北邮概率论与数理统计秩和检验8.6
- 格式:docx
- 大小:183.00 KB
- 文档页数:6
习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.”B =“至少有一次出现正面.”C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生;(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB (3) ABC(4) A ∪B ∪C =AB C ∪B ∪A BC ∪BC ∪AC ∪AB ∪ABC =ABC (5) ABC =AB C (6) ABC(7) BC ∪AC ∪AB ∪AB C ∪A BC ∪B ∪ABC =ABC =∪∪ (8) AB ∪BC ∪CA =AB ∪AC ∪BC ∪ABC 3.指出下列等式命题是否成立,并说明理由: (1) A ∪B=(AB)∪B ;(2) B=A ∪B ;(3) B A ∩C=AB C ;(4) (AB)(AB )=;(5) 若AB ,则A=AB ;(6) 若AB=,且CA ,则BC=; (7) 若AB ,则;(8) 若BA,则A ∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB ∪B=B.所以,事件Α发生,事件B 必不发生,即Α∪B 发生,ΑB ∪B 不发生. 故不成立.(2)不成立.若事件Α发生,则不发生,Α∪B 发生, 所以B 不发生,从而不成立. (3)不成立.B A,AB 画文氏图如下:所以,若Α-B 发生,则AB 发生,A B 不发生,故不成立.ΑB 与AB 为互斥事件.Α发生,则事件B 发生,所以ΑB 发生.若事件ΑB 发生,则事件Α发生,事件B 发生. 故成立.(6)成立.若事件C 发生,则事件Α发生,所以事件B 不发生, 故BC=φ.(7)不成立.画文氏图,可知B A ⊂.(8)成立.若事件Α发生,由()A AB ⊂,则事件Α∪B 发生.若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】P (AB )=1-P (AB )=1-[P (A )-P (A -B )]=1--A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求: (1) 在什么条件下P (AB )取到最大值? (2) 在什么条件下P (AB )取到最小值?【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有种取法.因只有一件次品,所以从45个正品中取2个,共种取法;从5个次品中取1个,共种取法,由乘法原理,恰有一件次品的取法为种,所以所求概率为21455350C C P C =. N 件,其中Mn 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --种,n 次抽取中有m 次为正品的组合数为种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C CC m n mM N M n N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n 次抽取中有m 次为正品的组合数为种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有种排法,故所求概率为4410/10P P =.12.50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == *16.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ ∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰题22图23.设P ()=0.3,P (B )=0.4,P (A )=0.5,求P (B |A ∪) 【解】 ()()()()()()()()P AB P A P AB P B AB P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C CC C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则={被调查学生是不努力学习的}.由题意知P (A )=0.8,P ()=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (|)=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作AA与B 传递的频繁程度为2∶A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(颜色只有黑、白两种,箱中原有什么颜色的球是等可能的)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,iB ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少? 【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n≤故n ≥1lg 8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑××××××0.7)×+××××××0.7)××××1。
概率论与数理统计课后答案北邮版(第四章)(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题四1.设随机变量X 的分布律为X ??1 0 12P 1/8 1/2 1/81/4求E (),(),(2+3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. X 0 1 2 3 4 5P 5905100C 0.583C = 1410905100C C 0.340C = 2310905100C C 0.070C = 3210905100C C 0.007C = 4110905100C C 0C = 5105100C 0C = 故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.X ??1 01P p 1 p 2 p 3且已知E ()=,()=,求1,2,3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1;(2) V =YZ ??4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E(3X ??2Y ),D (2X ??3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯=8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因101(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =2 1()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x ==⎰ 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他 于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X ??3Y 2). 【解】22-200()()d 2e d [e]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯= 11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke 求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d ed 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 222()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰22220π2ed .k x kx x +∞-==⎰(3) 222222201()()d()2e .kxE X x f x x x k x k+∞+∞--∞==⎰⎰故 222221π4π()()[()].24D X E X E X k k k⎛-=-=-= ⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ).