和学情分析,我制定了以下教学目标:1.让学生掌握有理数乘方的基本概念,理解有理数乘方的性质。
2.让学生掌握有理数乘方的运算法则,并能够运用这些知识解决一些实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 说教学重难点根据教材和学情分析,我确定了以下教学重难点:1.有理数乘方的基本概念和性质的理解。
2.有理数乘方的运算法则的掌握和运用。
3.解决实际问题中运用有理数乘方知识的能力。
五. 说教学方法与手段在教学过程中,我将采用以下教学方法和手段:1.采用讲授法,系统地讲解有理数乘方的概念、性质和运算法则。
2.采用案例分析法,通过具体的例子让学生理解和掌握有理数乘方的运算法则。
3.采用练习法,让学生通过大量的练习来巩固和运用有理数乘方的知识。
4.利用多媒体教学手段,如PPT等,帮助学生直观地理解和记忆有理数乘方的知识。
六. 说教学过程1.导入:通过一个实际问题,引出有理数乘方的概念,激发学生的兴趣。
《有理数的乘法法则》教学设计教材内容分析:有理数乘法是在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
教学目标 :知识与技能:1.理解有理数乘法的实际意义.2.掌握有理数乘法法则。
3.能够熟练地进行有理数乘法运算.过程与方法:经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。
情感、态度与价值观:学生参与实际教学过程体会用数学知识描述实际问题的过程,增加学生学习兴趣。
学情分析有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.重点难点重点:掌握有理数的乘法法则 难点:能熟练进行有理数乘法运算 教学过程活动一:有理数乘法的类型请同学们举出一些有理数乘法运算的题目。
【设计意图】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,培养学生分析问题、解决问题的能力。
活动二:结合生活实例解释运算结果请同学们结合生活中的事例(数轴、温度计、收入与支出、存取情况等)解释运算的结果(1)3x2 (2)(-3)x2 (3)3x(-2) (4)(-3)x(-2)一个数与0相乘正数乘正数 正数乘负数负数乘正数同号异号负数乘负数【设计意图】通过设计此环节,使学生体会到数学与生活的紧密联系,感受到生活中处处有数学,从而更加亲近数学、喜欢数学。
活动三:有理数乘法法则(1)3x2=6 (2)(-3)x2=-6 (3)3x(-2) =-6 (4)(-3)x(-2)=6 思考:观察上面的式子,同学们觉得两个有理数得相乘的结果有没有规律可循?建议大家从两个方面进行思考:①积的符号与两个因数的符号有什么关系?②积的绝对值与两个因数的绝对值又有什么样的关系?完成下面的填空:正数乘正数积为______数;负数乘正数积为______数;正数乘负数积为______数;负数乘负数积为______数;乘积的绝对值等于各乘数绝对值的________。
最新Word 欢送下载
利用乘方规律探索数字的特征
难易度:★★
关键词:有理数
答案:
有理数乘方可以简洁地表示数的乘法运算及其运算结果,很多乘方的结果是有规律可循。
关键要深入分析题目涉及的知识,展开思路
【举一反三】
典例:两探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…;根据你发现的规律确定330的个位数字是几?
思路导引:一般来说,此类规律问题一定要多读题,多比拟题目中的数量关系。
由上面的规律可知,3n的幂的个位数字只能是3、9、7、1,它们从1开始以连续的4个整数为一循环节循环,。
因为30÷4=7……2,所以330的个位数字是9。
标准答案:330的个位数字是9。
有理数的乘方
第1课时教学目标解析
1.教学目标
⑴理解有理数乘方的意义,了解幂、底数、指数等相关概念.
⑵掌握有理数乘方的符号法则及相关性质,能够正确地进行有理数的乘方运算.
2.教学目标解析
⑴有理数的乘方是利用有理数的乘法来定义的. 将写成的表达式,前者是个有理数相乘,是乘法运算,后者是有理数乘方的形式,是乘方运算.在中,叫做底数,叫做指数,的结果,即个有理数相乘的结果叫做幂.所以,有理数乘方及其相关概念是有理数乘法运算及其相关概念的自然拓展.
