人教版19.2.1矩形的性质导学案定稿
- 格式:doc
- 大小:57.50 KB
- 文档页数:2
矩形的性质学习目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.学习重点:矩形的性质.学习难点:矩形的性质的灵活应用.学习过程:一、自主学习:1、阅读课本17-18页,思考如下问题:(1)无论∠α如何变化,四边形ABCD还是平行四边形吗?(2)当∠α为直角时,这个时候平行四边形就变成一个特殊的平行四边形──矩形.所以:_____________________________的平行四边形叫做矩形。
2、判断:(1).矩形是轴对称图形,对角线是它的对称轴.()(2).平行四边形也是轴对称图形其对称轴也是对角线.()3、若矩形两邻边之比为3:4,周长为28cm,则它的面积为______.4、矩形ABCD中,AB长为5,BC为3,点E、F将AC三等分,则△BEF的面积为().A.355B C D.5..232完成上述的题目后,将所遇到的问题在小组内进行讨论交流,提出疑难并尝试解决。
二、课内探究:探究一、矩形是特殊的平行四边形,因而它且有平行四边形的所有性质.矩形有哪些平行四边形不具有的特殊性质?已知:矩形ABCD中,对角线AC、BD交于点O求证:AC=BD小组内选派一名同学进行展示巩固练习一:1、矩形具有而平行四边行不具有的的性质是()(A)对角相等(B)对角线相等(C)对角线互相平分(D)对边平行且相等2、矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和为46cm,对角线AC长为13cm,那么矩形的周长是_____.2、如图:矩形ABCD的两条对角线相交于点O,且∠BOC=2∠AOB,AB=6,则AC =_______.探究二、如图矩形ABCD,对角线相交于O,将目光锁定在Rt△ABC中,你能看到并想到它有什么特殊的性质吗?大胆猜想并尝试证明。
结论:巩固练习二:1、直角三角形斜边上的高与中线分别是5和6,则它的面积是( ) 2、 如图△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,E 为AC 中点,连接DE ,△DEC 的周长是________.三、 拓展提升:1、如图,在矩形ABCD 中,对角线交于点O ,B E ∥AC 交DC的延长线于E 。
班级小组姓名课题: 19.2.1 矩形的定义和性质第1课时【学习目标】:掌握矩形的概念;探索并掌握矩形的有关性质,能证明这些性质定理【学习过程】:一、自主学习学习任务一:1、定义:有一个角是四边形叫做矩形,也说是 .2、矩形的性质:(1)边:矩形的对边且;(2)矩形的角:矩形的的四个角是; 对角、邻角;(3)矩形的对角线:对角线且;(4)对称性:矩形是轴对称图形,它有条对称轴.(5)面积:设矩形ABCD的两邻边长分别为a,b,则S矩形= .(6)矩形具有四边形的一切性质学习任务二:1、求证:矩形的四个角都是直角.(自己画图,写已知,求证,证明)2、求证:矩形的对角线相等. (自己画图,写已知,求证,证明)二、合作探究:1、直角三角形斜边上的中线等于斜边的一半;请你画出图形,说明理由.O D CAB第14题2、如图:矩形ABCD的对角线AC\BD相交于点O,ABD=60度,AB=6,求矩形对角线的长.三、总结反思谈谈你在本节课中的收获与体会。
四、检测反馈1.在矩形ABCD中AC=2AB,则∠AOB的大小是( )A.30 B.45 C.60 D.902.如图,矩形ABCD的两条对角线相交于点O,602AOB AB∠==°,,则矩形的对角线AC的长是()A.2 B.4 C.D.3、矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为平方单位.4.如图2是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm要求:1.导入:2-3分钟2.自主学习(13-15分钟)3.交流展示(22-25分钟)4.巩固测评(5分钟)5.总结2分钟FEDBAC图2ODCAB第14题ODCAB第14题。
初中数学学科导学案案例(二) 班级小组姓名矩形的性质定理1:_____________________________________⑵已知:如图,矩形ABCD中,AC、BD交于点O.求证:AC=BD矩形的性质定理2:_____________________________________ 通过观察猜想验证,已经掌握了矩形的性质。