【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯= 于是,得到的概率分布表如下:X0 1 2 3 P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望.【解】厂方出售一台设备净盈利Y 只有两个值:100元和??200元 /41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e .P Y P X -=-=<=-故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DXn nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nniii i XnX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+ 同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )=??1,计算:Cov (3X ??2Y +1,X +4Y ??3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似).16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,2212112()1.ππx X x f x y x ---- 当|y |≤1时,2212112()1ππy Y y f y x y ---. 显然()()(,).X Y f x f y f x y ≠故X和Y不是相互独立的.17.??1 0 1??111/8 1/8 1/81/8 0 1/81/8 1/81/8验证X和Y是不相关的,但和不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表X??101P382838Y??101P382838XY??101P284828由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y=-=-=⨯≠==-=-从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.【解】如图,S D=12,故(X,Y)的概率密度为题18图2,(,),(,)0,x y Df x y∈⎧=⎨⎩其他.XY()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3x x x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰112001d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而 112)()XY D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4(π4)π8π164.πππ8π32π8π32)()2162XY D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+- 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X ??2Y 和Z 2=2X ??Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故 12122)()Z Z D Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy??Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5.依题意Y =min(X ,2). 对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1??e ??λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1??e ??y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率. 【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k k P Z k -==, 0,1,2,3.k =因此,()0123.202020202E Z =⨯+⨯+⨯+⨯= (2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有3(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯= 24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T =⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若 问:平均直径μ取何值时,销售一个零件的平均利润最大【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12}(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u u u u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()25(12)(1)21(10)(1)0(()),d x E T u u x u ϕϕϕ-=-⨯---⨯-= 令这里得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln11ln1.1910.91282212u =-=-≈(毫米) 由此可得,当u =毫米时,平均利润最大.25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y 2的数学期望.(2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯=2211()41()()22D YE Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+=26.两台同样的自动记录仪,每台无故障工作的时间T i (i =1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T =T 1+T 2的概率密度f T (t ),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T 1,T 2独立,所以f T (t )=f 1(t )*f 2(t ).当t <0时,f T (t )=0;当t ≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x t T f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩ 由于T i ~E (5),故知E (T i )=15,D (T i )=125(i =1,2)因此,有E (T )=E (T 1+T 2)=25.又因T 1,T 2独立,所以D (T )=D (T 1+T 2)=225. 27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X ??Y |的方差.【解】设Z =X ??Y ,由于22~0,,~0,,22X N Y N ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且X 和Y 相互独立,故Z ~N (0,1).