【化学反应原理】第3节 原电池(3)
- 格式:ppt
- 大小:3.77 MB
- 文档页数:29
电化学—原电池一、原电池的工作原理1、电流是如何产生的?先考虑Zn片。
在如是体系中,Zn有失去电子的趋势,失去电子之后自身变成Zn2+进入到溶液中。
失去的电子可能会经过导线来到Cu片,那么就需要有物质(微粒)在Cu片上得到这些电子,否则Cu片上电子累积而其所带负电荷不被中和,是不可能的。
考量Cu片这边,Cu本身属于金属单质,金属单质不存在负价,所以不可能是Cu片本身得到电子,那么只有与Cu片接触的溶液中寻找可以得到电子的微粒。
由于溶液中存在CuSO4,故Cu2+可以于Cu片表面得到电子,成为Cu单质,在Cu表面析出(因为必须接触到Cu片才能够从Cu片得到电子)。
由此电子在导线中流动,也就产生了电流。
而这个过程中发生的物质变化则是Zn→Zn2+,Cu2+→Cu。
这样的装置能够对外输出电能,被称为原电池。
所以原电池是能够将化学能转化为电能的装置。
2、几个基本定义由于这个装置能够产生电流,向外输出电能,所以可以和物理中的相关定义联系起来。
在物理学中,向外输出电能的装置是电源。
在一个完整的电路中,电流的方向是‹从电源的正极流向负极›,电流的方向被规定为正电荷定向移动的方向,而事实上,在电路中移动的是电子,所以电子的流向就应该是正电荷移动方向的反方向,也就是电流方向的反方向。
电流是正极流出,负极流入,那么电子就是负极流出,正极流入。
所以对于原电池,将流出电子(即失去电子,这个说法将更常用)的一极称为负极,将流入电子(即得到电子)的一极称为正极。
电极名称负极正极电极材料Zn片Cu片电极反应Zn-2e-===Zn2+Cu2++2e-===Cu反应类型氧化反应还原反应电子流向由Zn片沿导线流向Cu片电流方向由Cu片沿导线流向Zn片在氧化还原的原理中,失去电子化合价上升,是被氧化;得到电子化合价下降,是被还原。
结合这个特点,可以丰富对原电池正负极的认识。
负极:失去电子,化合价上升,发生氧化反应正极:得到电子,化合价下降,发生还原反应这是最重要的判断依据。
原电池核心素养通过对原电池和工作原理的深入学习,通过自主探究、自主求解的学习方式,培养学生科学探究和创新意识的化学素养。
学情分析本节内容为高中化学新课程(人教版)选修4的第四章电化学的重要内容之一。
该内容学生在必修2已有一定的了解,本节是该内容的加深,主要是增加了一个盐桥内容。
本节课试图以“教师实验引导,学生自主探究,自主分析设计”的学习方式学习。
本节课内容结构大致为:回顾原电池,完成了复习基本概念,总结单池原电池的设计思路,过渡盐桥原电池的设计思路,还探讨了盐桥的作用。
在课程实施过程中,演示实验,观察现象,提出疑问,自主解答。
在自主提问的过程中推动课的前进,旨在培养学生的动手能力、问题意识,学会实验,学会提问、学会探究、学会设计、学会评价。
教学目标知识与技能:1.掌握原电池的概念和盐桥电池的工作原理;2.体会盐桥电池的优点和应用技能与方法:通过对单池原电池与盐桥原电池的设计对比,学会比较;教学重点电极反应式的书写教学难点电极反应式的书写、原电池正负极判断方法教学方案教师引导实验探究与学生自主提问推进相结合教学用品多媒体设备一、原电池原理1.原电池的概念和实质(1)概念:将化学能转化为电能的装置。
(2)实质:利用能自发进行的氧化还原反应把化学能转化为电能。
理论上,任何一个自发的氧化还原反应均可设计成原电池2.原电池构成条件(1)有能自发进行的氧化还原反应发生(一般是负极活泼性强的金属与电解质溶液的反应);(2)有两个活泼性不同的电极:相对活泼的金属作负极,较不活泼的金属或导电的非金属(如石墨)作正极。
