PCB焊接怎样设定锡膏回流温度曲线
- 格式:doc
- 大小:221.50 KB
- 文档页数:7
回流焊PCB温度曲线讲解1. 引言回流焊是电子元器件表面贴装的主要连接工艺之一。
在回流焊过程中,合适的温度曲线对于保证焊点质量以及避免元器件损坏至关重要。
本文将介绍回流焊的基本原理,并详细讲解回流焊PCB温度曲线的设计和特点。
2. 回流焊的基本原理回流焊是利用热风或蒸汽将焊料预热至熔点,通过表面张力作用使焊料润湿焊盘,然后快速冷却固化焊点的方法。
其基本原理如下:•加热:通过预热炉或沿焊点方向移动的加热头,将焊盘、元器件表面和焊料加热至熔点附近。
•润湿:在焊料熔化后,焊料会润湿焊盘和元器件表面,形成液态焊接材料。
•冷却:在焊料润湿后,迅速冷却焊点,使焊料固化,固定连接元器件和焊盘。
3. PCB温度曲线的设计为了确保回流焊质量和避免元器件受损,需要设计合适的PCB温度曲线。
PCB温度曲线由预热阶段、高温阶段和冷却阶段组成。
3.1 预热阶段在预热阶段,PCB温度逐渐升高,热量逐渐传导到焊盘和元器件表面。
此阶段的温度升高速度较慢,以免过快的温度变化引发热应力而损坏元器件。
3.2 高温阶段在高温阶段,PCB温度达到焊料的熔点。
此阶段的温度需要保持一定时间,以确保焊料充分熔化并使焊点质量达到要求。
在高温阶段,焊料的表面张力会促使其润湿焊盘和元器件表面。
3.3 冷却阶段在冷却阶段,PCB温度迅速下降。
冷却阶段的温度变化速度需要适当控制,以避免焊点在急剧温度变化中产生冷焊、裂纹等缺陷。
4. 回流焊PCB温度曲线的特点回流焊PCB温度曲线的设计需考虑以下几个因素:4.1 元器件耐热温度不同的元器件有不同的耐热温度。
在设计温度曲线时,需要确保元器件能够耐受高温环境,避免损坏。
4.2 焊料熔点根据焊料的熔点来确定高温阶段的温度和时间。
高温阶段的温度需要高于焊料熔点以保证焊料能够充分熔化。
4.3 焊接质量要求回流焊的质量要求取决于焊接应用的具体要求,如焊点的可靠性、电气性能等。
根据焊点的要求,调整高温阶段的温度和时间,以保证焊接质量。
锡膏工艺回流温度曲线的设定与测量摘要:回流焊接是外表组装技术〔SMT 〕中所特有的工艺。
本文主要引见了锡膏工艺回流温度曲线的设定方法和回流温度曲线的测量方法。
关键词: 温度曲线、回流焊、温区引言:自80年代以来,电子产品以惊人的速度向轻浮短小和高功用化方向开展,在这个进程中外表组装技术(SMT)的普及运用起了关键的作用。
在目前业内的印刷和贴片设备、技术相差不大的状况下,回流焊接技术的好坏关于最终产品的质量和牢靠性显得至关重要。
因此对回流焊工艺停止深化研讨、开发合理的回流焊温度曲线,是保证外表组装质量的重要环节。
回流焊设备的开展在电子行业中,少量的外表组装组件(SMA)经过回流焊停止焊接,目前回流焊设备的种类以热传递方式划分有红外线、全热风、红外线加热风三种类型。
◆ 红外线:红外线回流焊是以红外线辐射的方式完成被焊元器件加热的焊接方式。
具有加热快,节能,运转颠簸的特点。
但由于印刷线路板及各种元器件因材质,色泽的不同对红外线辐射的热吸收率存在着很大的差异,因此形成印刷线路板上各种不同元件之间,以及相反元件的不同区域之间存在温度不平均的现象。
◆ 全热风:全热风回流焊是经过对流放射管嘴或许耐热风机来迫使炉内热气流循环,从而完成被焊元器件加热的焊接方式。
这种加热方式印刷线路板上元器件的温度接近设定的加热温区的气体温度,完全克制了红外线回流焊的温差和遮盖效应,但在全热风回流焊设备中循环气体的对流速度至关重要,为确保炉内的循环气体可以作用于印刷线路板上的每一个区域,气流必需具有足够的速度,这在一定水平上易形成印刷线路板的颤抖和元器件的移位。
此外这种加热方式就热交流而言效率差、能耗高。
◆ 红外加热风:红外加热风回流焊是在红外线加热的基础上追加了热风的循环,经过红外线和热风双重作用来完成被焊元器件加热的焊接方式。
这种加热方式使炉内的温度更平均,充沛应用了红外线穿透力强,具有热效率高,能耗低的特点,同时又有效地克制了红外线加热方式的温差和遮盖效应,补偿了热风加热方式对气体活动速度要求过快而形成不良影响。