因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =-而22/2()()1,(||)||e d 2πz E Z D Z E Z z z +∞--∞===⎰ 2/202e d π2πz z z +∞-== 所以 2(||)1πD X Y -=-. 28.某流水生产线上每个产品不合格的概率为p (0<p <1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求E (X )和D (X ).【解】记q =1??p ,X 的概率分布为P {X =i }=q i ??1p ,i =1,2,…,故12111()().1(1)i ii i q p E X iq p p q p q q p ∞∞-=='⎛⎫'===== ⎪--⎝⎭∑∑ 又221211121()()i i i i i i E X i qp i i q p iq p ∞∞∞---=====-+∑∑∑2232211()12112.(1)ii q pq q pq p q p pq q p q p p p∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以 22222211()()[()].p pD XE X E X p p p--=-=-=题29图29.设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U =X +Y 的方差. 【解】D (U )=D (X +Y )=D (X )+D (Y )+2Cov(X ,Y )=D (X )+D (Y )+2[E (XY )??E (X )·E (Y )].由条件知X 和Y 的联合密度为2,(,),(,)0,0.x y G f x y t ∈⎧=⎨<⎩ {(,)|01,01,1}.G x y x y x y =≤≤≤≤+≥ 从而11()(,)d 2d 2.X xf x f x y y y x +∞-∞-===⎰⎰因此11122300031()()d 2d ,()2d ,22X E X xf x x x x E X x x =====⎰⎰⎰22141()()[()].2918D XE X E X =-=-=同理可得 31(),().218E Y D Y ==1115()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=- 于是 1121()().18183618D U D X Y =+=+-= 30.设随机变量U 在区间[??2,2]上服从均匀分布,随机变量X =1,1,1,1,U U -≤-⎧⎨>-⎩ Y =1,1,1, 1.U U -≤⎧⎨>⎩若 试求(1)X 和Y 的联合概率分布;(2)D (X +Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值(??1,??1),(??1,1),(1,??1)及(1,1)的概率.P {x =??1,Y =??1}=P {U ≤??1,U ≤1} 112d d 1{1}444x x P U ---∞-=≤-===⎰⎰P {X =??1,Y =1}=P {U ≤??1,U >1}=P {∅}=0, P {X =1,Y =??1}=P {U >??1,U ≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰. 故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦. (2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X +Y 及(X +Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 24()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦. 从而11()(2)20,44E X Y +=-⨯+⨯= 211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+=31.设随机变量X 的概率密度为f (x )=x-e 21,(??∞<x <+∞)(1) 求E (X )及D (X );(2) 求Cov(X ,|X |),并问X 与|X |是否不相关(3) 问X 与|X |是否相互独立,为什么【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰ 2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰ (2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-= ||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X |互不相关.(3) 为判断|X |与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域??∞<x <+∞中的子区间(0,+∞)上给出任意点x 0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<<故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X |不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y的相关系数ρXY =??1/2,设Z =23YX +.(1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ ;(3) 问X 与Z 是否相互独立,为什么 【解】(1) 1().323X Y E Z E ⎛⎫=+=⎪⎝⎭ ()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯ 而1Cov(,))()3462XY X Y D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯= (2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭ 119()(6)3=0,323D X =+⨯-=- 所以 0.)()XZ D Z ρ==(3) 由0XZ ρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫ ⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X +Y =n ,则有D (X +Y )=D (n )=0.再由X ~B (n ,p ),Y ~B (n ,q ),且p =q =12, 从而有 ()()4nD X npq D Y ===所以 0()()()2()()XY D X Y D X D Y D X D Y ρ=+=++2,24XY n nρ=+ 故XY ρ=??1. 34. ??1 0 11试求X 和Y 的相关系数ρ.【解】由已知知E (X )=,E (Y )=,而XY 的概率分布为YX ??1 01P所以E (XY )=??+=Cov(X ,Y )=E (XY )??E (X )·E (Y )=??×=0从而 XY ρ=035.对于任意两事件A 和B ,0<P (A )<1,0<P (B )<1,则称ρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0;(2) |ρ|≤1.【证】(1)由ρ的定义知,ρ=0当且仅当P (AB )??P (A )·P (B )=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生; 1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从0??1分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩从而有E (X )=P (A ),E (Y )=P (B ),D (X )=P (A )·P (A ),D (Y )=P (B )·P (B ),Cov(X ,Y )=P (AB )??P (A )·P (B )所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1.36. 