华东师大初中数学中考总复习:一元二次方程、分式方程的解法及应用--巩固练习(基础)
- 格式:pdf
- 大小:50.75 KB
- 文档页数:5
中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)【巩固练习】 一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .253.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D . 1k <且0k ≠4.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-= B .2653500x x +-= C .213014000x x --= D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A.B.C.D.二、填空题7.若ax 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是____ ____. 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m= m 有实数根,则 m 的取值范围是 .三、解答题 13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.关于x 的一元二次方程1201x p x x 有两实数根=-+-、.2x (1)求p 的取值范围;(2)若p x x x x 求,9)]1(2)][1(2[2211=-+-+的值.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么?【答案与解析】 一、选择题 1.【答案】B ;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】B ;【解析】由题意得方程有两个不相等的实数根,则△=b 2-4ac>0,即4+4k>0.解得1k >-且0k ≠. 4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x . 6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。
《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法 1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法. 要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.【高清ID 号:388528 关联的位置名称(播放点名称):根系关系】 2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等); 设 (设未知数,有时会用未知数表示相关的量); 列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰); 验 (检验方程的解能否保证实际问题有意义); 答 (写出答案,切忌答非所问). 4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.(2016•诏安县校级模拟)关于x 的一元二次方程(a ﹣1)x 2+x +a 2﹣1=0的一个根是0,则a 的值为( ) A .1B .﹣1C .1或﹣1D .【思路点拨】根据方程的解的定义,把x=0代入方程,即可得到关于a 的方程,再根据一元二次方程的定义即可求解. 【答案】B ;【解析】解:根据题意得:a 2﹣1=0且a ﹣1≠0, 解得:a=﹣1.故选B .【总结升华】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.举一反三:【高清ID 号:388528 关联的位置名称(播放点名称):利用定义求字母的值】 【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程. 【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程 (1) 0.5x 2-=0; (2) (x+a)2=;(3) 2x 2-4x-1=0; (4) (1-)x 2=(1+)x .【答案与解析】(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t=1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴12 3x=,21x=.(2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ 11t =,212t =.类型三、一元二次方程根的判别式的应用3.(2015•荆门)若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( ) A .a ≥1 B . a >1 C . a ≤1 D .a <1 【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0, ∴a ≥1. 故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式.【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题. 举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=. ∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm,由题意得4x2=10×8×(1-80%).解得x1=2,x2=-2.经检验,x1=2符合题意,x2=-2不符合题意舍去.∴ x=2.答:截去的小正方形的边长为2cm.【总结升华】设小正方形的边长为x cm,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为多少m?【答案】解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),50﹣2x=50﹣30=20.答:BC的长为20m.6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x2-5x+6=0.解得,x1=2,x2=3.∴当x=2时,2x=4;当x=3时,2x=6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.。