如何设定回流焊温度曲线如何设定回流焊温度曲线首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类.影响炉温的关键地方是:1:各温区的温度设定数值2:各加热马达的温差3:链条及网带的速度4:锡膏的成份5:PCB板的厚度及元件的大小和密度6:加热区的数量及回流焊的长度7:加热区的有效长度及泠却的特点等回流焊的分区情况:1:预热区(又名:升温区)2:恒温区(保温区/活性区)3:回流区4 :泠却区那么,如何正确的设定回流焊的温度曲线下面我们以有铅锡膏来做一个简单的分析(Sn/pb)一:预热区预热区通常指由室温升至150度左右的区域,在这个区域,SMA平稳升温,在预热区锡膏的部分溶剂能够及时的发挥。
元件特别是集成电路缓慢升温。
以适应以后的高温,但是由于SMA表面元件大小不一。
其温度有不均匀的现象。
在些温区升温的速度应控制在1-3度/S 如果升温太快的话,由于热应力的影响会导致陶瓷电容破裂/PCB变形/IC芯片损坏同时锡膏中的溶剂挥发太快,导致锡珠的产生,回流焊的预热区一般占加热信道长度的1/4—1/3 时间一般为60—120S二:恒温区所谓恒温意思就是要相对保持平衡。
在恒温区温度通常控制在150-170度的区域,此时锡膏处于融化前夕,锡膏中的挥发进一步被去除,活化剂开始激活,并有效的去除表面的氧化物,SMA表面温度受到热风对流的影响。
不同大小/不同元件的温度能够保持平衡。
板面的温差也接近最小数值,曲线状态接近水平,它也是评估回流焊工艺的一个窗口。
选择能够维持平坦活性温度曲线的炉子将提高SMA的焊接效果。
特别是防止立碑缺陷的产生。
通常恒温区的在炉子的加热信道占60—120/S的时间,若时间太长也会导致锡膏氧化问题。
导致锡珠增多,恒温渠温度过低时此时容易引起锡膏中溶剂得不到充分的挥发,当到回流区时锡膏中的溶剂受到高温容易引起激烈的挥发,其结果会导致飞珠的形成。
恒温区的梯度过大。
这意味着PCB的板面温度差过大,特别是靠近大元件四周的电阻/电容及电感两端受热不平衡,锡膏融化时有一个延迟故引起立碑缺陷。
回流焊PCB温度曲线讲解回流焊是一种常用的电子组装工艺,用于将电子元件焊接到印刷电路板(PCB)上。
在回流焊过程中,PCB需要经历一系列的温度变化,以确保焊点可靠连接。
下面将讲解回流焊温度曲线的各个阶段及其作用。
1. 预热阶段(Preheat Stage):回流焊过程开始时,PCB需要从室温逐渐升温至预定温度。
预热阶段的作用是除去PCB上的水分和挥发性有机物,以避免在焊接过程中产生气泡和蒸汽。
通常,预热温度为100°C至150°C,持续时间为1至2分钟。
2. 热液相预热阶段(Thermal Soak Stage):在预热阶段后,PCB会继续加热至更高的温度,通常为150°C至200°C。
这一阶段的目的是让整个PCB均匀达到焊接温度,以减少焊接过程中的热应力。
热液相预热阶段的持续时间通常为1至4分钟。
3. 焊接阶段(Reflow Stage):当PCB达到焊接温度时,焊膏开始熔化,将电子元件与PCB焊接在一起。
焊接温度通常为220°C至245°C,具体取决于焊膏的特性。
焊接阶段的持续时间通常为1至3分钟。
4. 冷却阶段(Cooling Stage):焊接完成后,PCB需要冷却到室温,以确保焊点的稳定性。
冷却阶段通常使用强制风冷却或自然冷却。
冷却时间因焊接设备和PCB的尺寸而异,一般为1至5分钟。
回流焊温度曲线中的每个阶段都有其特定的温度和时间要求,这是为了保证焊接质量和工艺稳定性。
通过控制这些参数,焊接过程中的温度变化可以最小化,从而减少因热应力引起的PCB变形和元件损坏的风险。
总结来说,回流焊温度曲线包括预热阶段、热液相预热阶段、焊接阶段和冷却阶段。
每个阶段都有其特定的温度和时间要求,以确保焊接质量和PCB的稳定性。
通过合理控制回流焊温度曲线,可以提高焊接过程的可靠性和稳定性,从而保证电子产品的性能和可靠性。
回流焊是一种广泛应用于电子制造业的关键工艺,它能够将电子元件精准地焊接到印刷电路板(PCB)上。
随着电子产业的飞速发展,高集成度、高可靠性已经成为行业的新潮流。
在这种趋势的推动下,SMT(表面贴装技术)在中国也得到了进一步的推广和发展。
很多公司在生产和研发中已经大量的应用了SMT工艺和表面贴装元器件(SMC /SMD)。
因此,焊接过程也就无法避免的大量的使用回流焊机(reflow solder ing)。