⑵有理数的乘方像有理数加、减、乘、除法一样,也是一种运算,其运算的符号法则及相关性质完全依据相同因数的有理数乘法法则获得.初学时,应强调二者之间的关系,用有理数乘法法则探究学习有理数乘方运算.待学生熟悉有理数乘方运算法则及其相关性质后,应该逐步丢掉这根拐杖.。
《1.11有理数的乘方》教学设计教学内容分析乘方是有理数的一种基本运算,本课是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和开方的基础。
起到承前启后、铺路架桥的作用。
通过这一课的学习,对培养学生观察问题、分析问题和解决问题的能力以及转化的数学思想起到十分重要的作用。
学习者分析七年级的学生,活泼好动,对新知识充满好奇和求知的欲望,并且学生在小学已经认识了一个数的平方、立方运算。
前面又学习了有理数的乘除法运算,现在所学的有理数乘方,只是数范围扩充到有理数的范围。
通过本节课学习,可以让学生发现规律,培养学生的归纳能力,感受数学的简洁之美,感受数学知识在生活中的应用。
教学目标 1.理解有理数乘方的意义,了解幂、底数、指数的相关概念;2.掌握有理数的乘方的符号法则及相关性质,能够正确地进行有理数的乘方运算;3.经历从正方体的面积和体积计算,到乘方的推广过程和乘方的符号法则探究过程,从中感受类比,从特殊到一般,转化以及分类讨论的数学思想方法。
4.让学生通过主动探究,合作交流,归纳概括出有理数乘方的符号法则,感受探索的乐趣,体验成功的喜悦,增进学生学好数学的自信心。
教学重点正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.教学难点准确理解底数、指数和幂三个概念,并能进行幂的运算.学习活动设计教师活动学生活动环节一:新知导入教师活动1:巴依老爷说:你能每天给我10元钱,一共给我20年吗?阿凡提说:尊敬的巴依老爷,如果你能第一天给我1 毛钱,第二天给我2毛钱,第三天给我4毛钱,以此类推,一直给我20天,那么我学生活动1:学生动脑思考,并积极回答.就答应你的要求!巴依老爷眼珠子一转说:那好吧!同学们,你知道阿凡提和巴依老爷谁得到的钱多吗?活动意图说明:以故事为背景,让学生进一步思考,引出这节课要学的内容,调动学生学习的积极性. 环节二:乘方的意义教师活动2:在小学里,我们已经学过:a·a记作a2,读作a的平方(或a的2次方); a·a·a 记作a3,读作a的立方(或a的3次方).你能利用正方形的面积和正方体的体积来解释平方、立方的意义吗?1.如图,边长为a厘米的正方形的面积为a×a平方厘米.2.如图,一正方体的棱长为a厘米, 则它的体积为__a×a×a________立方厘米.读作:a的平方(或a的2次方)读作:a的立方(或a的3次方)一般地,n个相同的乘数a相乘:a·a·…·a⏟n个学生活动2:学生回忆复习正方形的面积和正方体的体积。
2.11有理数的乘方一、课题§2.11有理数的乘方(1)二、教学目标1.理解有理数乘方的概念,掌握有理数乘方的运算;2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3.渗透分类讨论思想.三、教学重点和难点重点:有理数乘方的运算.难点:有理数乘方运算的符号法则.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有认知结构提出问题在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a(n是正整数)呢?在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.(二)讲授新课1.求n个相同因数的积的运算叫做乘方.2.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数.一般地,在a n中,a取任意有理数,n取正整数.应当注意,乘方是一种运算,幂是乘方运算的结果.当a n看作a的n次方的结果时,也可以读作a的n次幂.3.我们知道,乘方和加、减、乘、除一样,也是一种运算,a n就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.例1 计算:教师指出:2就是21,指数1通常不写.让三个学生在黑板上计算.引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?(1)横向观察正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.(2)纵向观察互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.(3)任何一个数的偶次幂是什么数?任何一个数的偶次幂都是非负数.你能把上述的结论用数学符号语言表示吗?当a>0时,a n>0(n是正整数);当a=0时,a n=0(n是正整数).(以上为有理数乘方运算的符号法则)a2n=(-a)2n(n是正整数);a2n-1=-(-a)2n-1(n是正整数);a2n≥0(a是有理数,n是正整数).例2 计算:(1)(-3)2,(-3)3,[-(-3)]5;(2)-32,-33,-(-3)5;让三个学生在黑板上计算.教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n 的底数是-a,表示n个(-a)相乘,-a n是a n的相反数,这是(-a)n与-a n的区别.教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了.课堂练习计算:(2)(-1)2001,3×22,-42×(-4)2,-23÷(-2)3;(3)(-1)n-1.(三)、小结让学生回忆,做出小结:1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.七、练习设计3.