《一元二次方程的解法(三)--公式法,因式分解法》—巩固练习(提高)【巩固练习】一、选择题1. (2016•天津)方程x 2+x ﹣12=0的两个根为( )A .x 1=﹣2,x 2=6B .x 1=﹣6,x 2=2C .x 1=﹣3,x 2=4D .x 1=﹣4,x 2=32.整式x+1与整式x-4的积为x 2-3x-4,则一元二次方程x 2-3x-4=0的根是( ). A .x 1=-1,x 2=-4 B .x 1=-1,x 2=4 C .x 1=1,x 2=4 D .x 1=1,x 2=-4 3.如果x 2+x-1=0,那么代数式3227x x +-的值为( )A .6B .8C .-6D .-84.若关于x 的一元二次方程(m-1)x 2+5x+m 2-3m+2=0的常数项为0,则m 的值等于( ) A .1 B .2 C .1或2 D .0 5.若代数式(2)(1)||1x x x ---的值为零,则x 的取值是( ).A .x =2或x =1B .x =2且x =1C .x =2D .x =-16.(2015•济宁)三角形两边长分别为3和6,第三边的长是方程x 2﹣13x+36=0的两根,则该三角形的周长为( ). A .13 B .15 C .18 D .13或18二、填空题7.已知实数x 满足4x 2-4x+1=0,则代数式122x x+的值为________. 8.(2015•广安)一个等腰三角形的两条边长分别是方程x 2﹣7x+10=0的两根,则该等腰三角形的周长是 .9.若方程2x mx n ++可以分解成(x-3)与(x+4)的积的形式,则m =________,n =________. 10.若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如2※6=4×2×6=48. (1)则3※5的值为 ;(2)则x ※x+2※x-2※4=0中x 的值为 ;(3)若无论x 是什么数,总有a ※x =x ,则a 的值为 . 11.阅读材料,解答问题:材料:为解方程22(1)5(1)40x x ---+=,我们可以将(x 2-1)视为一个整体,然后设(x 2-1)=y ,原方程可化为:2540y y -+=. ① 解这个方程,得:y 1=1,y 2=4.当y 1=1时,x 2-1=1,即x 2=2,∴2x =±;当y 2=4时,x 2-1=4,即x 2=5,∴5x =±.∴ 原方程的解为:12x =,22x =-,35x =,45x =-. 解答问题:(1)填空:在由原方程得到①的过程中利用________法,达到了降次的目的,体现_______的数学思想. (2)方程:x 4-x 2-6=0的解为 .12.(2016•柘城县校级一模)三角形两边的长分别是8和6,第3边的长是一元二次方程x 2﹣16x+60=0的一个实数根,则该三角形的面积是 .三、解答题13. 用公式法解下列方程:(1)(2015•黄陂区校级模拟)x 2﹣3x ﹣7=0; (2)(2015•武汉模拟) x 2﹣5=2(x+1) ; 9(3)(2015春•瑞安市期中) 2x 2+x ﹣5=0.14.用因式分解法解下列方程:2(1)2(34)230x x +--= 2(2)3260x x x -+-=15.(1)利用求根公式计算,结合①②③你能得出什么猜想?①方程x 2+2x+1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________. ②方程x 2-3x-1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________. ③方程3x 2+4x-7=0的根为x 1=_______,x 2=________,x 1+x 2=________,x 1·x 2=________. (2)利用求根公式计算:一元二次方程ax 2+bx+c =0(a ≠0,且b 2-4ac ≥0)的两根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________. (3)利用上面的结论解决下面的问题:设x 1、x 2是方程2x 2+3x-1=0的两个根,根据上面的结论,求下列各式的值: ①1211x x +; ②2212x x +.【答案与解析】 一、选择题 1.【答案】D【解析】x 2+x ﹣12=(x+4)(x ﹣3)=0,则x+4=0,或x ﹣3=0,解得:x 1=﹣4,x 2=3.故选D . 2.【答案】B ;【解析】∵234(1(4)x x x x --=+-,∴2340x x --=的根是11x =-,24x =.3.【答案】C .【解析】∵210x x +-=,∴ 21x x +=.∴32322222277()77176x x x x x x x x x x x +-=++-=++-=+-=-=-. 4.【答案】B ;【解析】由常数项为0可得m 2-3m+2=0,∴ (m-1)(m-2)=0,即m-1=0或m-2=0, ∴ m =1或m =2,而一元二次方程的二次项系数m-1≠0,∴ m ≠1,即m =2. 5.【答案】C ;【解析】(2)(1)0x x --=且||1x ≠,∴ 2x =. 6.