我就针对回流焊温度曲线的整定谈谈我在工作中的一些经验和看法。
回流焊作为表面贴装工艺生产的一个主要设备,它的正确使用无疑是进一步确保焊接质量和产品质量。
在回流焊的使用中,最难以把握的就是回流焊的温度曲线的整定。
怎样才能更合理的整定回流焊的温度曲线呢?要解决这个问题,我们首先要了解回流焊的工作原理。
从温度曲线(见图1-1)分析回流焊的原理:当PCB进入升温区(干燥区)时,焊膏中的溶剂、气体蒸发掉,同时,焊膏中的助焊剂润湿焊盘、元器件端头和引脚,焊膏软化、塌落、覆盖了焊盘、元器件端头和引脚与氧气隔离→PCB进入保温区时,PCB和元器件得到充分的预热,以防PCB突然进入焊接高温区而损坏PCB和元器件→当P CB进入焊接区时,温度迅速上升使焊膏达到熔化状态,液态焊锡对PCB的焊盘、元器件端头和引脚润湿、扩散、漫流或回流混合形成焊锡接点→PCB进入冷却区,使焊点凝固。
此时完成了回流焊。
这款机子下部的两个加热器是用来做底部预热的,当PCB板从机子的左侧进入,依次通过上方第一块加热器、下方第一块加热器、上方第二块加热器、上方第三块加热器、下方第二块加热器、上方第四块加热器。
每块加热器的传感器分布如图。
PCB板进入炉子的过程是一个吸热的过程,它会从室温慢慢的接近它所处环境的温度。
那么,当环境的温度发生变化时,PCB板的温度也将随着环境的温度变化而变化,形成一条温度曲线。
因此,我们怎样利用回流焊的不同的加热器使PCB上的温度变化符合标准要求的温度曲线,这就是回流焊温度曲线的整定。
根据TR360回流焊结构图,我们知道这款回流焊的上方第四个加热器的温度最高,是用来焊接的,第六个传感器处的温度是最高的,对应到温度曲线的最高温度,我们就知道PCB到达这一点时所需要的时间是150秒。
锡膏工艺设定与优化回流焊温度曲线详解锡膏工艺正确设定与优化回流焊温度曲线回流焊温度曲线与制程的匹配是炉后高直通率的保障回流焊是SMT 工艺的核心技术,PCB 上全部的电子元器件通过整体加热一次性焊接完成,电子厂SMT 生产线的质量掌握占确定重量的工作最终都是为了获得优良的焊接质量。
设定好温度曲线,就管好了炉子,这是全部PE 都知道的事。
很多文献与资料都提到回流焊温度曲线的设置。
对于一款产品、炉子、锡膏,如何快速设定回流焊温度曲线?这需要我们对温度曲线的概念和锡膏焊接原理有根本的生疏。
本文以最常用的无铅锡膏Sn96.5Ag3.0Cu0.5 锡银铜合金为例,介绍抱负的回流焊温度曲线设定方案和分析其原理。
如图一:图一SAC305 无铅锡膏回流焊温度曲线图图一所示为典型的SAC305 合金无铅锡膏回流焊温度曲线图。
图中黄、橙、绿、紫、蓝和黑6 条曲线即为温度曲线。
构成曲线的每一个点代表了对应PCB 上测温点在过炉时相应时间测得的温度。
随着时间连续的记录即时温度,把这些点连接起来,就得到了连续变化的曲线。
也可以看做PCB 上测试点的温度在炉子内随着时间变化的过程。
那么,我们把这个曲线分成4 个区域,就得到了PCB 在通过回流焊时某一个区域所经受的时间。
在这里,我们还要说明另一个概念“斜率①”。
用PCB 通过回流焊某个区域的时间除以这个时间段内温度变化确实定值,所得到的值即为“斜率”。
引入斜率的概念是为了表示PCB 受热后升温的速率,它是温度曲线中重要的工艺参数。
图中A、B、C、D 四个区段,分别为定义为A:升温区,B:预热恒温区〔保温区或活化区〕,C:回流焊接区〔焊接区或Reflow 区〕,D:冷却区。
连续深入解析个区段的设置与意义:一.升温区APCB 进入回流焊链条或网带,从室温开头受热到150℃的区域叫做升温区。
升温区的时间设置在60-90 秒,斜率掌握在2-4 之间。
此区域内PCB 板上的元器件温度相对较快的线性上升,锡膏中的低沸点溶剂开头局部挥发。
锡膏工艺回流温度曲线的设定与测量引言锡膏工艺回流温度曲线是在表面贴装(SMT)过程中至关重要的一个参数。
正确设定和测量回流温度曲线可以确保焊接过程的质量和可靠性。
本文将介绍锡膏工艺回流温度曲线的设定和测量的方法。
设定回流温度曲线回流温度曲线是一条描述锡膏在回流焊过程中温度变化的曲线。
通过控制回流温度曲线,可以使锡膏达到最佳焊接温度,从而保证焊接质量。
以下是设定回流温度曲线的步骤:1.确定焊接需求:首先需要确定焊接的组件和PCB的要求,例如焊接温度范围、焊接时间等。