当a=-3,b=-5,c=4时,求下列各代数式的值:(1)(a+b)2; (2)a2-b2+c2;(3)(-a+b-c)2; (4)a2+2ab+b2.4.当a是负数时,判断下列各式是否成立.(1)a2=(-a)2; (2)a3=(-a)3;5*.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?6*.若(a+1)2+|b-2|=0,求a2000·b3的值.八、板书设计九、教学后记1.数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力.教学中,既要注重逻辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养.因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标.2.数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近.在引入新课时,要尽可能使学生的学习方式与数学家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,…,a n是学生通过类推得到的.推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果.一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析.在a n中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯.3.把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷.我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学.始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.例如,通过实际计算,让学生自己体会到负数与分数的乘方要加括号.4.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想.符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显.在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实.一、课题§2.11有理数的乘方(2)二、教学目标使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.三、教学重点和难点重点:正确运用科学记数法表示较大的数.难点:正确掌握10的幂指数特征.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)从学生原有认知结构提出问题1.什么叫乘方?说出103,-103,(-10)3的底数、指数、幂.2.计算:(口答)3.把下列各式写成幂的形式:4.计算:101,102,103,104,105,106,1010.(二)导入新课由第4题计算105=100000,106=1000000,1010=10000000000,左边用10的n次幂表示简洁明了,且不易出错,右边有许多零,很容易发生写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿,一百亿等等.但是像太阳的半径大约是696 000千米,光速大约是300 000 000米/秒,中国人口大约 13亿等等,我们如何能简单明了地表示它们呢?这就是本节课我们要学习的内容——科学记数法.(三)讲授新课1.10n的特征观察第4题101=10,102=100,103=1000,104=10000,1010=10000000000.提问: 10n中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?练习(1)把下面各数写成10的幂的形式.1000,100000000,100000000000.练习(2)指出下列各数是几位数.103,105,1012,10100.2.科学记数法(1)任何一个数都可以表示成整数数位是一位数的数乘以10的n次幂的形式.如:100=1×100=1×102,6000=6×1000=6×103,7500=7.5×1000=7.5×103.第一个等号是我们在小学里就学习过的关于小数点移动的知识,我们现在要做的就是把100,1000,变成10的n次幂的形式就行了.(2)科学记数法定义根据上面例子,我们把大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是自然数,这种记数法叫做科学记数法.现在我们只学习绝对值大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.用字母N表示数,则N=a×10n(1≤|a|<10,n是整数),这就是科学记数法.例用科学记数法表示下列各数:(1)1 000 000; (2) 57 000 000; (3) 696 000;(4) 300 000 000; (5)-78 000; (6) 12 000 000 000.解:(1) 1000 000=106;(2) 57 000 000=5.7×10 000 000=5.7×107;(3) 696 000=6.96×100 000=6.9×105;(4) 300 000 000=3×100 000 000=3×108;(5)-78 000=-7.8×10 000=-7.8×104;(6)12 000 000 000=1.2×10 000 000 000=1.2×1010.如果每次都按解的步骤去做又显得有点繁,那么利用n与数位的关系去做,试一试:(1) 1 000 000是7位数,所以 n=6,即106.(2)57 000 000是8位数,n=7,所以57 000 000=5.7×107.