【答案】A ;【解析】解方程x 2﹣13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形, 所以三角形的周长为3+4+6=13,故选:A .二、填空题7.【答案】2;【解析】用因式分解法解方程24410x x -+=得原方程有两个等根,即1212x x ==, 所以121122x x+=+=. 8.【答案】12;【解析】x 2﹣7x+10=0,(x ﹣2)(x ﹣5)=0, x 1=2,x 2=5,①当三边是2,2,5 , ∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意; ②当三边是2,5,5,此时符合三角形三边关系定理,所以三角形的周长是2+5+5=12.9.【答案】 1 ; -12 ;【解析】22(3)(4)12x mx n x x x x ++=-+=+-,∴ m =1,n =-12. 10.【答案】(1)60;(2) 12x =,24x =-;(3) 14a =. 【解析】(1)3※5=4×3×5=60;(2)∵ x ※x +2※2x -※4=24(28)0x x +-=,∴ 12x =,24x =-; (3)∵ a ※4x ax ==x ,4(41)0ax x a x -=-=, ∴ 只有410a -=,等式才能对任何x 值都成立. ∴ 14a =. 11.【答案】(1)换元; 转化 ; (2)13x =,23x =-.【解析】(1)换元; 转化 ;(2)设2x y =,则原方程可化为:260y y --=,解得:y 1=3,y 2=-2.当y 1=3时,x 2=3,解得:x =±3;当y 2=-2时,22x =-,无解,∴ 原方程的解为13x =,23x =-.12.【答案】24或8.【解析】解:∵x 2﹣16x+60=0, ∴(x ﹣6)(x ﹣10)=0, 解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①:AB=AC=6,BC=8,AD 是高, ∴BD=4,AD==2, ∴S △ABC =BC •AD=×8×2=8;当x=10时,如图②,AC=6,BC=8,AB=10, ∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠C=90°, S △ABC =BC •AC=×8×6=24. ∴该三角形的面积是:24或8.故答案为:24或8.三、解答题 13.【解析】解:(1)在方程x 2﹣3x ﹣7=0中,a=1,b=﹣3,b=﹣7.∵△=9+28=37>0, ∴x===,∴ x 1=,x 2=.(2)方程整理得:x 2﹣2x ﹣7=0,这里a=1,b=﹣2,c=﹣7, ∵△=4+28=32>0, ∴x==1±2, ∴x 1=1+2,x 2=1﹣2.(3)这里a=2,b=,c=﹣5,∵△=5+40=45>0, ∴ x=, ∴x 1=,x 2=﹣.14.【解析】(1)(2)(23)0x x -+= 1232,2x x ==- (2)(2)(3)0x x +-=122,3x x =-=15.【解析】(1)两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数.① -1 ; -1 ; -2 ; 1.②3132+ ;3132- ; 3 ;-1. ③ 73- ; 1 ; 43- ; 73- .(2)242b b ac a -+- ; 242b b ac a --- ;b a - ;ca.(3)1232x x +=-,1212x x =-.①1212123112312x x x x x x -++===-.②22212121291913()2214244x x x x x x ⎛⎫+=+-=-⨯-=+= ⎪⎝⎭.。
中考总复习一元二次方程分式方程的解法及应用--巩固练习一、一元二次方程的解法及应用1.解法一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b和c为已知常数,且a ≠ 0。
解一元二次方程可以通过以下步骤进行:- 求解判别式D = b^2 - 4ac的值,判别式D的值决定了方程的根的情况。
-当D>0时,方程有两个不相等的实数根。
-当D=0时,方程有两个相等的实数根。
-当D<0时,方程没有实数根。
-根据判别式D的值分情况讨论:-当D>0时,设方程的两个根为x1和x2,则有:x1=(-b+√D)/(2a),x2=(-b-√D)/(2a)。
-当D=0时,有一个重根,设方程的根为x,则有:x=-b/(2a)。
-当D<0时,方程没有实数根。
2.应用一元二次方程的应用非常广泛,涉及到物理、工程、经济等领域。
-物理:一元二次方程可以用于描述自由落体运动的高度、抛物线的轨迹等问题。
-工程:在建筑、土木等工程领域中,一元二次方程可以用于解决各种问题,如建筑物的最大高度、桥梁的弯曲等等。
-经济:在经济学中,一元二次方程可以用于解决收入、支出以及市场需求等问题。
二、分式方程的解法及应用1.解法分式方程是指含有分式表达式的方程。
解分式方程可以通过以下步骤进行:-化简分式方程,将其转化为简单的方程。
-求解方程,得到未知数的值。
-检验所得解是否满足原方程,若满足则为方程的解,否则无解。
2.应用分式方程的应用也非常广泛,主要用于解决涉及到分数的问题,如比例、扇形的面积等。
-比例:分式方程可以用于解决比例的问题,如已知两个量的比例关系,可以通过设未知数,列方程,求解来计算其中一个未知数的值。
-扇形的面积:分式方程可以用于求解扇形的面积。
通过设未知数,列方程,求解来计算扇形的半径、弧长等。
三、巩固练习以下是一些巩固练习题,以帮助你巩固一元二次方程和分式方程的解法及应用。
1.求解一元二次方程-2x^2+3x-2=0-x^2-5x+6=02.求解分式方程-(x+1)/(x-2)=1/3-(2x-3)/(x+4)-1/2=1/(x+4)3.应用题-一个矩形的长是宽的3倍,如果矩形的周长是32,求矩形的长和宽。