2.选择适当的焊接工艺:根据焊接需求选择适当的焊接工艺,例如传统波峰焊、热风炉回流焊等。
3.设定主要参数:根据焊接工艺的要求,设定主要参数,包括预热温度、焊接温度、冷却温度等。
4.设定温度曲线:根据主要参数设定温度曲线,包括升温阶段、保温阶段和冷却阶段的温度变化。
5.优化温度曲线:通过实际焊接测试和观察,逐步调整温度曲线并进行优化,以达到最佳焊接效果。
测量回流温度曲线测量回流温度曲线是验证实际回流温度与设定温度曲线是否一致的过程。
以下是测量回流温度曲线的方法:1.选择合适的测温工具:可以使用红外线温度计、热电偶等测温工具测量焊接过程中的温度变化。
2.放置测温点:根据需要,在PCB上放置测温点,通常放置在焊接组件的附近。
3.记录温度数据:在焊接过程中,使用测温工具记录温度数据,包括升温阶段、保温阶段和冷却阶段的温度变化。
4.分析数据:将记录的温度数据与设定的温度曲线进行比较和分析,确定实际回流温度是否符合要求。
5.调整和优化:根据分析结果,如有需要,进行温度曲线的调整和优化,以达到所需的焊接质量。
结论锡膏工艺回流温度曲线的设定和测量是保证焊接过程质量和可靠性的重要步骤。
通过正确设定和测量回流温度曲线,可以确保焊接温度在合理范围内,从而有效避免焊接缺陷和质量问题的产生。
本文介绍了设定和测量锡膏工艺回流温度曲线的方法,希望对读者在实际操作中有所帮助。
中温锡膏回流焊曲线
中温锡膏回流焊曲线是指在电子组装生产过程中,使用中温锡膏进行回流焊接时的温度-时间曲线。
这个曲线描述了回流焊过程中的温度变化,以确保焊接质量和组件的可靠性。
以下是一个常见的中温锡膏回流焊曲线的示例:
1. 加热阶段(Preheat Stage):
- 预热到达温度(Preheat Temperature):通常在100℃到150℃之间,持续时间约为60秒到120秒,用于去除组件和PCB的潮湿度,准备焊接。
2. 热液化阶段(Soak Stage):
- 最高热液化温度(Liquidus Temperature):通常在180℃到200℃之间,持续时间约为60秒到120秒,使锡膏完全液化,使焊点形成良好的金属间化合物。
3. 冷却阶段(Cooling Stage):
- 冷却温度(Cooling Temperature):温度逐渐降低到室温,时间根据具体要求而定,一般为60秒到180秒。
中温锡膏回流焊曲线的具体参数可以根据锡膏厂商提供的数据以及组装工艺要求进行调整。
通过控制回流焊曲线,可以确保焊接过程中的温度和时间控制到位,以获得高质量的焊接和组件可靠性。
回焊炉温度曲线设定方法(一)“正确的温度曲线将保证高质量的焊接锡点。
”约翰 . 希罗与约翰 . 马尔波尤夫( 美)在使用表面贴装组件的印刷电路板(PCB) 装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。
温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB 上一个特定点上的温度形成一条曲线。
几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定。
带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定。
每个区所花的持续时间总和决定总共的处理时间。
每个区的温度设定影响PCB 的温度上升速度,高温在PCB 与区的温度之间产生一个较大的温差。
增加区的设定温度允许机板更快地达到给定温度。
因此,必须作出一个图形来决定PCB 的温度曲线。
接下来是这个步骤的轮廓,用以产生和优化图形。
在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB 的工具和锡膏参数表。
可从大多数主要的电子工具供货商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件( 除了曲线仪本身) 。
现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。
测温仪一般分为两类:实时测温仪,实时传送温度/ 时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。