设随机变量X 的概率密度为Y Xf X (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y =X 2,F (x ,y )为二维随机变量(X ,Y )的分布函数,求: (1) Y 的概率密度f Y (y ); (2) Cov(X ,Y );(3)1(,4)2F -.解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y ≤0时, ()0Y F y =,()0Y f y =; 当0<y <1时,(){{0}{0Y F y P X P X P X =≤≤=<+≤≤=,()Y f y =;当1≤y <4时,1(){10}{02Y F y P X P X =-≤<+≤≤=()Y f y =;当y ≥4时,()1Y F y =,()0Y f y =. 故Y 的概率密度为1,()04,0,.Y y f y y <<=≤<⎪⎩其他(2) 0210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--,022********()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--,02233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--,故 Cov(X,Y ) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=.37. 设随机变量X 服从参数为1的泊松分布,求P{X=E(X 2)}.解:因为其分布律为P{x=k}=1!e k -,k=0,1,2,…,12211011121111()!(1)!(1)!11(2)!(1)!() 2.k k k k k e k k E X k e e k k k e k k e e e -∞∞∞--===∞∞-==--+===--⎛⎫=+ ⎪--⎝⎭=+=∑∑∑∑∑所以211{()}{2}.2!2P x E X P X e e --=====所以。
§8.6秩和检验上一节中的检验方法是基于两独立样本都是来自于正态总体的假设.而在不少情形中,这种前提条件并不一定成立.既使能通过正态性检验,在样本容量较小时,其有效性也值得怀疑.于是我们得另辟蹊径,寻找不需要正态性假设的检验方法.当然一点假设都没有是不现实的.这里我们假设:F 和G 都是连续型分布,并且F 和G 的形式相同只相差一个平移c)-x (G )x F(=.在这样的假定(或模型)下,如果0>c ,则对于x ∀,总有)x Y (P )x (G -)c -x (G -)x (F -)x X (P >=>==>111也即X 相对于Y 倾向于取更大的值,这种情况我们称之为X 随机地大于Y .如果0<c ,则X 随机地小于Y .如果0=c ,则两分布相同.我们考虑如下假设检验问题:(I)G F :H =0对G F :H ≠1(II)G F :H =0对G F :H >1(III)G F :H =0对GF :H <1在以上设定的模型下,上面假设分别等价于如下假设(I)00=c :H 对01≠c :H (II)00=c :H 对01>c :H (III)00=c :H 对01<c :H 由于对F 和G 的形状没有作任何假定,利用原有尺寸的观测进行分析己经行不通了.我们可以用秩替代原有尺寸的观测行统计分析.这样做至少有两个优势:(1)分析结果关于任何单调变换都是不变的;(2)可以减轻离群值的影响(即提高稳健性).并且这种非参数方法和前面介绍的参数方法的势相差不大.下面介绍秩和检验方法.设n x x ,,1 为来自某连续型总体的简单随机样本.由于总体具有连续分布,从而以概率1保证样本中各样品互不相等.将样本从小到大排列成)()1n x x << (.若)(iR i x x =,则称i x 在样本n x x ,,1 中的秩为i R ,简称i x 的秩为i R .),,(1n R R R =以及R 的任意函数称为秩统计量.秩统计量R 服从离散分布,它的所有可能取值共有!n 个,而且取每个可能值),,(1n r r 的概率均为!/1n ,其中),,(1n r r 为),,2,1(n 的任一置换.这说明R 服从离散均匀分布.由此可见,秩统计量的分布与总体服从什么样的分布是没有关系的.设简单随机样本m x x ,,1 (m x x ,,1 表示试验组的响应)和n y y ,,1 (n y y ,,1 表示控制组的响应)分别来自相总体F 和G ,如果将这两样本合在一起从小到大排序的话,那么在F G =时,n y y ,,1 (由于n y y ,,1 在合样本中排序位置定了后,m x x ,,1 也就定了,因此只须考虑样本n y y ,,1 的排序位置.当然也可只考虑样本m x x ,,1 的排序位置)既不会倾向于排在左边也不会倾向于排在右边,即合样本中n y y ,,1 的秩的和既不会偏大也不会偏小;在F G >时,n y y ,,1 会倾向于排在右边.即合样本中来自Y 的样本n y y ,,1 的秩的和会偏大,这就是Wilcoxon 检验的思想.在合样本),,,,,(11n m y y x x 中,记),,1(n j y j =的秩为),,2,1(n m R R j j += ,样本n y y ,,1 的秩和为∑==nj jy R W 1对于检验问题(I),当y W 偏大或偏小时,可拒绝原假设G F :H =0,因此该检验问题的拒绝域的形式为1k W y ≤或1k W y ≥.同样的分析可得检验问题(II)的的拒绝域的形式为k W y ≤;检验问题(III)的的拒绝域的形式为k W y ≥.在原假设成立时,即F G =时,合样本),,,,,(11n m y y x x 的秩统计量)R ,,R ,R ,,R (R n m 11~~=服从离散均匀分布.利用这一性质,我们可确定y W 的概率分布,从而确定拒绝域的临界值或计算检验的p 值.人们构造了Wilcoxon 秩和检验统计量分位数表,查表可以得到检验的p 值及拒绝域的临界值.例如,4个试验对象中,随机地选2个分配到试验组,另2个分配到控制组.试验组的响应记为21x ,x ,控制组的响应记为21y ,y .在F G =时,合样本的秩统计量)R ,R ,R ,R (R 2211~~=具有离散均匀分布14321==))r ,r ,r ,r (R (P ,)r ,r ,r ,r (4321是),,,(4321的任一置换.那么控制组的响应21y ,y 的秩和21R R W y +=的概率分布为y W 34567P6161316161假设试验组的响应为1,3,控制组的响应为6,4.直观地看试验组中的响应全部小于控制组的响应.似乎应该得出结论:试验具有减少响应的效应.但我们还是别着急下结论.控制组的秩和为7=y W ,试验组的秩和为3=x W .这种差异能够提供试验组和控制组之间具有系统性差异的可信证据吗?或者仅仅偶然因素也可能会造成这样的差异?要回答这个问题,我们需要计算在零假设下(即试验根本没有任何效应,试验结果的差异完全是由随机因素引起的)出现这样的差异的概率.由前面已得出的y W 的概率分布,易得617==)W P(y .一个概率为61的事件在一次试验中发生了,并不会让我们感到意外,换言之,由于这个概率还不是足够小,那么这样的差异还没有提供否定零假设的充分证据.要注意的是我们得不出结论:试验具有减少响应的效应.但不意味着我们就应该得出结论:试验具有增加响应的效应.事实上,由于样本容量太小,出现任何结果(即y W 取任何一个可能的值)都是正常的.通过这样小容量的样本,我们无法得到任何可靠的结论.当然由于两组结果之间的差异还是很大的,我们可以增加试验对象以得出可靠的结论.我们在这里假设观测值互不相等.而在实际中,出现相同的观测值也属正常,此时相同值的秩就取为它们的秩的平均值,只要这种情况较少,就不会过度影响显著性水平.由于2)m n )(m n (W W y x 1+++=+,在秩和检验中可在x W ,y W 之间任选其一作为检验统计量.在实用中,常选容量较小的样本的秩和作为检验统计量.在样本容量很大时,利用以上方法计算检验的p 值就会很麻烦,我们可以利用y W 的渐近分布解决.