水轮机模型转轮轴向水推力试验方法研究
- 格式:pdf
- 大小:74.98 KB
- 文档页数:3
灯泡贯流式机组新技术研发及应用工作总结新沟水电站水轮机轴承降温新技术研究项目,由科技局立项,新沟水电站负责完成。
项目历时1年。
在民乐县科技局、水务局的大力支持下,经电站全体职工和技术人员共同努力,团结奋斗,圆满完成了任务,取得了显著的经济、社会效益。
现将具体情况总结如下:一、项目背景及任务来源新沟水电站始建于2000年,属渠道引水电站,总装机容量2 x 400KW,设计年发电量280万Kw.h,水轮机型号为 GDTF07-WPZ-80,转轮直径为800mm,设计水头11.4m,额定功率400KW。
单机最大出水量为4.17 m3/s,最大总出水量为8.34m3/s。
该电站经过近10年的运行,存在的问题越来越多。
1、电站在多年的运行中,存在较多的问题,该机组为灯泡贯流式机组,发电机推力轴承冷却方式为自然通风冷却方式,因机组过风间隙小,不能直接对轴承冷却,冷却效果不明显,通过温度传感器测得温度,温度高达100℃-123℃,使机组不能正常运行,只能用降负荷方式运行,负荷降至65%才能勉强维持运行。
2、发电机轴承在高温度的运行中,造成诸多的后果,导致润滑油老化、粘度变小、油脂外溢,使轴承润滑不好造成烧坏轴承等后果。
3、因发电机是灯泡贯流式机组,内部结构复杂,又是水下运行,维护、保养比较困难;拆卸、安装工艺复杂且工期长;由于该型号在国内的生产技术不够成熟,设计上存在较多问题,特别是机组轴承温度过高,降温方式不合理;使机组不能正常运行,严重影响机组的安全运行,因此,电站组织工程技术人员对机组运行状况进行技术总结和技术探讨,反复研究实验,进行改造,最终使机组推力轴承温度过高的问题在技术改造中得到了解决。
以上问题,严重影响了电站效益的发挥和机组安全运行,为了从根本上解决问题,提高电站的经济效益,走技术改造、技术创新之路是首选之路,技术改造势在必行。
因此决定对2台水轮机轴承冷却系统部分进行改造。
2009年初,新沟水电站积极筹划机组改造的前期工作,并会同民乐县水务局经多方考察,进行方案论证对比,最后权衡利弊,制定了灯泡贯流式机组轴承水冷却新技术研究方案。
1 轴向水推力的计算表1如图1所示,混流可逆式水轮机转轮轴向水推力F w(方向向下为正)的构成可描述[1]为:F w=F1-F2-F3-F4F1=F11+F12+F13+F14F2=F21+F22+F23F3=F31+F32F4=F41+F42式中:F1—转轮上冠上表面所受轴向水推力,向下为正;F2—转轮下环外表面所受轴向水推力,向上为正;F3—转轮进、出口所受轴向水推力,向上为正;F4—转轮内腔流道表面所受轴向水推力及转轮在水中浮力,向上为正;F11—上止漏环外侧高压腔上冠上表面所受轴向水推力;F12—上止漏环齿槽处上冠上表面所受轴向水推力;F13—上止漏环内侧低压腔上冠上表面所受轴向水推力;F14—主轴密封腔内法兰盘上表面所受轴向水推力;F21—下止漏环外侧高压腔下环外表面所受轴向水推力;F22—下止漏环齿槽处下环外表面所受轴向水推力;F23—下止漏环内侧低压腔下环外表面所受轴向水推力;F31—转轮进口断面所受轴向水推力;F32—转轮出口断面所受轴向水推力;F41—转轮内腔流道(包括叶片)表面所受轴向水推力;F42—转轮在水中浮力。
轴向水推力的计算采用两种方法。
F3和F4采用ANSYS CFX软件数值模拟计算得到,而转轮上冠和下环水体计算域由于尺寸太小,采用数值模拟方法无法准确计算出结果,所以F1和F2采用解析计算方法得到。
1.1 转轮轴向水推力的解析计算(1) F11,F13,F14和F21,F23的求解转轮上冠上表面或下环外表面所受轴向水推力的公式[1]如下:F ij=π{[p0−ρ2(πK0nr030)2](r22−r12)+ρ(πK0n30)2r24−r144}式中:Fij—所求轴向水推力(即F11,F13,F14和F21,F23)(N);r0,p0—已知点处的半径(m)和静压力(Pa);ρ—水的密度(kg/m3);n—转轮转速(RPM);r1,r 2—对应腔体内、边界处的半径(m);K—圆周速度系数,一般取0.5。
第四节水轮机的模型试验一、水轮机的模型试验的意义前面讨论了水轮机相似的条件,这就从理论上解决了用较小尺寸的模型水轮机,在较低水头下工作去模拟大尺寸和高水头的原型水轮机。
按相似理论,模型水轮机的工作完全能反映任何尺寸的原型水轮机。
模型水轮机的运转规模比真机运转规模小的多,费用小,试验方便,可以根据需要随意变动工况。
能在较短的时间内测出模型水轮机的全面特性。
将模型试验所得到的工况参数组成单位转速和单位流量后,并分别以它们作为纵坐标及横坐标,按效率相等工况点连线所得到的曲线图称为综合特性曲线。
此综合特性曲线不仅表示了模型水轮机的工作性能,同样地反映了与该模型水轮机几何相似的所有不同尺寸,工作在不同水头下的同类型真实水轮机的工作特性。
水轮机制造厂可从通过模型试验来检验原型水力设计计算的结果,优选出性能良好的水轮机,为制造原型水轮机提供依据,向用户提供水轮机的保证参数。