中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(提高)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =±;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为242b b acx a-±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么ac x x a b x x 2121=⋅-=+,. 要点诠释:(1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.(3)一元二次方程0c bx ax 2=++(a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题.(4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代数式为根的一元二次方程.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,使能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】 类型一、一元二次方程1.阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x - 看作一个整体,然后设21x y -=,那么原方程可化为2540y y -+=……①,解得11y =,24y =,当1y =时,211x -=,22x ∴=,2x ∴=±;当4y =时,214x -=,25x ∴=,5x ∴=±,故原方程的解为12x =,22x =-,35x =,45x =-.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程4260x x --=.【思路点拨】此题考查了学生学以致用的能力,解题的关键是掌握换元思想. 【答案与解析】 (1)换元法;(2)设2x y =,那么原方程可化为260y y --= 解得13y =;22y =-当3y =时,23x =;3x ∴=±当2y =-时,22x =-不符合题意,舍去. 所以原方程的解为13x =,23x =-.【总结升华】应用换元法解方程,体现了转化的数学思想. 举一反三:【高清课程名称:一元二次方程、分式方程的解法及应用 高清ID 号: 405754 关联的位置名称(播放点名称):例3】【变式】设m 是实数,求关于x 的方程2320x mx x m --++=的根. 【答案】x 1=1,x 2=m+2.2.(2015•肇庆二模)设x 1、x 2是方程2x 2+4x ﹣3=0的两个根,利用根与系数关系,求下列各式的值:(1)(x 1﹣x 2)2;(2).【思路点拨】先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.【答案与解析】解:根据根与系数的关系可得:x1+x2=﹣2,x1•x2=.(1)(x1﹣x2)2=x12+x22﹣2x1x2=x12+x22+2x1x2﹣4x1x2=(x1+x2)2﹣4x1x2==10.(2)=x1x2+1+1+==.【总结升华】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.举一反三:【变式】(2015•潜江)已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.【答案】解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m≥0,∴m≤4;(2)∵x1+x2=4,∴5x1+2x2=2(x1+x2)+3x1=2×4+3x1=2,∴x1=﹣2,把x1=﹣2代入x2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.类型二、分式方程3.解方程:【思路点拨】把原方程右边化为代入原方程求解较为简单. 【答案与解析】原方程变为经检验,是原方程的根.【总结升华】 因为,,所以最简公分母为:,若采用去分母的通常方法,运算量较大,可采用上面的方法较好.举一反三: 【变式1】解方程:【答案】原方程化为方程两边通分,得化简得 解得经检验:是原方程的根. 【变式2】解方程:7643165469222x x x x x x ----+=--+ 【答案】设,则原方程可化为:k x x =-+265793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930∴,k k ==-129320 当时,k x x =--=126702()()x x -+=710解之得:,x x 1217=-=当时,k x x =--+=-93206593202 2012019302x x -+=解此方程此方程无解.1217x x =-=经检验:,是原分式方程的根.4.m 为何值时,关于x 的方程会产生增根?【思路点拨】先把原方程化为整式方程,使分母为0的根是增根,代入整式方程求出m的值.【答案与解析】方程两边都乘以,得整理,得【总结升华】分式方程的增根,一定是使最简公分母为零的根.举一反三:【变式】当m为何值时,方程会产生增根( )A. 2B. -1C. 3D.-3【答案】分式方程,去分母得,将增根代入,得m=3.所以,当m=3时,原分式方程会产生增根.故选C.类型三、一元二次方程、分式方程的应用5.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成.问规定日期是多少天?【思路点拨】设规定日期是x天,则甲的工作效率为,乙的工作效率为,工作总量为1.【答案与解析】设规定日期为x天根据题意,得解得经检验是原方程的根答:规定日期是6天.【总结升华】工程问题涉及的量有三个,即每天的工作量、工作的天数、工作的总量.它们之间的基本关系是:工作总量=每天的工作量×工作的天数.