二.微视频学习1.洋葱视频分享--认识矩形(4分52秒)2.洋葱视频分享—发现矩形的性质(4分24秒)3.洋葱视频分享—证明矩形的性质(3分54秒)【达标检测】1.判断(1)平行四边形就是矩形。
( )(2)矩形是平行四边形。
( )(3)矩形是轴对称图形不是中心对称图形( )(4)有一个内角是90°的四边形是矩形( )(5)矩形具有而平行四边形不具有的性质()(A)内角和是360°(B)对角相等(C)对边平行且相等(D)对角线相等2.矩形ABCD的周长是56cm,对角线AC与BD相交于点O,△OAB与△ OBC的周长差是4cm,则矩形ABCD的对角线长是 .3.如图,在矩形ABCD中,BE⊥AC于E,若AB=3, BC=4,试求出BE的长.4.如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,(1)判断△AOB的形状。
(2) 若AB=4cm,求矩形对角线长。
(3)若AE是∠BAD的角平分线, 求∠AEO的度数.请同学们继续思考:1.△AOD是什么三角形?在矩形中还有等腰三角形吗?有多少个?有几对全等等腰的三角形呢?矩形的四个角为直角,有几个直角三角形呢?因此,我们在解决矩形的边角对角线问题时,通常把它转化为和。
这就是我们数学中经常用到的的数学思想。
2、矩形的两条对角线将矩形分成四个等腰三角形,在第一题中,△OAB是什么三角形?大家想一想,矩形中增加什么条件后,会出现等边三角形呢?【反思总结】今天,我们与老朋友-矩形重逢。
又得知了他的一些信息: 矩形是特殊的,所以,它具有。
学习目标:1. 理解矩形的概念,知道矩形与平行四边形的区别与联系.2. 会证明矩形的性质,会用矩形的性质解决简单的问题. 学习重点:矩形的定义、性质及其应用.〉宙主研〈一、 课前检测二、 温故知新1. 平行四边形是怎样定义的?它有哪些性质?请分别用符号语言表示出来.2.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°N 这是我们学过的哪个图形?三、预习导航(预习教材第52页,标出你认为重要的关键词)1. 矩形的定义:有一个角是直角的平行四边形叫做 _______ ,也就是长方形.2. 矩形是特殊的平行四边形,你能根据平行四边形的性质,说出矩形的性质吗?四、自学自测1. 矩形是常见的图形,你能举出一些生活中的实例吗?2. _________________________________________ 矩形的定义中有两个条件:一是 ___________________________________________ ,二是 ________________ . 3. 已知矩形的一条对角线与一边的夹角为30° ,则矩形两条对角线相交所得的 锐角为 ________ ;若该矩形的对角线长为4cm,则矩形的两邻边长分别 为 ______ 、 _______ • 五、我的疑惑(反思)师生备注18. 2. 1矩形 第1课时矩形的性质1〉居究点一、要点探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一 个角为直角,它是否具有一般平行四边形所不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角 度数和对角线的长度,并记录测量结果.ACBDZBADZADCZABCZBCD橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?师生备注B:.ZC = ________ ° .A ZB=ZC=ZD=ZA = ____________ ° .②如图,四边形ABCD 是矩形,ZABC=90° ,对角线AC 与DB 相较于点0. 求证:AC=DB.证明:•.•四边形ABCD 是矩形,AAB _____ DC, ZABC=ZDCB= _________在AABC 和ADCB 中,VAB=DC, ZABC=ZDCB, BC= CB, AABC _____ ADCB. /. AC ___________ DB.猜想1矩形的四个角都是 __________ . 猜想2矩形的对角线— 证一证①如图,四边形ABCD 是矩形,ZB=90° . 求证:ZB=ZC=ZD=ZA=90° .