【注意】惰性电极是指石墨、金、铂等(3)有电解质(酸、碱、盐)溶液或熔融电解质;(酒精、蔗糖、汽油、苯等为非电解质,不导电);(4)形成闭合回路。
①两电极同时插入电解质溶液中。
②两电极直接接触或有导线连接形成闭合回路;【练习1】3.原电池工作原理:(1)单液原电池(2)双液原电池①盐桥的组成:盐桥中装有由饱和的KCl、KNO3等电解质溶液和琼胶制成的胶冻②盐桥的作用:a.隔绝正负极反应物,避免直接接触,导致电流不稳定;b.通过离子的定向移动,构成闭合回路;c.平衡电极区的电荷。
高二化学知识点:化学反应原理复习下面是小编给大家整理的一份高二化学知识点:化学反应原理复习资料,希望能够帮助大家学习化学这门功课,考出一个好成绩。
高二化学知识点:化学反应原理复习【知识讲解】第1章、化学反应与能量转化化学反应的实质是反应物化学键的断裂和生成物化学键的形成,化学反应过程中伴随着能量的释放或吸收。
一、化学反应的热效应1、化学反应的反应热(1)反应热的概念:当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为该反应在此温度下的热效应,简称反应热。
用符号Q表示。
(2)反应热与吸热反应、放热反应的关系。
Q>0时,反应为吸热反应;Q<0时,反应为放热反应。
(3)反应热的测定测定反应热的仪器为量热计,可测出反应前后溶液温度的变化,根据体系的热容可计算出反应热,计算公式如下:Q=-C(T2-T1)式中C表示体系的热容,T1、T2分别表示反应前和反应后体系的温度。
实验室经常测定中和反应的反应热。
2、化学反应的焓变(1)反应焓变物质所具有的能量是物质固有的性质,可以用称为“焓”的物理量来描述,符号为H,单位为kJ·mol-1。
反应产物的总焓与反应物的总焓之差称为反应焓变,用ΔH表示。
(2)反应焓变ΔH与反应热Q的关系。
对于等压条件下进行的化学反应,若反应中物质的能量变化全部转化为热能,则该反应的反应热等于反应焓变,其数学表达式为:Qp=ΔH=H(反应产物)-H(反应物)。
(3)反应焓变与吸热反应,放热反应的关系:ΔH>0,反应吸收能量,为吸热反应。
ΔH<0,反应释放能量,为放热反应。
(4)反应焓变与热化学方程式:把一个化学反应中物质的变化和反应焓变同时表示出来的化学方程式称为热化学方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1书写热化学方程式应注意以下几点:①化学式后面要注明物质的聚集状态:固态(s)、液态(l)、气态(g)、溶液(aq)。
原电池原理
首先,原电池是由正极、负极和电解质组成的。
正极和负极分别是两种不同的
金属或化合物,它们之间通过电解质相互连接。
在正极和负极之间发生化学反应时,会产生电子流动,形成电流。
其次,原电池的工作原理是基于电化学反应的。
当原电池连接外部电路时,正
极和负极之间的化学反应就会开始。
在化学反应中,正极会释放出电子,而负极则会吸收这些电子。
这样就形成了电子流动的过程,也就是电流的产生。
此外,原电池的工作过程也与电解质的作用有关。
电解质是一种能够导电的溶
液或固体,它在原电池中起着连接正极和负极的作用。
电解质中的离子在化学反应中扮演着重要的角色,它们能够在正极和负极之间传递电荷,促使化学反应的进行。
总的来说,原电池的工作原理是通过化学反应将化学能转换为电能。
正极和负
极之间的化学反应产生电子流动,形成电流。