举一反三:【高清课程名称:一元二次方程、分式方程的解法及应用高清ID号: 405754关联的位置名称(播放点名称):例4-例5】【变式】据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【答案】设一片国槐树叶一年的平均滞尘量为x毫克,由题意得1000550 240x x=-,解得:x=22,经检验:x=22是原分式方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量为22毫克.6.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队工程费共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队工程费共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.【思路点拨】第一问是工程问题,工程问题中有三个量:工作总量,工作效率,工作时间,这三个量之间的关系是:工作总量=工作效率×工作时间第二问只要求出每天应各付甲、乙、丙各队多少钱,并由第一问求出甲、乙、丙各队单独完成这项工作所需的天数,即可求出在规定时间内单独完成此项工程哪个队花钱最少.【答案与解析】⑴设甲队单独做需天完成,乙队单独做需天完成,丙队单独做需天完成,依题意,得①×+②×+③×,得++=.④④-①×,得=,即z= 30,④-②×,得=,即x = 10,④-③×,得=,即y= 15.经检验,x= 10,y= 15,z = 30是原方程组的解.⑵设甲队做一天厂家需付元,乙队做一天厂家需付元,丙队做一天厂家需付元,根据题意,得由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱元;此工程由乙队单独完成需花钱元.所以,由甲队单独完成此工程花钱最少.【总结升华】这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队单独完成这项工程所需时间分别为天,天,天,可列出分式方程组.在求解时,把,,分别看成一个整体,就可把分式方程组转化为整式方程组来解.。
中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(基础)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2. 会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20axbx c ++=(a ≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =±;当m =0时,方程的解1,20x=;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20axbx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程20axbx c ++=,当240b ac -≥时,它的解为242b b ac x a-±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x ab x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程. 2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率×100%.=利润成本价明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】类型一、一元二次方程1.用配方法解一元二次方程:2213x x +=【思路点拨】把二次项系数化为1,常数项右移,方程两边都加上一次项系数一半的平方,再用直接开平方法解出未知数的值. 【答案与解析】移项,得2231xx -=-二次项系数化为1,得23122xx -=- 配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 由此可得3144x -=±11x =,212x =【总结升华】用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.举一反三:【变式】用配方法解方程x2-7x-1=0.【答案】将方程变形为x2-7x=1,两边加一次项系数的一半的平方,得x2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为 x=7+532或x=7-532.2.(2018•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.【思路点拨】判别式大于0,二次项系数不等于0.【答案与解析】(1)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,,x2=1,x1=2m∵方程有两个不相等的正整数根,∴m=1或2,∵m=2不合题意,∴m=1.【总结升华】(1)注意隐含条件m≠0;(2)注意整数根的限制条件的应用,求出m的值,要验证m的值是否符合题意.举一反三:【变式】已知关于x 的方程2(2)210xm x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解. 【答案】(1)证明:因为△=)12(4)2(2--+m m =4)2(2+-m所以无论m 取何值时, △>0,所以方程有两个不相等的实数根.(2)解:因为方程的两根互为相反数,所以021=+x x,根据方程的根与系数的关系得02=+m ,解得2-=m ,所以原方程可化为052=-x,解得51=x ,52-=x .类型二、分式方程3.(2018•贺州)解分式方程:=﹣.【思路点拨】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验. 【答案与解析】解:方程两边同乘以(2x+1)(2x ﹣1),得 x+1=3(2x-1)-2(2x+1)x+1=2x-5, 解得x=6.检验:x=6是原方程的根. 