证明:•••四边形ABCD 是矩形,A ZB _______ Z D, ZC ________ Z A, AB ________ DC. /. ZB+ZC= _________ ° .A又 V ZB = 90° ,思考请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条? 要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有: 1. 矩形的四个角都是 _____ •矩形的对角线 _________ • 2. 矩形是 ________ 图形,它有 __ 条对称轴. A 几何语言描述: 在矩形ABCD 中,对角线AC 与DB 相交于点0.A ZABC=ZBCD=ZCDA=ZDAB =90° , AC=DB.B二、精讲点拨例1如图,在矩形ABCD 中,E 是BC 上一点,AE=AD, DF 丄AE ,垂足为F.求证:DF=DC.例2如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ,处,BC'交AD 于点E, AD=8, AB=4,求ABED 的面积.方法总结:三、变式训练1.如图,在矩形ABCD 中,对角线AC, BD 交于点0,下列说法错误的是(A. AB 〃DCC. AC±BD2.如图,在矩形ABCD 中,AE 丄BD 于E, ZDAE : 度数.四、课堂小结内容 符号语言B. AC=BD D. 0A=0BZBAE=3: 1,求ZBAE 和 ZEAO 的变式2题图矩形的概念 有一个角是直角的平行 四边形叫做矩形矩形的性质 矩形的四个角都是直角. 矩形的对角线相等./ 星级达标★ 1.已知矩形的一条对角线长为10cm,两条对角线的一个交角为120° ,则矩形的短 边长为 ________ cm.★2.矩形的对角线把矩形分成的三角形中全等三角形一共有( )•C. 6对D. 8对 B.矩形的对角线相等 D.有一个角是直角的四边形是矩形★ ★4.如图,在矩形ABCD 中,连接对角线AC, BD.将AABC 沿BC 方向平移,使点B移到点C,得到ADCE. (1)求证:AACD 竺AEDC.(2)试确定△ BDE 的形状,并说明理由.★★5.已知:如图,0是矩形ABCD 对角线的交点,AE 平分ZBAD, ZA0D=120° ,求 ZAE0的度数.★★★6.如图,在矩形ABCD 中,AB=3, AD=4, P 是AD 上不与A, D 重合的一个动点, 过点P 分别作AC 和BD 的垂线,垂足分别为E, F.求PE+PF 的值.我的反思(收获,不足) 分层作业必做(教材智慧学习配套)选做 参考答案精讲点拨例1试题分析:根据矩形的性质AD 〃BC,AE=AD,可以得到ZDEC=ZADE=ZAED,由DF 丄AE 于F,A. 2对B. 4对★3.下列说法错误的是().A.矩形的对角线互相平分 C.矩形的四个角都相等【详解】证明:连接DE.VAD=AE, .*.ZAED = ZADE.在矩形ABCD 中,AD〃BC, ZC=90° .ZADE=ZDEC,ZDEC = ZAED.又TDF丄AE,.•.ZDFE=ZC=90° .VDE=DE,/. ADFE^ADCE (AAS)..・.DF=DC.例2试题分析:首先根据矩形的性质可得出AD〃BC,即Z2=Z3,然后根据折叠知Z1=Z2, C,D=CD、BC' =BC,可得到Z1=Z3,进而得出BE=DE,设BE=DE=x,则EC' =8-x,利用勾股定理求出x的值,代入面积公式即可求出ABED的面积.详解:•••四边形ABCD是矩形,.・.AD〃BC,即Z2=Z3,由折叠知,Z1=Z2, C‘ D=CD=4、BC, =BC=8,3,即DE=BE,BE=DE=x,则EC' =8n,DEC'中,DC' '+EC' 2=DE242+(8^C)2=X2解得:x=5,ADE的长为5.ABED 的面积=丄DEX AB =丄X5X4=10.2 2变式训练1•试题分析:根据矩形的定义和性质分析判断即可.详解:矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.所以选项A, B, D正确,C错误.故选C..-.Z1=Z 设在RtA2•试题分析:根据矩形性质得出心血,。