有如下结论.定理在n m y y x x ,,,,,11 具有相同的连续分布时,则在样本容量n m ,都趋于无穷大时,秩和检验统计量y W 具有渐近正态性:)1,0(12/)1(2/)1()()(N N mn N n W W Var W E W Ly y y y →++-=-这里m n N +=.由此定理,在大样本场合,可由正态分布得出检验问题的p 值.出现相同的观测值时,上述定理中的)W (ar V y 要作修正,此处不再讨论了.我们可以从另外角度推导秩和检验.设样本m x x ,,1 和n y y ,,1 分别来自相互独立的连续型总体X 和Y .X 和Y 的分布函数分别为F 和G .考虑检验问题:0H )()(x G x F =,对:1H )()(x G x F >.在)()(a x F x G -=时,检验问题化为0:0=a H 对0:1>a H .在原假设成立时,有5.0)(=<Y X P 而备择假设为真时,则有5.0)(><Y X P 令)(Y X P <=π.那么,上述检验问题可简化为关于参数π的检验问题,5.0:0=πH 对5.0:1>πH 显然∑∑===m i nj ij z mn 111ˆπ是π的一个无偏估计.其中⎩⎨⎧<=else,y x ,z j i ij 01统计量∑∑===m i nj ij z mn 111ˆπ是Mann-Whitney 于1974年提出的,人们称它为Mann-Whitney 统计量.由于在备择假设成立时,π有取较大值的趋势,所以拒绝域具有形式:在c ≥πˆ.可以证明2)1(11+-==∑∑==n n W z U m i nj y ij y 可见统计量πˆ可以由秩和检验统计量y W 表示.因此利用统计量πˆ和统计量y W 对以上检验问题所做的检验是等效的.。
北京交通大学2018~2019学年第二学期概率论与数理统计期末考试试卷(A 卷)一.(本题满分8分)某中学学生期末考试中数学不及格的为%11,语文不及格的为%7,两门课程都不及格的为%2.⑴已知一学生数学考试不及格,求他语文考试也不及格的概率(4分);⑵已知一学生语文考试不及格,求他数学考试及格的概率(4分).解:设=A “某学生数学考试不及格”,=B “某学生语文考试不及格”.由题设,()11.0=A P ,()07.0=B P ,()02.0=AB P .⑴所求概率为()()()11211.002.0===A P AB P A B P .⑵所求概率为()()()()()()7507.002.007.0=-=-==B P AB P B P B P B A P B A P .二.(本题满分8分)两台车床加工同样的零件,第一台车床加工出现不合格品的概率为0.03,第二台车床加工出现不合格品的概率为0.05;把两台车床加工的零件放在一起,已知第一台车床加工的零件数比第二台车床加工的零件多一倍.现从这两台车床加工的零件中随机地取出一件,发现是不合格品,求这个零件是第二台车床加工的概率.解:设=A “任取一个零件是不合格品”,=B “任取一个零件是第一台车床加工的”.所求概率为()A B P .由Bayes 公式得()()()()()()()B A P B P B A P B P B A P B P A B P +=11503.03205.03105.031=⨯+⨯⨯=.三.(本题满分8分)设随机变量X 的密度函数为()⎪⎩⎪⎨⎧≤≤=其它02cos πx x C x f .⑴求常数C (3分);⑵现对X 独立重复地观察4次,用Y 表示观察值大于3π的次数,求()2Y E (5分).解:⑴由密度函数的性质,()1=⎰+∞∞-dx x f ,得()C xC dx x C dx x f 22sin 22cos 10====⎰⎰+∞∞-ππ,因此,21=C .⑵由于()212112sin 2cos 213333=-====⎪⎭⎫ ⎝⎛>⎰⎰+∞ππππππx dx x dx x f X P .所以,随机变量Y 的分布列为()kk C k Y P ⎪⎭⎫⎝⎛⋅==214,()4,3,2,1,0=k .所以()()∑==⋅=422k k Y P kYE 51614164316621641161022222=⋅+⋅+⋅+⋅+⋅=.四.(本题满分8分)在正方形(){}1,1,≤≤=q p q p D :中任取一点()q p ,,求使得方程02=++q px x 有两个实根的概率.解:设=A “方程02=++q px x 有两个实根”,所求概率为()A P .设所取的两个数分别为p 与q ,则有11<<-p ,11<<-q .因此该试验的样本空间与二维平面点集(){}11,11,<<-<<-=q p q p D :中的点一一对应.随机事件A 与二维平面点集(){}04,2≥-=q p q p D A :,即与点集()⎭⎬⎫⎩⎨⎧≥=q p q p D A 4,2:中的点一一对应.所以,()241312412214113112=⎪⎪⎭⎫ ⎝⎛+=⨯⎪⎪⎭⎫⎝⎛+==--⎰p p dp p D D A P A 的面积的面积.五.(本题满分8分)一个工厂生产某种产品的寿命X (单位:年)的密度函数为()⎪⎩⎪⎨⎧≤>=-00414x x ex f x.该工厂规定:该产品在售出的一年内可予以调换.若工厂售出一个该产品,赢利100元,而调换一个该产品,需花费300元.试求工厂售出一个该产品净赢利的数学期望.解:设Y 为工厂售出一个产品的净赢利,则⎩⎨⎧<-≥=13001100X X Y 所以,{}{}300300100100-=⋅-=⋅=Y P Y P EY {}{}13001100<⋅-≥⋅=X P X P ⎰⎰-+∞-⋅-⋅=14144130041100dxe dx e xx5203.1113001004141=⎪⎪⎭⎫ ⎝⎛-⋅-⋅=--e e六.(本题满分9分)设G 是由X 轴、Y 轴及直线022=-+y x 所围成的三角形区域,二维随机变量()Y X ,在G 内服从均匀分布.求X 与Y 的相关系数YX ,ρ.解:由于区域G 的面积为1,因此()Y X ,的联合密度函数为()()()⎩⎨⎧∉∈=Gy x G y x y x f ,,1,.当10<<x 时,()()()x dy dy y x f x f xX -===⎰⎰-+∞∞-12,220,所以,()()⎩⎨⎧<<-=其它01012x x x f X .当20<<y 时,()()21,210ydy dx y x f y f yY -===⎰⎰-∞+∞-,所以,()⎪⎩⎪⎨⎧<<-=其它2021y y y f Y .()()()3131212121=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x xf X E X ,()()32212=⎪⎭⎫ ⎝⎛-⋅==⎰⎰+∞∞-dy y y dy y yf Y E Y ,()()()6141312121222=⎪⎭⎫ ⎝⎛-=-⋅==⎰⎰+∞∞-dx x x dx x f x XE X,()()32212222=⎪⎭⎫ ⎝⎛-⋅==⎰⎰+∞∞-dy y ydy y f y YE Y,所以,()()()()1813161var 222=⎪⎭⎫ ⎝⎛-=-=X E X E X ,()()()()923232var 222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y ,()()⎰⎰⎰⎰⎰--+∞∞-+∞∞-⋅===1220222012,dx y x xydy dxdxdy y x xyf XY E xx,()()6121324122212123102=⎪⎭⎫ ⎝⎛+-=+-=-=⎰⎰dx x x x dx x x ,所以,()()()()181323161,cov -=⨯-=-=Y E X E XY E Y X .()()()2192181181var var ,cov ,-=-==Y X Y X YX ρ.七.(本题满分9分)某餐厅每天接待400位顾客,假设每位顾客的消费额(单位:元)服从区间()100,20上的均匀分布,并且每位顾客的消费额是相互独立的.试求:⑴该餐厅每天的平均营业额(3分);⑵用中心极限定理计算,该餐厅每天的营业额在其平均营业额的760±元之间的概率(6分).(附:标准正态分布的分布函数()x Φ的某些取值:x 55.160.165.170.1()x Φ9394.09452.09505.09554.0解:⑴设i X 表示第i 位顾客的消费额,()400,,2,1 =i .