水电设计部门可根据模型试验资料,针对所设计的电厂的原始参数,合理地进行选型设计,并运用相似定律利用模型试验所得出的综合特性曲线,绘出水电站的运转特性曲线。
为运行部门提供发电依据,水电厂运行部门可根据模型水轮机试验资料,分析水轮机设备的运行特性,合理地拟定水电厂机组的运行方式,提高水电厂运行的经济性和可靠性。
当运行中水轮机发生事故时,也可以根据模型的特性分析可能产生事故的原因。
二、水轮机模型试验的方法水轮机的模型试验主要有能量试验,气蚀试验,飞逸特性试验和轴向水推力特性试验等几种。
由于篇幅所限,本教材主要介绍反击式水轮机的能量试验。
反击式水轮机的汽蚀试验可参阅有关参考文献。
能量试验台分为开敞式试验台和封闭式试验台,封闭式试验台无需设置测流槽,故平面尺寸要比开敞式试验小,而且水头调节更加方便,但封闭式试验台投资较高。
1. 开敞式能量试验台(1)开敞式能量试验台水轮机效率是水轮机能量转换性能的主要综合指标,因此,模型水轮机的能量试验主要是确立模型水轮机在各种工况下的运行效率。
摘要摘要混流式水轮机的力特性指标是水轮机真机结构设计的重要设计输入数据,其准确性和合理性将直接影响到水轮机的运行安全和制造成本。
水轮机活动导叶的形状和安装位置直接影响到水流作用在其表面上的压力和力矩数值。
为了准确计算导叶强度、合理选择水轮机导水机构接力器及与其相关的系列传动机构,需要确切了解导叶在各个开度值下的受力情况,目前确定水轮机水力部件力特性通常采用水轮机模型试验或数值仿真的方法。
本文以吉林丰满水电项目为应用背景,以混流式水轮机的导叶水力矩为研究对象,通过数值模拟和试验相结合的办法进行了不同导叶开口下水力矩分布规律、导叶分布圆导直径对导叶水力矩影响及水力矩计算简化方案的研究,得出了以下结果:导叶水力矩数值计算结果与模型试验结果分布规律相似,使用CFD方法计算导叶水力矩是完全可行的。
不同导叶分布圆同一导叶翼形下导叶水力矩曲线略有不同,分布圆越大,水力矩越大。
导叶水力矩计算方法可简化为定流量变开口计算。
选取效率最优点的流量来计算导叶水力矩结果和试验结果最吻合。
关键词:混流式水轮机;导叶水力矩;数值模拟;模型试验- I -AbstractAbstractForce characteristics of Francis turbine is an important design input data for the structure design of the prototype, whose accuracy and rationality have a direct impact on the safe operation and manufacturing cost. The shape and position of the guide vanes of the turbine directly affect the pressure and torque value of the water flow acting on its surface. In order to calculate the vane strength accurately, reasonable selection of turbine guide vane servomotor and its related series of transmission mechanism, need to know exactly the guide vane in each opening value under the condition of stress, the method of determining the hydraulic force characteristics of commonly used parts of the turbine turbine model test and CFD numerical simulation. This paper takes Jilin Fengman project as the application background and takes vane torque of Francis turbine guide as the object of study. This paper makes a study on the distribution law of vane torque of Francis turbine guide and the influence of guide vane graduation circle to guide vane torque. This paper also studies and verifies the simplified scheme of guide vane torque calculation using a suitable flow. The studies above are based on