矩形的性质教学设计教材:人教版八年级数学(下)教师:厦门市杏南中学中学缪静二零一二年二月[课题]19.2.1矩形的性质[教材] 义务教育课程标准人教版八年级下册第19章第2节[授课教师]厦门市杏南中学缪静[教材概述]本节课是人教版八年级下册第19章《四边形》第2节《特殊四边形》的第1课时。
本节内容分两课时,第1课时主要是矩形的定义和性质的探究和应用,第2课时主要是矩形的判定方法的探究。
矩形是特殊的平行四边形,而后继要学习的正方形又是特殊的矩形,因此它既是前面所学知识的应用,也是后继正方形知识的基础,具有承上启下的作用。
[教学目标]知识与技能1.掌握矩形的定义及性质2.能应用逻辑推理对矩形的性质进行推理证明,并应用.过程与方法 1.利用课件演示引导观察猜想矩形的定义,并证明,使学生经历知识的形成过程.2.通过探索和交流使学生逐步得出矩形的性质,使学生亲身经历知识发生发展过程,并会用所学的结论解决相关问题。
3.通过探究过程中的猜想、分析、类比、观察、交流、展示等手段,让学生充分体会应用矩形性质的过程,培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。
情感态度价值观使学生经历探究矩形性质的探究和应用过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
[学习者特征分析]通过平时对学生的观察、了解,我认为学生的学习知识的准备情况如下:1.学生已在小学或前期的学习中认识了矩形,已知道矩形的四个角为直角,对边相等的特征,但学生的认识还是停留在合情推理的前提下,进一步进入逻辑推理还需要在本节课进行引导.2.学习矩形是学生在熟练掌握平行四边形基础上,进一步学习特殊平行四边形的需要,要求学生课前复习平行四边形性质,熟读教材,记录疑难问题.3.本节课小组合作是学习的主要方式,所以学生必须事先分组,并布置制作矩形图片的任务.[教学策略的选择与设计](见教学过程设计意图说明)教学重点:矩形的性质教学难点:矩形性质的逻辑推理以及利用矩形的性质进行证明和计算[教学资源和工具]多媒体课件,自制教具.学生的学案,学生的小组互助习惯。
导学案》矩形的性质《课题: 导学案设计: 备课组长:______ 班级:______ 姓名:______ 时间: ______温馨寄语:书山有路勤为径,学海无涯苦作舟学习目标1.通过实物模型的动态演示,观察从一般地平行四边形到矩形的变化过程,理解矩形的定义,明确矩形与平行四边形的区别与联系。
2.通过猜想、验证、推理、交流等数学活动,经历探索矩形性质的过程,理解并掌握矩形的性质,能够运用矩形的性质进行有关的证明和计算。
3.通过探索,理解“直角三角形斜边上的中线等于斜边的一半”这一重要结论。
学习重点:探索和证明矩形的性质。
学习难点:能从矩形出发研究直角三角形中的有关问题。
学习过程:一.自主学习【自学指导】自学课本P52—P53内容并思考以下问题:1.矩形的定义是什么?2.矩形是轴对称图形吗?如果是,它有几条对称轴?3.矩形是特殊的平行四边形,它具有平行四边形的 一切性质。
它还有什么特殊的性质吗?二.合作交流1.探究一:矩形的四个角都是直角。
已知:如图,四边形ABCD 是矩形,求证:∠A=∠B=∠C=∠D=90°A BCD2.探究二:矩形的对角线相等。
已知:如图,四边形ABCD是矩形,求证:AC=BD3.思考:如图:矩形ABCD的对角线AC,BD相交于点O.我们观察Rt△ABC,在Rt△ABC中,BO是斜边AC上的中线,BO与AC有什么关系?三.开心大闯关第一关试试就能行1.矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对边相等C.对角相等 D.对角线互相平分AB CD2.在Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线(1) 若BD=3㎝则AC=㎝(2) 若∠C=30°,AB=5㎝,则AC=㎝, BD=㎝.3.已知:四边形ABCD是矩形,若已知∠DOC=120°,AC=8㎝,则AD= ____cm, AB= ____cm第二关比比谁会赢4.已知矩形的一条对角线与一边的夹角是40°,则两条对角线所夹锐角的度数为( )A.50° B.60° C.70° D.80°5.如图:在矩形ABCD中,AD=6,CD=8,则BD=_____第三关拼拼就能赢6.如图,在矩形ABCD中,AE∥BD,且交CB的延长线于点E,求证:∠EAB=∠CAB四.达标测试1.下列性质中,矩形不一定具有的是 ( )A.对角线相等B.四个角相等C.是轴对称图形D.对角线互相垂直2.两条直角边的长分别为12和5,则斜边上的中线()A. 26B. 13C. 8.5D. 6.53.如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,ED=5,EC=3,则矩形的周长为_______五.自悟自得通过本节课的学习,你有什么收获呢?。