热电偶必须长度足够,并可经受典型的炉膛温度。
一般较小直径的热电偶,热质量小响应快,得到的结果精确。
有几种方法将热电偶附着于PCB ,较好的方法是使用高温焊锡如银/ 锡合金,焊点尽量最小。
另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物( 也叫热导膏或热油脂) 斑点覆盖住热电偶,再用高温胶带( 如Kapton) 粘住。
还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠。
在回流焊过程中,温度曲线一般包括预热区、恒温区和回流区。
预热区的目的是使PCB板从室温缓慢加热到150°C左右,以利于锡膏中的部分溶剂及水气挥发,避免影响后续的焊接品质。
预热区的升温速度通常控制在1.5°C~3°C/sec之间,以避免零件内外或不同零件间有温度不均匀的现象发生,造成零件变形等问题。
恒温区的主要目的是使锡膏在大约150°C的温度下保持一段时间,以便助焊剂中的活性剂得以活化,助焊剂可以快速地扩散并覆盖到最大区域的焊点。
回流区的温度最高,一般在200°C-240°C之间,这个温度区间取决于所使用的锡膏类型。
例如,对于Sn63/Pb37的锡膏,其回流区的温度区间是200°C-225°C;对于Sn96.5/Ag3.0/Cu0.5的锡膏,其回流区的温度区间是230°C-240°C。
以上内容仅供参考,建议查阅关于回流焊温度曲线的专业书籍或咨询专业人士,获取更准确的信息。
低温锡膏回流焊曲线
低温锡膏回流焊曲线是一种用于焊接电子元件和电路板的工艺曲线。
它描述了在焊接过程中的温度变化情况,以确保焊接的质量和可靠性。
一般来说,低温锡膏回流焊曲线包括以下几个关键温度区域:
1. 预热区:在这个区域内,温度较低,通常在80°C到150°C 之间。
目的是将电路板和电子元件加热至与焊接温度接近的温度,以避免热应力和冷焊等问题。
2. 热波区:在这个区域内,温度逐渐上升以融化低温锡膏,通常在150°C到200°C之间。
温度上升的速度应适中,以避免过快导致焊接不均匀或烧损电子元件。
3. 焊接区:在这个区域内,温度达到低温锡膏的熔点,通常在200°C到250°C之间。
在温度达到设定值后,保持一段时间以确保焊点的完全熔化和扩散。
4. 冷却区:在这个区域内,温度逐渐下降,通常在150°C到100°C之间。
目的是使焊点快速冷却并固化,以确保焊点结构的稳定性和可靠性。
不同的低温锡膏和焊接设备可能有不同的回流焊曲线要求,具体的参数需要根据实际情况进行调整和优化。
在实际操作中,也应根据电子元件和电路板的特性和需求,选择合适的焊接曲线和工艺参数。
中温锡膏回流焊曲线中温锡膏回流焊是电子制造中常用的一种焊接工艺,用于将封装的电子元件固定在印刷电路板(PCB)上。
在焊接过程中,中温锡膏通过加热至熔点使其变成液体状态,然后在PCB上形成焊点,最后冷却固化。
中温锡膏回流焊曲线是指控制焊接过程中温度变化的一条曲线,它对焊接质量和效率有重要影响。
中温锡膏回流焊曲线通常分为预热区、加热区、焊接区和冷却区。
预热区用于提前将PCB和元件加热至适宜的温度,以免在加热区温度升高过程中发生热应力损伤。
加热区是焊接过程中最关键的区域,温度要达到中温锡膏的熔点以使其融化成液体。
焊接区是中温锡膏融化后与PCB和元件形成焊点的区域,焊点的质量和可靠性取决于焊接区的温度和时间。
冷却区是将焊接后的PCB和元件迅速冷却至室温,使焊点变硬并固定在PCB上。
为了控制中温锡膏回流焊的质量和效率,必须严格控制焊接过程中的温度变化。
焊接曲线中的时间和温度是根据不同元件和PCB的要求进行调整的。
一般而言,预热区的温度范围为100℃-150℃,时间为1-3分钟;加热区的温度范围为150℃-200℃,时间为1-2分钟;焊接区的温度范围为200℃-230℃,时间为1-3分钟;冷却区的温度范围为30℃-50℃,时间为1-3分钟。
中温锡膏回流焊曲线的设计要充分考虑到焊接质量和生产效率的平衡。
如果温度过低或时间过长,焊点可能无法完全熔化,导致焊点质量不佳;相反,如果温度过高或时间过短,可能会引起焊接过热或过度焊接,导致焊接点断裂或损坏。
因此,合理设计回流焊曲线以实现高质量和高效率的焊接非常重要。