故原方程的解为:x=6.【总结升华】首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根. 举一反三:【变式1】解分式方程:21233x x x -+=--. 【答案】方程两边同乘以3x -,得 22(3)1x x -+-=.2261x x -+-=.5x =.经检验:5x =是原方程的解,所以原方程的解是5x =.【一元二次方程、分式方程的解法及应用 :例1(1)】 【变式2】方程22123=-+--xx x 的解是x= .【答案】0x =.4.若解分式方程2111(1)x m x x x x x++-=++产生增根,则m 的值是( ) A.B. C. D.【思路点拨】先把原方程化为整式方程,再把可能的增根分别代入整式方程即可求出m 的值.【答案】D ;【解析】由题意得增根是:化简原方程为:把代入解得2m =-或1, 故选择D.【总结升华】分式方程产生的增根,是使分母为零的未知数的值.举一反三:【一元二次方程、分式方程的解法及应用:例1(2)-例2】【变式】若关于x 的方程2332+-=--x m x x 无解,则m 的值是 .【答案】1.类型三、一元二次方程、分式方程的应用5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.【思路点拨】在航行问题中的等量关系是“顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度”,两次航行提供了两个等量关系.【答案与解析】设船在静水中的速度为x 千米/小时,水流速度为y 千米/小时由题意,得解得:经检验:是原方程的根x y x y ==⎧⎨⎩==⎧⎨⎩173173答:水流速度为3千米/小时,船在静水中的速度为17千米/小时. 【总结升华】流水问题公式:顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度;静水速度=(顺流速度+逆流速度)÷2;水流速度=(顺流速度-逆流速度)÷2.举一反三:【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?【答案】设甲班每小时种x 棵树,则乙班每小时种(x+2)棵树,由题意得:答:甲班每小时种树20棵,乙班每小时种树22棵.6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?【思路点拨】设该产品的成本价平均每月降低率为x,那么两个月后的(1+6%),两个月后的成本价为500(1-x)销售价格为625(1-20%)2,然后根据已知条件即可列出方程,解方程即可求出结果.【答案与解析】设该产品的成本价平均每月应降低的百分数为x.625(1-20%)(1+6%)-500(1-x)2=625-500整理,得500(1-x)2=405,(1-x)2=0.81.1-x=±0.9,x=1±0.9,x1=1.9(舍去),x2=0.1=10%.答:该产品的成本价平均每月应降低10%.【总结升华】题目中该产品的成本价在不断变化,销售价也在不断变化,•要求变化后的销售利润不变,即利润仍要达到125元,•关键在于计算和表达变动后的销售价和成本价.。
初三数学第一学期 分式及一元二次方程、期中总复习一. 本周教学内容:分式及一元二次方程、期中总复习二. 主要内容:[分式全章知识网络图][分式全章重点难点]重点:同底数幂的除法、单项式除以单项式; 分式的意义及相关概念、分式的基本性质; 分式的四则运算;可化为一元一次方程的分式方程及其应用;零指数幂和负整指数幂、用科学记数法表示绝对值小于1的数。
难点:整式的除法运算、分式的运算及分式方程的解法、检验与应用、零指数幂和负整指数幂、用科学记数法表示绝对值小于1的数(同底数幂的除法是基础和关键。
)[一元二次方程全章重点难点] 重点:一元二次方程的解法;应用一元二次方程,解决实际中的数学问题; 一元二次方程根的判别式的应用;难点:灵活地选择解法,求解一元二次方程;运用根的判别式灵活解题;了解并用根与系数关系知识解决较复杂的一元二次方程综合题.[知识精析与典型例题]一. 同底数幂的除法运算及应用1. n m n m a a a -=÷(n m n m a >≠,,,0都是正整数)。
2. nm n m a a a +=⨯(都是正整数n m a ,,0≠)。
3. ),,0()(都是正整数n m a a a nm n m ≠=⨯。
4. 121222)()(++-=-=-n n n na a a a ;;(n 为正整数)n n n n b a b a a b b a 2222)()()()+=---=-;(;(n 为正整数)12121212)()()()(+++++-=----=-n n n n b a b a a b b a ;。
(n 为正整数)例:已知8,4==nma a ,求nm a 23-的值。
分析:将指数相减恢复为幂的除法,将指数相乘恢复为幂的乘方。
解:()()18423232323=÷=÷=÷=-n m n m nm a a a a a二. 分式有意义及分式值为零、为正、为负的条件 1. 分式有意义:分式的分母≠0。
中考总复习一元二次方程分式方程的解法及应用--知识讲解一、一元二次方程的解法一元二次方程是指一个未知数的平方最高次数为2的方程。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知常数,且a≠0。
解一元二次方程的方法有以下几种:1.因式分解法:对方程进行因式分解,然后令每个因式等于0,求解得到方程的解。
2. 公式法:利用求根公式(-b±√(b^2-4ac))/2a,计算出方程的根。
3.完全平方式:对一元二次方程进行配方处理,将其化为完全平方的形式,然后求解。
4.图像法:将方程的解与图像相结合,通过观察图像的交点来确定方程的解。
二、一元二次方程的应用1.抛物线问题:一元二次方程常用来描述抛物线的形状与运动轨迹。
在物理学、工程学等领域中,抛物线的特性与运动轨迹有很多应用。
2.几何问题:一元二次方程可以用来解决与几何问题相关的计算和推理。