19.2.1 矩形(一)用边启发、边分析、边推理,层层设疑,讲练结合的方法。
通过演示平行四边形模型,激发学生的学习兴趣。
教学时力求做到“三让”,即能让学生想的尽量让学生想,能让学生做的尽量让学生做,能让学生说的尽量说,使教师为主导,学生为主体,得到充分体现。
学生通过“想、做、说”的一系列活动,在掌握知识的同时,使其动脑、动手、动口,积极思维,进行“探究式学习”,使能力得到锻炼。
教学资源三角板,平行四边形模型,多媒体教学设备。
教学评价学生互评与教师点评相结合,教学目标评价与过程评价相结合教学流程活动流程活动内容及目的活动一:创设情境,导入新课由平行四边形到矩形活动二:诱导尝试,探究新知矩形的性质活动三:变式训练,巩固新知矩形的性质的运用活动四:全课小结,内化新知课堂小结活动五:推荐作业,延展新知巩固提高教学程序问题与情境师生互动媒体使用与教学评价创设情境,导入新课复习:平行四边形有哪些性质?导入:1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:一个活动的平行四边形框架,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出矩形定义.【教师活动】1.师生交流,教师板书课题2.矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象。
3.操作课件出示问题情境4.演示矩形是特殊的平行四边形,引导学生总结矩形定义【学生活动】1.倾听教师讲解,思考教师提出的问题2.观察教师演示3.总结矩形定义:有一个角是直角的平行四边形叫做矩形(通【设计意图】激发学生的学习兴趣,其思维活跃,在教师的启发下,学生独立总结、归纳出矩形的定义。
利用的对比的方法使学生理解矩形与平行四边形的关系,突破难点。
18.2 特殊的平行四边形18.2.1矩形第1课时矩形的性质一、新课导入1.导入课题演示平行四边形方框,使方框相邻两边成直角时,让学生尝试说出此时四边形的名称,并板书课题.2.学习目标(1)理解矩形的意义,知道矩形与平行四边形的区别与联系.(2)掌握矩形的性质及其推论,会进行有关的计算与证明.3.学习重、难点重点:矩形的性质及其推论.难点:矩形性质的运用.二、分层学习1.自学指导(1)自学内容:P52内容.(2)自学时间:8分钟.(3)自学方法:观看平行四边形方框改变成有一个角是直角时,边的关系是否发生改变.(4)自学参考提纲:①矩形是平行四边形吗?它具有平行四边形的性质吗?②如图,四边形ABCD是矩形,那么:AD∥BC且AD=BC,AB∥CD且AB=CD,∠D=∠B=90°,∵∠A+∠B=180°,∴∠A=∠C=∠D,OA=OC,OB=OD.③矩形还具有哪些一般平行四边形不一定具有的性质呢?结合上图进行论证归纳出来.对于四个角来说有四个角都是直角.对于对角线来说有对角线相等.2.自学:结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:了解学生完成参考提纲时存在的困难问题.②差异指导:引导学生通过平行四边形性质及三角形全等知识探究矩形的特殊性质.(2)生助生:学生之间相互交流和帮助.4.强化(1)矩形具有一般平行四边形的性质.(2)矩形具有的特殊性质.1.自学指导(1)自学内容:P53练习以上的内容.(2)自学时间:6分钟.(3)自学方法:认真阅读“思考”文字内容,对照图形思考BO与AC之间存在什么关系.(4)自学参考提纲:①如教材中图18.2-3,因为矩形ABCD是平行四边形,所以AO=OC,即O是AC的中点,BO是△ABC的边AC上的中线.②因为∠ABC=90°,BO是AC的中线,BO=12BD,AC=BD,所以BO=12AC;也就是说直角三角形中,斜边上的中线等于斜边的一半.③归纳:直角三角形斜边上的中线等于斜边的一半.④例1中OA=OB运用了对角线相等和对角线互相平分性质.2.自学:学生结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:关注学生找BO与AC关系的思考过程.