电解质则起着连接正极和负极的作用,促使电子的传递。
这样,原电池就能够产生稳定的电流,为各种电器设备提供电能。
总结一下,原电池的原理是基于化学反应产生电能的。
它由正极、负极和电解
质组成,通过化学反应产生电子流动,形成电流。
电解质在其中起着连接和传递电荷的作用。
原电池因其简单、稳定的特性,在各种电器设备中得到了广泛的应用。
希望通过本文的介绍,能够让大家对原电池的原理有一个更加深入的了解。
必修二原电池工作原理
原电池,也称为原电池池电池或干电池,是一种常见的电化学电池,它将化学能转化为电能。
原电池由两个不同的金属电极和一种电解质组成。
在原电池中,负极(阴极)通常由锌(Zn)金属制成,而正
极(阳极)通常由二氧化锰(MnO2)等材料制成。
负极和正
极之间用一层电解质质地保持电中性。
当原电池接通电路后,化学反应开始发生。
在负极处,锌离子(Zn2+)氧化成锌离子,并释放出两个电子,电子则流过外
部电路向正极移动。
在正极处,二氧化锰受到电子的还原,形成锰离子(Mn3+),同时释放出一个氧原子。
这两个半反应共同导致了电荷转移,从而产生电流流动。
负极电子的流动和正极离子的流动构成了电池的电流。
在此过程中,原电池的化学反应会持续进行,直到负极的锌完全被消耗,正极的二氧化锰也几乎被消耗。
需要注意的是,原电池是一次性使用的电池,一旦负极的锌被用尽,电池将无法再产生电流。
当原电池的工作时间过长或电池被过度使用时,二氧化锰也可能过度被还原,导致电池损坏或失效。
总结起来,原电池工作的基本原理是通过负极的氧化反应和正极的还原反应,将化学能转化为电能,并产生电流流动。
原电池的反应原理电池是我们日常生活中常见的一种电力储存器件。
它通过化学反应来产生电流,从而为各种电子设备提供能量。
本文将介绍电池的工作原理,具体讲述其反应过程和原理。
电池的工作原理基于化学反应。
一般来说,电池由两个电极(即正极和负极)和电解质组成。
正极是化学反应中发生氧化的一部分,负极则是还原发生的地方。
两个电极通过电解质进行电子传导,并与外部电路连接,形成闭合回路。
当外部电路连接后,电池开始工作。
电池的正极和负极材料具有特定的化学性质,使得在电池中发生化学反应。
其中,正极一般是金属氧化物或含有活泼的阳离子的化合物,负极则一般是金属或含有活泼的阴离子的化合物。
这些材料被称为电池的活性物质。
在电池中,正极的活性物质被氧化,释放出电子和阳离子。
负极的活性物质则接收这些电子和阳离子,并发生还原反应。
这个过程中,阳离子在电解质中进行离子传导,而电子则通过外部电路流动。
这就形成了电池中的电流。
具体来说,电池中的一个典型反应是正极金属氧化。
以锌锰干电池为例,锌是负极材料,二氧化锰是正极材料,锰酸盐是电解质。
在正极反应中,锌被氧化为锌离子,同时释放出两个电子:Zn -> Zn2+ + 2e-这些电子随后通过外部电路流动,从负极到正极,提供给外部设备使用。
在负极反应中,锰酸盐被还原为锰氧化物,并接收从正极流来的电子和锌离子:MnO2 + Zn2+ + 2e- -> ZnMnO2整个反应表明,锌被氧化,而锰酸盐则被还原。
同时,锌离子在电解质中进行离子传导,维持电池中的电中性。
总体来说,电池的反应原理基于正极和负极材料之间的化学反应。
通过氧化还原反应,电子和离子在电池中进行传递,从而产生电流。
这种化学能转化为电能的原理,使得电池成为我们重要的能量储备装置,广泛应用于电子设备、交通工具等各个领域。
总结起来,电池的反应原理是基于化学反应的。
正极和负极的化学物质在电解质中发生氧化和还原反应,通过电子和离子的传导在电池中产生电流。