则有40021,,,X X X 相互独立,()100,20~U X i ,()400,,2,1 =i .所以,()60=i X E ,()316001280var 2==i X .再设X 表示餐厅每天的营业额,则∑==4001i i X X .所以,()()240006040040014001=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i X E X E X E (元).⑵由独立同分布场合下的中心极限定理,有{}⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯≤⨯-≤⨯-=≤-≤-3160040076031600400240003160040076076024000760X P X P ()901.019505.021645.123160040076031600400760=-⨯=-Φ=⎪⎪⎪⎪⎭⎫⎝⎛⨯-Φ-⎪⎪⎪⎪⎭⎫⎝⎛⨯Φ≈.八.(本题满分8分)设总体X 服从参数为p 的几何分布,其分布律为{}1-==k pq k X P () ,3,2,1=k .其中10<<p 是未知参数,p q -=1.()n X X X ,,,21 是取自该总体中的一个样本.试求参数p 的极大似然估计量.解:似然函数为(){}{}{}{}n n n n x X P x X P x X P x X x X x X P p L ======== 22112211,,,()()()()nx nx x x nk k n p p p p p p p p ----∑-=--⋅-==1211111111所以,()()p n x p n p L n k k -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1.所以,()01ln 1=---=∑=pnxpnp L dp d nk k,解方程,得x p 1=.因此p 的极大似然估计量为ξ1ˆ=p.九.(本题满分8分)设总体X 存在二阶矩,记()μ=X E ,()2var σ=X ,()n X X X ,,,21 是从该总体中抽取的一个样本,X 是其样本均值.求()X E (4分)及()X D (4分).解:()()μμμ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===n n n X E n X n E X E n i ni i n i i 1111111,()()n n n n X nX n X ni n i i n i i 22212212111var 11var var σσσ=⋅===⎪⎭⎫ ⎝⎛=∑∑∑===.十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为5=λ的指数分布,其密度函数为()⎩⎨⎧≤>=-0055x x e x f xX .现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令:T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数.解:X 的密度函数为()⎩⎨⎧≤>=-00055x x e x f xX ,Y 的密度函数为()⎩⎨⎧≤>=-0055y y e y f yY 由题意,知Y X T +=,设T 的密度函数为()t f T ,则()()()()⎰⎰+∞-+∞∞--=-=55dxx t f edx x t f x f t f Y xYXT 作变换x t u -=,则dx du -=,当0=x 时,t u =;当+∞→x 时,-∞→u .代入上式,得()()()()⎰⎰∞---∞--=-=tY utt Y u t T duu f eedu u f et f 55555当0≤t 时,由()0=y f Y ,知()0=t f T ;当0>t 时,()t tu u tT te du e e et f 55552555-∞---=⋅=⎰综上所述,可知随机变量T 的密度函数为()⎩⎨⎧≤>=-00255t t te t f tT .十一.(本题满分9分)设总体X 服从指数分布,其概率密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,()n X X X ,,,21是取自该总体中的一个样本.⑴求出统计量()i n i X X ≤≤=11min 的密度函数()()x f 1,并指出该分布是什么分布?⑵求常数a ,使得i ni X a T ≤≤=1min 为θ的无偏估计.解:①由于总体X 的密度函数为()⎪⎩⎪⎨⎧≤>=-001x x ex f xθθ,因此其分布函数为()()⎪⎩⎪⎨⎧>-≤==-∞-⎰0100x ex dt t f x F x xθ.所以()i ni X X ≤≤=11min 的密度函数为()()()()()θθθθθnxxn x n enee n xf x F n x f -----=⋅⎪⎪⎭⎫ ⎝⎛=-=11111,()0>x .即随机变量()i n i X X ≤≤=11min 服从参数为nθ的指数分布.②由于随机变量()i n i X X ≤≤=11min 服从参数为n θ的指数分布,所以()()()nX E X E i n i θ==≤≤11min .所以,若使()()()θθ=⋅==≤≤n a X aE X E i n i 11min ,只需取n a =即可.即若取n a =,即i ni X n T ≤≤=1min ,则T 是未知参数θ的无偏估计量.十二.(本题满分8分)设随机变量X 与Y 相互独立,而且都服从正态分布()2,σμN .令aY X U +=,bY X V -=(a与b 都是常数),试给出随机变量U 与V 相互独立的充分必要条件.解:由于随机变量X 与Y 相互独立,而且都服从正态分布,又aY X U +=,bY X V -=,所以U 与V 也都是服从正态分布的随机变量.所以,U 与V 相互独立的充分必要条件是()0,cov =V U .而()()bY X aY X V U -+=,cov ,cov ()()()()Y Y ab X Y a Y X b X X ,cov ,cov ,cov ,cov -+-=()()()21σab Y abD X D -=-=.因此,随机变量U 与V 相互独立的充分必要条件是01=-ab .。
习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 111222⨯⨯111222⨯⨯=2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 的联合分布律如表: 23247C 3C 35= 13247C 2C 35= 1232247C C 6C 35= 1132247C C 12C 35=13247C 2C 35= 2427C /C =2132247C C 6C 35= 23247C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin 0sin sin 0sin 4346362(31).4=--+=-题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12e d d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y x DP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=e ,0,0,.y x y -⎧<<⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=22,1,0,.cx y x y ⎧≤≤⎨⎩其他(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=1,,01,0,.y x x ⎧<<<⎨⎩其他求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为 2 5 8(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立? 2 5 8 P {Y=y i }{}i P X x =YXXYXY(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度; (2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图 (3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180h 的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求{=2|=2},{=3|=0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为V =max(X ,Y ) 0 1 2 3 4 5 P 0(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是U =min(X ,Y ) 0 1 2 3 P (4)类似上述过程,有W =X +Y 0 1 2 3 4 5 6 7 8 P20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r rR θθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处.y 1 y 2 y 3P {X =x i }=p ix 1 x 21/81/8P {Y =y j }=p j1/61【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= YX而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,,为常数,且的数学期望()=??,{≤0|≤0}=,记=+.求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +=1 即 a+b+c = .由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为?2,?1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.27. 设随机变量X,Y 独立同分布,且X 的分布函数为F(x),求Z=max{X,Y}的分布函数.解:因为X,Y 独立同分布,所以F X (z )=F Y (z),则F Z (z )=P{Z ≤z}=P{X ≤z ,Y ≤z}=P{x ≤z}·P{Y ≤z}=[F (z )]2.28.设随机变量X 与Y 相互独立,X 的概率分布为1{},1,0,1,3P X i i ===-Y 的概率密度为1,01,()0,Y y f y ≤<⎧=⎨⎩其他.记Z =X +Y .(1)求1{|0};2P Z X ≤= (2)求Z 的概率密度()Z f z分析 题(1)可用条件概率的公式求解.题(2)可先求Z 的分布函数,再求导得密度函数.解(1)1{0,}12{|0}2{0}P X Z P Z X P X =≤≤=== 1{0,}2{0}P X Y P X =≤== 11{}22P Y =≤=(2)(){}{}Z F z P Z z P X Y z =≤=+≤{,1}{,0}{,1}P X Y z X P X Y z X P X Y z X =+≤=-++≤=++≤= {1,1}{,0}{1,1}P Y z X P Y z X P Y z X =≤+=-+≤=+≤-= {1}{1}{}{0}{1}{1}P Y z P X P Y z P X P Y z P X =≤+=-+≤=+≤-=1[{1}{}{1}]3P Y z P Y z P Y z =≤++≤+≤-1[(1)()(1)]3Y Y Y F z F z F z =+++-'1()()[(1)()(1)]3Z Z Y Y Y f z F z f z f z f z ==+++-1,1230,.z ⎧-≤<⎪=⎨⎪⎩其他29.设随机变量(X,Y)服从二维正态分布,且X 与Y 不相关,f X (x),f Y (y)分别表示X,Y 的概率密度,求在Y=y 的条件下,X 的条件概率密度f X |Y (x |y).解:由第四章第三节所证可知,二维正态分布的不相关与独立性等价,所以f(x,y)= f X (x) ·F Y (y),由本章所讨论知,/()()(,)(/)()()()X Y X Y X Y Y f x f y f x y f x y f x f y f y ===.30.设二维随机变量(X ,Y )的概率密度为2,01,01,(,)0,.x y x y f x y --<<<<⎧=⎨⎩其他(1)求{2};P X Y >(2)求Z =X +Y 的概率密度()Z f z .分析 已知(X,Y)的联合密度函数,可用联合密度函数的性质{(,)P X Y ∈}(,)GG f x y dxdy =⎰⎰ 解(1); Z=X+Y 的概率密度函数可用先求Z 的分布函数再求导的方法或直接套公式求解. 解 (1)2{2}(,)x yP X Y f x y dxdy >>=⎰⎰1200120(2)57().824x dx x y dy x x dx =--=-=⎰⎰⎰(2)()(,),Z f z f x z x dx +∞-∞=-⎰其中 2()01,01(,)0x z x x z x f x z x ---<<<-<⎧-=⎨⎩其他201,01z x z x -<<<-<⎧=⎨⎩其他当02z z ≤≥或时,()0Z f z =; 当01z <<时,0()(2)(2);zZ f z z dx z z =-=-⎰ 当12z ≤<时,121()(2)(2),Z z f z z dx z -=-=-⎰即Z 的概率密度为2(2)01()(2)120Z z z z f z z z -<<⎧⎪=-≤<⎨⎪⎩其他。
《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
同时,也为一些后续课程的学习提供必要的基础。
三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。
§8.6 秩和检验
上一节中的检验方法是基于两独立样本都是来自于正态总体的假设.而在不少情形中,这种前提条件并不一定成立.既使能通过正态性检验,在样本容量较小时,其有效性也值得怀疑.于是我们得另辟蹊径,寻找不需要正态性假设的检验方法.当然一点假设都没有是不现实的.这里我们假设:F 和G 都是连续型分布,并且F 和G 的形式相同只相差一个平移c)-x (G )x F(=.
在这样的假定(或模型)下,如果0>c ,则对于x ∀,总有 )x Y (P )x (G -)c -x (G -)x (F -)x X (P >=>==>111
也即X 相对于Y 倾向于取更大的值,这种情况我们称之为X 随机地大于Y .如果0<c ,则X 随机地小于Y .如果0=c ,则两分布相同.我们考虑如下假设检验问题:
(I)G F :H =0 对 G F :H ≠1 (II) G F :H =0 对 G F :H >1 (III) G F :H =0 对 G F :H <1
在以上设定的模型下,上面假设分别等价于如下假设 (I)00=c :H 对 01≠c :H (II) 00=c :H 对 01>c :H (III) 00=c :H 对 01<c :H
由于对F 和G 的形状没有作任何假定,利用原有尺寸的观测进行分析己经行不通了.我们可以用秩替代原有尺寸的观测行统计分析.这样做至少有两个优势:(1)分析结果关于任何单调变换都是不变的;(2)可以减轻离群值的影响(即提高稳健性).并且这种非参数方法
和前面介绍的参数方法的势相差不大.下面介绍秩和检验方法. 设n x x ,,1 为来自某连续型总体的简单随机样本.由于总体具有连续分布,从而以概率1保证样本中各样品互不相等.将样本从小到大排列成)
()1n x x << (.若)(i
R i x x =,则称i x 在样本n x x ,,1 中的秩为i R ,简称i x 的秩为i R .),,(1n R R R =以及R 的任意函数称为秩统计量.
秩统计量R
服从离散分布,它的所有可能取值共有!n 个,而且取每
个可能值),,(1n r r 的概率均为!/1n ,其中),,(1n r r 为),,2,1(n 的任一置换.这说明R 服从离散均匀分布.由此可见,秩统计量的分布与总体服从什么样的分布是没有关系的.