②差异指导:指导学生将结论用文字表达出来.(2)生助生:学生相互交流帮助.4.强化:直角三角形的性质:(1)两锐角互余.(2)两直角边的平方和等于斜边的平方.(3)在直角三角形中,30°角所对的直角边等于斜边的一半.(4)直角三角形斜边上的中线等于斜边的一半.三、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑之处.2.教师对学生的评价:(1)表现性评价:点评学生在课堂学习中的态度、方法、收获及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).在学习本节课之前,学生对矩形的基本知识有一定的了解,而且有前一节探究平行四边形有关知识作为基础,学生已具有一定的独立思考和探究的能力,所以本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,促进学生能力的提高.(时间:12分钟满分:100分)一、基础巩固(共60分)1.(15分)矩形具有而一般平行四边形不一定具有的性质是(C)A.对边相等B.对角相等C.对角互补D.对角线互相平分2.(15分)直角三角形中,两直角边长分别为12和5,则斜边的中线长是(D)A.26B.13C.8.5D.6.53.(15分)矩形ABCD对角线AC,BD相交于点O,AB=5cm,BC=12cm,则△ABO的周长等于18cm .4.(15分)如图,在Rt△ABC中,∠A=30°,∠ACB=90°.点D是AB边的中点.试判断△BCD的形状,并说明理由.解:△BCD为等边三角形.∵∠ACB=90°,点D是AB的中点,∴CD=12AB=BD.在Rt△ABC中,∠A=30°,∴∠B=90°-∠A=60°.在△CBD中,CD=BD,∠B=60°,∴△BCD为等边三角形.二、综合应用(20分)5.矩形的两条对角线的夹角为60°,较短的边长为4.5cm,求对角线长.解:对角线长=2×4.5=9(cm).三、拓展延伸(20分)6.如图,在矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F,求证:BE=CF.证明:∵AC、BD为矩形ABCD的对角线,∴OB=OC.又∵∠BEO=∠CFO=90°,∠EOB=∠FOC.∴Rt△EBO≌Rt△FCO, ∴BE=CF.。
八年级数学下册《19.2.1 矩形》导学案人教新课标版19、2、1矩形的判定导学案学习目标:1、理解并掌握矩形的判定方法、2、能熟练应用矩形的性质、判定等知识进行有关证明和计算、学习过程:一、温故知新:想一想:矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较、平行四边形矩形边角对角线对称性二、学习新知:探究一:下面给大家介绍一下工人制作窗框的过程、1、先截出两对符合规格的铝合金窗料如图,使AB=CD,EF=GH2、摆成四边形(如第2个图),这时窗框的形状是平行四边形,依据的数学道理是____________________________________是平行四边形、3、将直角尺紧靠窗框的一个角(如第3个图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是矩形,依据的数学道理是________________________________ 是矩形、探究二:1、除了上面制作矩形的方法外,还有其他的方法吗?请你画一个矩形;2、交流画矩形的方法,得到矩形的判定方法;3、证明矩形的判定方法:已知:如图,求证:证明:4、归纳:矩形判定方法:_____________________________________________________________ 数学符号语言:议一议:下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;() (5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形、 ( )例题:例1、:已知□ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积、例2已知:如图,□ABCD的四个内角的平分线分别相交于点E、F、G、H、求证:四边形EFGH是矩形、练习:1、(xx江苏淮安)在四边形ABCD中,AB=DC,AD=BC、请再添加一个条件,使四边形ABCD是矩形、你添加的条件是、(写出一种即可)2、(xx四川绵阳)下列关于矩形的说法中正确的是()A、对角线相等的四边形是矩形B、对角线互相平分的四边形是矩形C、矩形的对角线互相垂直且平分D、矩形的对角线相等且互相平分3、已知:如图,在△ABC中,∠C=90,CD为中线,延长CD 到点E,使得 DE=CD、连结AE,BE,则四边形ACBE为矩形、4、、已知,如图、矩形ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点,求证:四边形EFGH是矩形、5、在平行四边形ABCD中,对角线AC BD相交于O,EF过O,且AF⊥BC, 求证:四边形AFCE是矩形6、已知MN∥PQ,同旁内角的平分线AB、BC和AD、CD分别相交于点B、D、求证:四边形ABCD是矩形7、(xx山东滨州)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC、设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF。
八年级数学下册 19.2.1 矩形的性质导学案新人教版一、课题19、2、1 矩形的性质编写备课组二、本课学习目标与任务:1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系,会进行简单的推理;2、会初步运用矩形的概念和性质来解决有关问题;3、能推出直角三角形斜边上的中线等于斜边的一半的性质、三、知识链接:1、____ ____________的四边形叫平行四边形2、平行四边形的两组对边分别_______且________,平行四边形的对角_______,邻角________;平行四边形的对角线互相____________、3、拿一个活动的平行四边形教具,演示拉动的过程,观察思考、问题1:在这个变化过程中什么不变、什么变?问题2:在这个变化过程中的所有四边形,还是不是平行四边形?四、自学任务(分层)与方法指导:1、在上面变化过程中,使其一个内角恰好为直角,得到一种特殊的平行四边形是什么图形?矩形定义:有一个角是_________的平行四边形叫做矩形、2、矩形的性质(1)矩形和平行四边形的关系是什么?矩形具有平行四边形的性质吗?(2)矩形的特殊性质【探究1】在一个平行四边形活动框架上,用两根橡皮筋做出两条对角线,拉动一对不相邻的顶点,改变平行四边形的形状、① 随着∠α的变化,两条对角线的长度分别是怎样变化的?② 当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?分析:在这个活动过程中,随着∠α的变化,两条对角线的长度_______,长的对角线________,短的对角线_______、但到∠α是直角时,两条对角线变成__________,再变化角时,两条对角线的长度________、当∠α是锐角或钝角时,两条对角线长度__________(填相等或不相等)、当∠α是直角时,平行四边形变为矩形,这时两条对角线的长度_______、【探究2】看门框也是一个矩形形状,它除了“有一个角是直角”外,还可能具有哪些一般地平行四边形所没有的特殊性质呢?内角:矩形的四个角都是________、(因为平行四边形的对角________,邻角_______,而矩形有一个角是直角,所以矩形的四个角都是________)矩形性质1 矩形的四个角都是________、矩形性质2 矩形的对角线、证明:已知平行四边形ABCD,∠A =90能证明∠B=∠C=∠D=90吗?AC=BD吗?3、矩形的性质总结:边方面:矩形的对边______且_______角方面:矩形的四个角都是_______对角线方面;矩形的对角线________且互相________4、直角三角形的性质:如图,在矩形ABCD中,AC、BD相交于点O, AO与CO ,OB与DO,AC与BD在大小上有什么关系吗?