如求解一个平面图形的面积、找到一个图形的对称轴等。
3.速度问题:一元二次方程可以用来描述具有变速度的运动过程。
在物理学和运动学中,可以通过一元二次方程来计算运动物体的速度、加速度等相关参数。
4.财务问题:一元二次方程可以用来解决与财务相关的问题,如计算利润、成本和销售量之间的关系等。
5.人口增长问题:一元二次方程可以用来描述人口增长的模型。
通过一元二次方程的解,可以预测人口增长的趋势和规律。
总结:一元二次方程是数学中常见的一种方程形式,掌握解一元二次方程的方法对于提高数学学习的能力和解决实际问题具有重要意义。
在解题过程中,要根据具体情况选择合适的方法,并灵活运用数学知识解决问题。
初三数学第一学期 分式及一元二次方程两章知识复习一. 本周教学内容:分式及一元二次方程两章知识复习[教学重难点]重点:1. 分式基本性质及运算法则。
2. 通过解分式方程,领悟数学中“转化”的内涵。
3. 零指数幂、负整数指数幂与其它知识的综合应用。
4. 一元二次方程的四种解法。
难点:1. 用“整体代入”、“换元”、“降次”思想求代数式的值。
2. 用“配方”的方法解决最佳问题。
3. 提高学生综合运用学科知识的能力。
4. 渗透对一些创新题的解题思路,提高学生解题能力。
【典型例题】例1. 计算:123602004121----+-tan ()()°° 分析:本题涉及知识点较多,有分母有理化、特殊角三角函数值、零次幂、负整数次幂相关知识,做题时想清法则,注意符号。
解:原式=+--+=233123例2. 用科学记数法表示-0.00000127(保留两个有效数字)。
分析:此题简单,但非常易错。
如①此数学点数、负号易丢。
②保留两个有效数字,取近似值,不进行四舍五入。
③此数绝对值小于1。
用科学记数法表示其中10的指数应为负指数等地方,都易出错。
解:≈-1.3×106-例3. 化简求值:①x x 2310-+=,求x x44+-的值。
②112x y -=,求5456x xy y x xy y+---的值。
③x y =23,求352362222x xy y x xy y+--+的值。
④x x 210--=,求-++x x 3222005的值。
分析:①②均为整体代入思想。
③为求齐次式值。
④为降次思想。
解:①∵求x x44+-的值,∴x ≠0 ∴x x 2310-+=两边同除以xx x x x-+=+=31013, ∴()x x +=192,x x 2217+=∴()x xx x 2224414947+=+=-, ②∵112x y-=, ∴y x xy-=2,y x xy x y xy -=-=-22, 54565461042634x xy y x xy y x y xy x y xy xy xy xy xy +---=-+--=-+--=()() ③∵x y =23,∴设x k y k k ==230,≠() 3523634523294323693522222222x xy y x xy y k k k k k k k k+--+=+--+=××××××× ④∵x x 210--=,∴x x 21=+-++=-++x x x x x 32222200522005· =-++++=--+++=-+++=--++=x x x x x x x x x x ()()()1212005222005120071200720062例4. 关于x 的方程x x m x --=-323有一个正数解,求m 的取值范围。
中考总复习:一元二次方程、分式方程的解法及应用—巩固
练习(基础)
【巩固练习】一、选择题1. 用配方法解方程2
25
0x
x 时,原方程应变形为(
)
A .2
1
6x B .2
16
x C .2
2
9
x D .
2
2
9
x 2.关于x 的一元二次方程
2
210x
mx m 的两个实数根分别是
12x x 、,且221
2
7x
x
,则
2
12()x x 的值是(
)A .1 B
.12
C .13
D .25
3.(2015?成都)关于x 的一元二次方程
kx 2
+2x+1=0有两个不相等的实数根,
则k 的取值范围是()
A .k >﹣1
B .k ≥﹣1
C .k ≠0
D .k <1且k ≠0
4.若关于x 的一元二次方程
02
35)1(2
2
m
m
x
x m 的常数项为0,则m 的值等于(
)
A .1
B .2
C .1或2
D .0
5.在一幅长为
80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,
如图所示,如果要使整个挂图的面积是5400cm 2
,设金色纸边的宽为
x cm ,那么x 满足的方程是
(
).
A .2
13014000x x B .2
653500
x x C .2
1301400
x
x D
.2
65350
x
x 6.甲、乙两地相距S 千米,某人从甲地出发,以
v 千米/小时的速度步行,走了a 小时后改乘汽车,又
过b 小时到达乙地,则汽车的速度()
A.
B.
C.
D.
二、填空题
7.(2015?宿迁)方程
﹣=0的解是.
8.如果方程ax 2
+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.
9.某种商品原价是
120元,经两次降价后的价格是
100元,求平均每次降价的百分率.设平均每次降
价的百分率为x ,可列方程为 __
.
10.当m 为
时,关于x 的一元二次方程02
142m
x x 有两个相等的实数根;
此时这两个实数根是 .
11.如果分式方程
1
x
x =
1
x
m 无解, 则 m = .
12.已知关于x 的方程
x
1-
1
x m = m 有实数根,则 m 的取值范围是 .
三、解答题
13. (1)解方程:x
x
x x
4
14
34
12
;
(2)解方程:x
x
x
x
2
2
1103
. 14.一列火车从车站开出,预计行程
450千米,当它开出3小时后,因特殊任务多停一站,耽误
30分
钟,后来把速度提高了
0.2倍,结果准时到达目的地,求这列火车的速度
.