(3) 696 000是6位数,n=5,所以 696 000=6.96×105.(4) 300 000 000是9位数,n=8,所以 300 000 000=3×108.后面两题同学们自己试一试看.(四)课堂练习1.用科学记数法记出下列各数;8000000;5600000;740000000.2.下列用科学记数法记出的数,原来各是什么数?1×107;4×103;8.5×106;7.04×105;3. 96×104.(五)小结1.指导学生看书.2.强调什么是科学记数法,以及为什么学习科学记数法.3.突出科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.七、练习设计1.用科学记数法记出下列各数:(1) 7 000 000;(2) 92 000;(3) 63 000 000; (4) 304 000;(5) 8 700 000;(6) 500 900 000; (7)374.2; (8) 7000.5.(2)下列用科学记数法记出的数,原来各是什么数?(1)2×106;(2)9.6×105;(3)7.58×107;(4)4.31×105;(5)6.03×108;(6)5.002×107;(7)5.016×102;(8)7.7105×104.3.用科学记数法记出下列各数:(1)地球离太阳约有一亿五千万千米;(2)地球上煤的储量估计为15万亿吨以上;(3)月球的质量约是7 340 000 000 000 000万吨;(4)银河系中的恒星数约是160 000 000 000个;(5)地球绕太阳公转的轨道半径约是149 000 000千米;(6)1cm3的空气中约有 25 000 000 000 000 000 000个分子.4.一天有8.64×104秒,一年如果按365天计算,一年有多少秒?(用科学记数法表示) 5.地球绕太阳转动(即地球的公转)每小时约通过1.1×105千米,声音在空气中传播,每小时约通过1.2×103千米.地球公转的速度与声音的速度哪个大?八、板书设计九、教学后记在上一节课中,学生已学习了有理数乘方的概念,知道了有理数乘方的意义,会利用有理数乘方法则进行有理数乘方运算.本节课在复习上节课内容的基础上,使学生进一步理解乘方的意义,并能用科学记数法表示大于10的数.本节课的重点和难点都是科学记数法.为此,通过实例,引入了科学记数法,而通过例题的讲授,使学生知道怎样用科学记数法表示绝对值大于10的数.。
1.11 有理数的乘方第1课时 乘方及其运算1.使学生理解有理数乘方的概念,掌握有理数乘方的运算;2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3.渗透分类讨论思想.重点有理数乘方的运算.难点有理数乘方运算的符号法则.一、导入新课1.计算:(1)(-934 )÷3;(2)(-6)÷(-4)÷(-115 ).2.在小学我们已经学习过a·a ,记作a 2,读作a 的平方(或a 的2次方);a·a·a 记作a 3,读作a 的立方(或a 的3次方);那么a·a·a·a 可以记作什么?读作什么?a·a·a·a·a 呢?a ·a ·a ·…·a,\s\do4(n 个)) (n 为正整数)呢?例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.2.在a n 中,a 叫做底数,n 叫做指数,a n 读作a 的n 次方,a n 可看作是a 的n 次方的结果时,也可读作a 的n 次幂.例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂.3.一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写.二、探究新知1.计算:(1)(-2)3;(2)(-2)4;(3)(-2)5.解:(1)原式=(-2)(-2)(-2)=-8;(2)原式=(-2)(-2)(-2)(-2)=16;(3)原式=(-2)(-2)(-2)(-2)(-2)=-32.小结:根据上面的计算,你能总结出有理数乘方运算的符号法则吗?(1)根据有理数乘法运算法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.(2)你能把上述的结论用数学符号语言表示吗?当a>0时,a n >0(n 是正整数);当a<0时,⎩⎪⎨⎪⎧a n >0(n 是偶数),a n <0(n 是奇数); 当a =0时,a n =0(n 是正整数).(以上为有理数乘方运算的符号法则)a 2n =(-a)2n (n 为正整数);a 2n -1=-(-a)2n -1(n 为正整数);a 2n ≥0(a 是有理数,n 是正整数).三、课堂练习1.(-4)5读作什么?其中-4叫做什么数?5叫做什么数?(-4)5是正数还是负数?2.计算:(1)(-1)3; (2)(-1)10; (3)(0.1)3;(4)(32 )4; (5)(-2)3×(-2)2;(6)(-12 )3×(-12 )5; (7)103; (8)105.四、课堂小结1.乘方的有关概念(1)求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.(2)a n 读作a 的n 次方,a n 看作是a 的n 次方的结果时,也可读作a 的n 次幂.(3)一个数可以看作这个数本身的一次方.2.有理数乘方运算的符号法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.要注意括号的作用.五、课后作业教材课后练习第1题,习题2.11第1,2题.有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点,所以我在这一节课的教学中从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学.在每一个知识点的讲授时,结合具体的实际例子来进行讲解,及时进行总结,形成方法.