除了温度和时间,还有其他因素也会影响中温锡膏回流焊的质量。
例如,回流焊设备的性能和精度、锡膏的配方和质量,以及PCB和元件的尺寸和排列等。
在实际应用中,需要根据具体要求和条件进行调整和优化。
综上所述,中温锡膏回流焊曲线是控制焊接过程中温度变化的重要工具。
合理设计和调整中温锡膏回流焊曲线,可以实现高质量和高效率的焊接,确保电子元件固定在PCB上并保证产品的可靠性和稳定性。
在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。
温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线。
几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定。
带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定。
每个区所花的持续时间总和决定总共的处理时间。
每个区的温度设定影响PCB的温度上升速度,高温在PCB与区的温度之间产生一个较大的温差。
增加区的设定温度允许机板更快地达到给定温度。
因此,必须作出一个图形来决定PCB的温度曲线。
接下来是这个步骤的轮廓,用以产生和优化图形。
在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表。
可从大多数主要的电子工具供应商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件(除了曲线仪本身)。
现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。
测温仪一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。
热电偶必须长度足够,并可经受典型的炉膛温度。
一般较小直径的热电偶,热质量小响应快,得到的结果精确。
有几种方法将热电偶附着于PCB,较好的方法是使用高温焊锡如银/锡合金,焊点尽量最小。
另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物(也叫热导膏或热油脂)斑点覆盖住热电偶,再用高温胶带(如Kapton)粘住。
还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠。
附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间。
(图一、将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间)锡膏特性参数表也是必要的,其包含的信息对温度曲线是至关重要的,如:所希望的温度曲线持续时间、锡膏活性温度、合金熔点和所希望的回流最高温度。
在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。
温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线。
几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定。
带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定。
每个区所花的持续时间总和决定总共的处理时间。
每个区的温度设定影响PCB的温度上升速度,高温在PCB与区的温度之间产生一个较大的温差。
增加区的设定温度允许机板更快地达到给定温度。
因此,必须作出一个图形来决定PCB的温度曲线。
接下来是这个步骤的轮廓,用以产生和优化图形。
在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表。
可从大多数主要的电子工具供应商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件(除了曲线仪本身)。
现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。
测温仪一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。