15.(2015?泗洪县校级模拟)已知关于x 的方程x 2
+(2m ﹣1)x+m 2
=0有实数根,
(1)求m 的取值范围;(2)若方程的一个根为
1,求m 的值;
(3)设α、β是方程的两个实数根,是否存在实数m 使得α2+β2
﹣αβ=6成立?如果存在,请求出
来,若不存在,请说明理由.16.如图,利用一面墙,用
80米长的篱笆围成一个矩形场地
(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为
810平方米,为什么?
【答案与解析】一、选择题1.【答案】B ;
【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,
整理即可得到
B 项是正确的.
2.【答案】C ;【解析】∵221
2
7x
x
∴2
2
1212
)
22(21)
7x x x x m
m (,
解得m=5(此时不满足根的判别式舍去)或m=-1.
原方程化为2
3
0x
x ,2
12()x x =2
1
212()
411213.
x x x x 3.【答案】D ;【解析】依题意列方程组
,
解得k <1且k ≠0.故选D .4.【答案】B ;【解析】有题意2
320,10m
m m 且≠,解得2m .
5.【答案】B ;
【解析】(80+2x )(50+2x )=5400,化简得2
65350
0x x .
6.【答案】B ;
【解析】由已知,此人步行的路程为
av 千米,所以乘车的路程为千米。
又已知乘车的时间为
b 小时,故汽车的速度为
/S av
B b
千米小时,应选.
二、填空题7.【答案】x=6;【解析】去分母得:
3(x ﹣2)﹣2x=0,
去括号得:3x ﹣6﹣2x=0,整理得:x=6,
经检验得x=6是方程的根.故答案为:x=6.
8.【答案】a <1且a ≠0;【解析】△>0且a ≠0. 9.【答案】100)
1
(1202
x ;
【解析】平均降低率公式为
(1)
n
a x
b (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后
的量.)
10.【答案】m=2
9;x 1=x 2=2.
【解析】由题意得,△=(-4)2
-4(m -2
1)=0
即16-4m+2=0,m=2
9.
当m=2
9时,方程有两个相等的实数根
x 1=x 2=2.
11.【答案】-1;
【解析】原方程可化为:x=
m.
∵原分式方程无解
∴x=-1,故代入一次方程有m=-1.
所以,当m=-1时,原分式方程无解
.
12.【答案】当m≤
4
1且m≠0时;
【解析】原方程可化为:mx2
-x+1=0
当m=0时,得x=1,原分式方程无解,不符合题意舍去.当m≠0时, ⊿=12
-4m≥0,解之m≤
4
1所以,当m≤
4
1且m≠0时,原分式方程有实数根.
三、解答题13.【答案与解析】
(1)部分移项得:
x x
x x 4143412∴x x x x
414
34
12
∴x 4
12
∴x =2
经检验:x =2是原分式方程的根
.
(2)原方程可化为:
x
x
x x 2
2
1313∴或x
x
x
x
2
2
313
解之得:,x x 12
34
113
2
12
1621
,,1,2
3,4
113
11212
2
6
x x 经检验:,均是原分式方程的根.
14.【答案与解析】
设这列火车的速度为
x 千米/时
根据题意,得
方程两边都乘以12x,得
解得
经检验,是原方程的根
答:这列火车原来的速度为75千米/时.
15.【答案与解析】
解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,
解得m≤;
(2)把x=1代入方程得1+2m﹣1+m2=0,
解得m1=0,m2=﹣2,
即m的值为0或﹣2;
(3)存在.
根据题意得α+β=﹣(2m﹣1),αβ=m2,
∵α2+β2﹣αβ=6,
∴(α+β)2﹣3αβ=6,
即(2m﹣1)2﹣3m2=6,
整理得m2﹣4m﹣5=0,解得m1=5,m2=﹣1,
∵m≤;
∴m的值为﹣1.
16.【答案与解析】
设AD=BC=xm,则AB=(80-2x)m
(1)由题意得:x(80-2x)=750
解得:x1=15, x2=25 ,
当x=15时,AD=BC=15m,AB=50m
当x=25时,AD=BC=25m,AB=30m
答:当平行于墙面的边长为50m,斜边长为15m时,矩形场地面积为750m2;或当平行于墙面的边长为30m,邻边长为25m时矩形场地面积为750m2.
(2)由题意得:x(80-2x)=810
△=40-4×405=1600-1620=-20<0
∴方程无解,即不能围成面积为810m2的矩形场地.。