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在教学中要加以引导,逐步渗透这一思想.第2课时科学记数法1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算;2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.重点正确运用科学记数法表示较大的数.难点正确掌握10的幂指数特征.一、导入新课同学们,你们能够迅速地读出和记住下列数字吗?1.光的速度约是300 000 000 m/s,它相当于速度为6 m/s的自行车的速度的多少倍?2.全世界人口数大约是7 400 000 000人;3.第五次人口普查时,中国人口约为1 300 000 000人;4.中国的国土面积约为9 600 000平方千米;5.我国信息工业总产值将达到383 000 000 000元.这样的数,读和写都不方便,接下来,让我们一起来探究一种科学的记数方法吧.二、探究新知1.10n的特征(1)计算102,103,104,…并讨论102表示什么,指数与运算结果中的0的个数有什么关系,与运算结果的位数有什么关系.小结:0的个数和指数相同,整数位数比指数多1.(2)练习:①把下面各数写成10的幂的形式:1000,10 000 000,10 000 000 000.②指出下列各数各是几位数:102,105,1012,1025.2科学记数法定义综上所述,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数法叫做科学记数法.三、课堂练习1.设n是一个正整数,则10n+1是()A.n个10相乘所得的积B.是一个n+1位的整数C.10后面有n+1个0的整数D.是一个n+2位的整数2.用科学记数法表示下列各数:(1)100 000;(2)378 000;(3)-112 000; (4)2945;(5)1346.30.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104; (2)6.070×103;(3)104; (4)-2.24×103.四、课堂小结1.什么是科学记数法?一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n 是正整数,这种记数法叫做科学记数法.2.用科学记数法表示一个数时,10的指数与原数的整数位数有什么关系?10的指数比原数的整数位数少1.五、课后作业教材习题2.12第1,2,3题.在上一节课中,学生已学习了有理数乘方的概念,知道了有理数乘方的意义,会利用有理数乘方法则进行有理数乘方运算.本节课在复习上节课内容的基础上,使学生进一步理解乘方的意义,并能用科学记数法表示大于10的数,本节课的重点和难点都是科学记数法.为此,通过实例,引入了科学记数法,而通过例题的讲授,使学生知道怎样用科学记数法表示绝对值大于10的数,在表示中应重点注意10的指数与原数的整数位数的关系.。
新维度七年级数学上册《有理数的乘方》
乘方【知识导读】
1. 叫乘方,叫做幂,在式子an中 ,a叫做,n叫做
2.式子an表示的意义是
3.从运算上看式子an,可以读作,从结果上看式子an,可以读作;
4.负数的奇次幂是数,负数的偶次幂是数,正数的任何次幂都是数,0的任何正整次幂都是;
知识点一:有理数的乘方
1.(-3)2表示()
A.2个-3相乘的积
B.3个-2相乘的积
C.2乘以-3的积
D.2个-3相加
2.计算:
(1)(-4)3;(2)-43; (3)(-3)4; (4)-34; (5); (6);
知识点二:有理数的混合运算
3.计算:-14-(1-0.5)×-[2-(-3)2].
拓展点一:乘方的综合运用
1.若|a-2|+(b+1)2=0,求a+b的值.
拓展点二:乘方的应用
2.28 cm接近于()
A.珠穆朗玛峰的高度
B.三层楼的高度
C.姚明的身高
D.一张纸的厚度
链接中考
1.(2016·广西百色中考)计算:23=()
A.5
B.6
C.8
D.9
2.(2016·山东滨州中考)-12等于()
A.1
B.-1
C.2
D.-2
3.(2016·浙江舟山中考)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()
A.42
B.49
C.76
D.77
4.(2016·江苏南京期中)把一张厚度为0.1 mm的纸对折8次后厚度接近于()
A.0.8 mm
B.2.6 cm
C.2.6 mm
D.0.18 mm
5.(2016·山东寿光市模拟)下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.计算结果为负数的有()
A.4个
B.3个
C.2个
D.1个
6.(2016·江苏镇江中考)计算:(-2)3=.
7.(2015·湖北罗田县期中)计算:22-5×+|-2|=.
8.(2016·安徽阜阳二模)定义a★b=a2-b,则(0★1)★2 016=.
9.(2015.广东茂名中考)为了求1+3+32+33+...+3100的值,可令M=1+3+32+33+...+3100,则3M=3+32+33+34+ (3101)
因此,3M-M=3101-1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算1+5+52+53+…+52 015的值是.
10.(2015·广东东莞市校级期中)(1)填空:22= ,(-2)2= ;52= ,(-5)2
= .
(2)结合(1)猜想:对于任何有理数a ,a 2 (-a )2(填“>”“<”或“=”).
(3)根据(2)的猜想填空:如果一个数的平方等于16,那么这个数是 .
11.(2016·江苏太仓市期末)计算: (1)-32+(-2)3-1÷; (2)×24+(-1)2 011.
【思考题】2++b a 与4
)12(-ab 互为相反数,求代数式++-+b a ab ab b a 33)(21的值.
选择题答案ACCBCBB。