combination of numerical simulation and experimental method of vane torque of Francis turbine guide. The paper draws the following conclusions.The distribution law of guide vane torque factor from the CFD numerical simulation results is similar to the distribution law from the results of the model test. It is feasible to use CFD method to calculate vane torque. The guide vane torques curve in different graduation circle of guide vane with the same vane airfoil are slightly different. The larger the graduation circle, the greater the vane torque. The calculation method of guide vane torque can be simplified as a calculation method with the same discharge and variable openings. The results calculated at optimal condition discharge are in good agreement with the experimental results.Keywords: Francis turbine, Guide vane torque, Numerical simulation, Model test目录目录摘要 (I)Abstract ............................................................................................................................. I I 第1章绪论 (1)1.1 研究背景与意义 (1)1.2 国内外研究现状 (3)1.3 主要研究内容与研究思路 (5)第2章计算流体力学基本理论 (7)2.1 流体力学基本方程组 (7)2.1.1 连续方程——质量守恒方程 (7)2.1.2 运动方程——动量守恒方程 (8)2.1.3 能量方程——能量守恒方程 (8)2.2 湍流流动基本方程组简介 (9)2.2.1 直接数值模拟算法(DNS算法) (10)2.2.2 大涡模拟算法(LES算法) (10)2.2.3 雷诺时均数值算法(RANS算法) (11)2.3 本章小结 (14)第3章模型水轮机导叶水力矩数值计算 (15)3.1 网格划分及边界条件设置 (15)3.1.1 三维建模及网格划分 (15)3.1.2 边界条件设置 (20)3.2 整体计算和蜗壳及固定导叶和活动导叶联合计算对比 (20)3.3 蜗壳及固定导叶和活动导叶联合CFD数值模拟计算 (24)3.3.1 正常工况同步导叶水力矩计算 (24)3.3.2 正常工况非同步导叶水力矩计算 (29)3.4 导叶水力矩数值计算简化方案研究 (33)3.5 不同导叶分布圆的导叶水力矩计算 (34)3.6 本章小结 (35)第4章丰满导叶水力矩模型试验验证 (36)- III -目录4.1 模型试验台简介 (36)4.2 导叶水力矩模型试验 (37)4.2.1 同步试验结果 (38)4.2.2 非同步试验结果 (43)4.3 数值模拟与模型试验对比 (47)4.4 本章小结 (52)结论 (53)参考文献 (54) (58)致谢 (59)个人简历 (60)第1章绪论1.1研究背景与意义在我国煤电、水电、核电是电力系统中三大主要的组成部分[1]。
水轮机的模型试验一、水轮机的模型试验的意义前面讨论了水轮机相似的条件,这就从理论上解决了用较小尺寸的模型水轮机,在较低水头下工作去模拟大尺寸和高水头的原型水轮机。
按相似理论,模型水轮机的工作完全能反映任何尺寸的原型水轮机。
模型水轮机的运转规模比真机运转规模小的多,费用小,试验方便,可以根据需要随意变动工况。
能在较短的时间内测出模型水轮机的全面特性。
将模型试验所得到的工况参数组成单位转速11n和单位流Q后,并分别以它们作为纵坐标及横坐标,按效率相等工况点连量11线所得到的曲线图称为综合特性曲线。
此综合特性曲线不仅表示了模型水轮机的工作性能,同样地反映了与该模型水轮机几何相似的所有不同尺寸,工作在不同水头下的同类型真实水轮机的工作特性。
水轮机制造厂可从通过模型试验来检验原型水力设计计算的结果,优选出性能良好的水轮机,为制造原型水轮机提供依据,向用户提供水轮机的保证参数。