设简单随机样本
m x x ,,1 (m x x ,,1 表示试验组的响应)和n
y y ,,1 (n y y ,,1 表示控制组的响应)分别来自相总体F 和G ,如果将这两样本合在一起从小到大排序的话,那么在F G =时,n y y ,,1 (由于n y y ,,1 在合样本中排序位置定了后,m x x ,,1 也就定了,因此只须考虑样本n y y ,,1 的排序位置.当然也可只考虑样本m x x ,,1 的排序位置)既不会倾向于排在左边也不会倾向于排在右边,即合样本中n y y ,,1 的秩的和既不会偏大也不会偏小;在F G >时,n y y ,,1 会倾向于排在右边.即合样本中来自Y 的样本n y y ,,1 的秩的和会偏大,这就是Wilcoxon 检验的思想.
在
合样本),,,,,(11n m y y x x 中,记),,1(n j y j =的秩为
),,2,1(n m R R j j += ,样本n y y ,,1 的秩和为
∑==n
j j y R W 1
对于检验问题(I ),当y W 偏大或偏小时,可拒绝原假设G F :H =0
,
因此该检验问题的拒绝域的形式为1k W y ≤或1k W y ≥.同样的分析可得检验问题(II )的的拒绝域的形式为k W y ≤;检验问题(III )的的拒绝域的形式为k W y ≥.
在原假设成立时,即F G =时,合样本),,,,,(11n m y y x x 的秩统计量
)R ,,R ,R ,,R (R n m 11~
~=服从离散均匀分布.利用这一性质,我们可确定y W 的概率分布,从而确定拒绝域的临界值或计算检验的p 值. 人们构
造了Wilcoxon 秩和检验统计量分位数表,查表可以得到检验的p 值及拒绝域的临界值.
例如,4个试验对象中,随机地选2个分配到试验组,另2个分配到控制组.试验组的响应记为21x ,x ,控制组的响应记为21y ,y .在F G =时,合样本的秩统计量)R ,R ,R ,R (R 2211~
~=具有离散均匀分布 24
14321=
=))r ,r ,r ,r (R (P , )r ,r ,r ,r (4321是),,,(4321的任一置换.那么控制组的响应21y ,y 的秩和
21R R W y +=的概率分布为
假设试验组的响应为1,3,控制组的响应为6,4.直观地看试验组中的响应全部小于控制组的响应.似乎应该得出结论:试验具有减少响应的效应.但我们还是别着急下结论.
控制组的秩和为7=y W ,试验组的秩和为3=x W .这种差异能够提供试验组和控制组之间具有系统性差异的可信证据吗?或者仅仅偶然因素也可能会造成这样的差异?要回答这个问题,我们需要计算在零假
设下(即试验根本没有任何效应,试验结果的差异完全是由随机因素引起的)出现这样的差异的概率.由前面已得出的y W 的概率分布,易得
617=
=)W P(y .一个概率为6
1
的事件在一次试验中发生了,并不会让我们感到意外,换言之,由于这个概率还不是足够小,那么这样的差异还没有提供否定零假设的充分证据.要注意的是我们得不出结论:试验具有减少响应的效应.但不意味着我们就应该得出结论: 试验具有增加响应的效应.事实上,由于样本容量太小,出现任何结果(即y W 取任何一个可能的值)都是正常的.通过这样小容量的样本,我们无法得到任何可靠的结论.当然由于两组结果之间的差异还是很大的,我们可以增加试验对象以得出可靠的结论.
我们在这里假设观测值互不相等.而在实际中,出现相同的观测值也属正常,此时相同值的秩就取为它们的秩的平均值,只要这种情况较少,就不会过度影响显著性水平.由于2
)
m n )(m n (W W y x 1+++=
+,在
秩和检验中可在x W ,y W 之间任选其一作为检验统计量.在实用中,常选容量较小的样本的秩和作为检验统计量.
在样本容量很大时,利用以上方法计算检验的
p 值就会很麻烦,我
们可以利用y W 的渐近分布解决.有如下结论.
定理 在n m y y x x ,,,,,11 具有相同的连续分布时,则在样本容量
n m ,都趋于无穷大时,秩和检验统计量y W 具有渐近正态性:
)1,0(12
/)1(2/)1()
()(N N mn N n W W Var W E W L
y y y y →++-=
-
这里m n N +=.
由此定理,在大样本场合,可由正态分布得出检验问题的p 值. 出
现相同的观测值时,上述定理中的)W (ar V y 要作修正,此处不再讨论了.
我们可以从另外角度推导秩和检验.
设样本m x x ,,1 和n y y ,,1 分别来自相互独立的连续型总体X 和Y .
X
和Y 的分布函数分别为F 和G .考虑检验问题
:0H )()(x G x F =,对 :1H )()(x G x F >.
在)()(a x F x G -=时,检验问题化为
0:0=a H 对 0:1>a H .
在原假设成立时, 有
5.0)(=<Y X P 而备择假设为真时,则有 5.0)(><Y X P
令)(Y X P <=π.那么,上述检验问题可简化为关于参数π的检验问题, 5.0:0=πH 对 5.0:1>πH
显然
∑∑===m i n
j ij z mn 11
1ˆπ 是π的一个无偏估计.其中
⎩⎨
⎧<=else
,y x ,z j
i ij 01
统计量∑∑===m i n
j ij z mn 11
1ˆπ是Mann-Whitney 于1974年提出的,人们称它为Mann-Whitney 统计量.由于在备择假设成立时,π有取较大值的趋
势,所以拒绝域具有形式:在c ≥π
ˆ. 可以证明
2
)
1(11
+-
==∑∑==n n W z U m i n
j y ij y 可见统计量πˆ可以由秩和检验统计量y W 表示.因此利用统计量πˆ和统计量y W 对以上检验问题所做的检验是等效的.。