因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于____________________五、小组合作探究问题与拓展:1、已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB =60,AB=4cm,求矩形对角线的长、2、已知:如图,矩形ABCD 中,E是BC上一点,DF⊥AE于F,若AE=BC、求证:CE=EF、3、如图,四边形ABCD中,∠ADC=∠ABC=90,M、N为AC、BD的中心,求证:MN⊥BD六、自学与合作学习中产生的问题及记录当堂检测题1、填空:(1)矩形的定义中有两个条件:一是,二是、(2)已知矩形的一条对角线与一边的夹角为30,则矩形两条对角线相交所得的四个角的度数分别为、、、、2、下列说法错误的是()、A、矩形的对角线互相平分;B、矩形的对角线相等C、有一个角是直角的四边形是矩形;D、有一个角是直角的平行四边形叫做矩形3、矩形具有而平行四边形不一定具有的性质是____________(填序号)① 对边平行且相等② 对角线互相平分③ 对角相等④ 对角线相等⑤4个角都是90 ⑥ 轴对称图形4、矩形的对角线把矩形分成的三角形中全等三角形一共有()、A、2对B、4对C、6对D、8对5、已知矩形的一条对角线长为10cm,两条对角线的一个交角为120,则矩形的边长分别为 cm, cm, cm, cm、6、矩形的两条对角线的夹角为60,对角线长为15cm,较短边的长为()、A、12cmB、10cmC、7、5cmD、5cm。
D
D
矩形的性质学案
学习目标
1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;
2、会初步运用矩形的概念和性质来解决有关问题;
3、通过探究平行四边形与矩形的区别与联系,体会特殊与一般的关系
学习重点:矩形的性质
学习难点:矩形性质的灵活运用
教学过程:
一、复习旧知
1、多媒体演示;平行四边形活动框架在变化过程中,哪些量发生了变化?哪
些量没有变化?从中得到哪些结论?你能试着说明结论是否成立?
矩形的定义:有______ 的平行四边形,叫做矩形。
由此可见,矩形是
特殊的 ______ ,它具有平行四边形的所有性质。
2、平行四边形变成矩形时,图形的内角有何特征?平行四边形变成矩形时,
两条对角线的长度有什么关系?作为特殊的平行四边形,矩形具有平行四边形的
所有性质外,猜一猜还有哪些特殊性质呢?
3、证明矩形的两条性质定理及推论
①证明性质1:矩形的四个角都是直角。
口述证明。
已知:四边形ABCD 是矩形。
求证:∠A=∠B=∠C=∠D=90°
②证明性质2 :矩形的对角线相等。
已知:如图,矩形ABCD 中,AC,BD 交于O,求证:AC=BD 证明:
③通过以上对矩形性质的探究,进一步发现图中有___个直角三角形,有___个等
腰三角形,AO=___=___=___=___ AC=___BD 。
在直角三角形ABC ,AO 是BD 边上
的 。
你能得出什么结论? 是不是所有的三角形都有这样的性质?
推论:直角三角形斜边上的___线等于
4、看演示得出矩形既是 ,也是 。
三、例题解析
例1 如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,DB=8㎝,
求:AB,BC 的长。
四、学以致用
1、矩形具有而平行四边行不具有的的性质是()
(A)对角相等(B)对角线相等(C)对角线互相平分(D)对边平行且相等2、矩形的一条对角线与一边的夹角为40°,则两条对角线相交所成的锐角是()(A)20°(B)40°(C)60°(D)80°
3、直角三角形中两条直角边的长分别为12和5,则斜边上的中线()
(A)26 (B)13 (C)8.5 (D)6.5
4、在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,•边BC=•8cm,
•则△ABO的周长为________.
5、如图,E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF.求证:BE=CF
1、若直角三角形斜边上的中线等于最短的直角边长,那么它的最小内角为()
2 、矩形的一边长为15cm,对角线长17cm,则另一边长为。
第3题第5题
3、如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为.
4、如图所示,矩形ABCD中,AB=8,BC=6,E、F是AC的三等分点,则△BEF的面积为( )A.8 B.6 C.4 D.5
5.已知:如图,在四边形ABCD中,∠ABC=∠ADC=900,M是AC的中点,N是
BD的中点
(1)试判断MD与MB的大小关系。
(2)试判断MN与BD的位置关系。