水电设计部门可根据模型试验资料,针对所设计的电厂的原始参数,合理地进行选型设计,并运用相似定律利用模型试验所得出的综合特性曲线,绘出水电站的运转特性曲线。
为运行部门提供发电依据,水电厂运行部门可根据模型水轮机试验资料,分析水轮机设备的运行特性,合理地拟定水电厂机组的运行方式,提高水电厂运行的经济性和可靠性。
当运行中水轮机发生事故时,也可以根据模型的特性分析可能产生事故的原因。
二、水轮机模型试验的方法水轮机的模型试验主要有能量试验,气蚀试验,飞逸特性试验和轴向水推力特性试验等几种。
由于篇幅所限,本教材主要介绍反击式水轮机的能量试验。
反击式水轮机的汽蚀试验可参阅有关参考文献。
能量试验台分为开敞式试验台和封闭式试验台,封闭式试验台无需设置测流槽,故平面尺寸要比开敞式试验小,而且水头调节更加方便,但封闭式试验台投资较高。
1. 开敞式能量试验台(1)开敞式能量试验台水轮机效率是水轮机能量转换性能的主要综合指标,因此,模型水轮机的能量试验主要是确立模型水轮机在各种工况下的运行效率。
混流式水轮机转轮倒置安装轴向水推力的计算一、水轮机的基本原理水轮机是一种将水的动能转化为机械能的装置,其基本原理是利用水的冲击力和动能转动轮盘,进而带动轴上的机械装置工作。
水轮机通常由水轮机转轮、导叶、水导管、发电机等组成。
其中,转轮是水轮机的核心部件,它负责接受水流的动能并将其转化为机械能。
而水流的动能主要来自于水的势能和动能。
二、混流式水轮机的结构特点混流式水轮机是一种结合了径流式水轮机和轴流式水轮机优点的新型水轮机。
它的转轮既有轴向叶片,又有径向叶片,使得水流在转轮内部同时具有径向和轴向速度,从而提高了水轮机的效率和输出功率。
混流式水轮机通常由转轮、导叶、调节器、发电机等部分组成。
三、转轮倒置安装对轴向水推力的影响转轮倒置安装是指将混流式水轮机的转轮倒置安装在水流中,使得水流的进出口位置发生改变。
转轮倒置安装可以改变水流通过转轮的方向,从而对水轮机的轴向水推力产生影响。
一般情况下,水轮机的轴向水推力与水流通过转轮的方向以及转轮叶片的倾角有关。
当转轮倒置安装时,水流通过转轮的方向发生改变,从而导致轴向水推力的大小和方向发生变化。
具体来说,当转轮倒置安装时,水流从转轮的上部进入,然后由转轮叶片的作用转向下方,最后从转轮的下部出口离开。
在这个过程中,水流对转轮的冲击力主要集中在转轮的下部,使得轴向水推力的方向指向转轮的上方。
这种情况下,水轮机在运行过程中会产生向上的轴向水推力,需要通过其他方式进行平衡,以保证水轮机的正常运行。
四、混流式水轮机转轮倒置安装轴向水推力的计算要计算混流式水轮机转轮倒置安装时轴向水推力的大小,需要考虑多个因素,如水流的流速、水流的密度、转轮的叶片形状和倾角等。
具体的计算方法可以参考相关的水力学和力学原理,利用数学公式和计算公式进行推导和计算。
在计算中,需要根据实际情况,确定转轮倒置安装后水流通过转轮的方向和叶片的倾角等参数,以便进行准确的计算。
混流式水轮机转轮倒置安装对轴向水推力的计算是一个复杂的问题,需要综合考虑多个因素,包括水流的流速、水流的密度、转轮的叶片形状和倾角等。
1 轴向水推力的计算表1如图1所示,混流可逆式水轮机转轮轴向水推力F w(方向向下为正)的构成可描述[1]为:F w=F1-F2-F3-F4F1=F11+F12+F13+F14F2=F21+F22+F23F3=F31+F32F4=F41+F42式中:F1—转轮上冠上表面所受轴向水推力,向下为正;F2—转轮下环外表面所受轴向水推力,向上为正;F3—转轮进、出口所受轴向水推力,向上为正;F4—转轮内腔流道表面所受轴向水推力及转轮在水中浮力,向上为正;F11—上止漏环外侧高压腔上冠上表面所受轴向水推力;F12—上止漏环齿槽处上冠上表面所受轴向水推力;F13—上止漏环内侧低压腔上冠上表面所受轴向水推力;F14—主轴密封腔内法兰盘上表面所受轴向水推力;F21—下止漏环外侧高压腔下环外表面所受轴向水推力;F22—下止漏环齿槽处下环外表面所受轴向水推力;F23—下止漏环内侧低压腔下环外表面所受轴向水推力;F31—转轮进口断面所受轴向水推力;F32—转轮出口断面所受轴向水推力;F41—转轮内腔流道(包括叶片)表面所受轴向水推力;F42—转轮在水中浮力。
轴向水推力的计算采用两种方法。
F3和F4采用ANSYS CFX软件数值模拟计算得到,而转轮上冠和下环水体计算域由于尺寸太小,采用数值模拟方法无法准确计算出结果,所以F1和F2采用解析计算方法得到。
1.1 转轮轴向水推力的解析计算(1) F11,F13,F14和F21,F23的求解转轮上冠上表面或下环外表面所受轴向水推力的公式[1]如下:F ij=π{[p0−ρ2(πK0nr030)2](r22−r12)+ρ(πK0n30)2r24−r144}式中:Fij—所求轴向水推力(即F11,F13,F14和F21,F23)(N);r0,p0—已知点处的半径(m)和静压力(Pa);ρ—水的密度(kg/m3);n—转轮转速(RPM);r1,r 2—对应腔体内、边界处的半径(m);K—圆周速度系数,一般取0.5。