热电偶必须长度足够,并可经受典型的炉膛温度。
一般较小直径的热电偶,热质量小响应快,得到的结果精确。
有几种方法将热电偶附着于PCB,较好的方法是使用高温焊锡如银/锡合金,焊点尽量最小。
另一种可接受的方法,快速、容易和对大多数应用足够准确,少量的热化合物(也叫热导膏或热油脂)斑点覆盖住热电偶,再用高温胶带(如Kapton)粘住。
还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠。
附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间。
(图一、将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间)锡膏特性参数表也是必要的,其包含的信息对温度曲线是至关重要的,如:所希望的温度曲线持续时间、锡膏活性温度、合金熔点和所希望的回流最高温度。
在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的焊点,一条优化的回流温度曲线是最重要的因素之一。
温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表PCB上一个特定点上的温度形成一条曲线。
几个参数影响曲线的形状,其中最关键的是传送带速度和每个区的温度设定。
带速决定机板暴露在每个区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该区的温度设定。
每个区所花的持续时间总和决定总共的处理时间。
每个区的温度设定影响PCB的温度上升速度,高温在PCB和区的温度之间产生一个较大的温差。
增加区的设定温度允许机板更快地达到给定温度。
因此,必须作出一个图形来决定PCB的温度曲线。
接下来是这个步骤的轮廓,用以产生和优化图形。
在开始作曲线步骤之前,需要下列设备和辅助工具:温度曲线仪、热电偶、将热电偶附着于PCB的工具和锡膏参数表。
可从大多数主要的电子工具供应商买到温度曲线附件工具箱,这工具箱使得作曲线方便,因为它包含全部所需的附件(除了曲线仪本身)。
现在许多回流焊机器包括了一个板上测温仪,甚至一些较小的、便宜的台面式炉子。
测温仪一般分为两类:实时测温仪,即时传送温度/时间数据和作出图形;而另一种测温仪采样储存数据,然后上载到计算机。
热电偶必须长度足够,并可经受典型的炉膛温度。
一般较小直径的热电偶,热质量小响应快,得到的结果精确。
有几种方法将热电偶附着于PCB,较好的方法是使用高温焊锡如银/锡合金,焊点尽量最小。
另一种可接受的方法,快速、容易和对大多数使用足够准确,少量的热化合物(也叫热导膏或热油脂)斑点覆盖住热电偶,再用高温胶带(如Kapton)粘住。
还有一种方法来附着热电偶,就是用高温胶,如氰基丙烯酸盐粘合剂,此方法通常没有其它方法可靠。
附着的位置也要选择,通常最好是将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间。
(图一、将热电偶尖附着在PCB焊盘和相应的元件引脚或金属端之间)
锡膏特性参数表也是必要的,其包含的信息对温度曲线是至关重要的,如:所希望的温度曲线持续时间、锡膏活性温度、合金熔点和所希望的回流最高温度。
开始之前,必须理想的温度曲线有个基本的认识。
理论上理想的曲线由四个部分或区间组成,前面三个区加热、最后一个区冷却。
炉的温区越多,越能使温度曲线的轮廓达到更准确和接近设定。
大多数锡膏都能用四个基本温区成功回流。
(图二、理论上理想的回流曲线由四个区组成,前面三个区加热、最后一个区冷却)
预热区,也叫斜坡区,用来将PCB的温度从周围环境温度提升到所须的活性温度。
在这个区,产品的温度以不超过每秒2~5°C速度连续上升,温度升得太快会引起某些缺陷,如陶瓷电容的细微裂纹,而温度上升太慢,锡膏会感温过度,没有足够的时间使PCB达到活性温度。
炉的预热区一般占整个加热通道长度的25~33%。
活性区,有时叫做干燥或浸湿区,这个区一般占加热通道的33~50%,有两个功用,第一是,将PCB在相当稳定的温度下感温,允许不同质量的元件在温度上同质,减少它们的相当温差。
第二个功能是,允许助焊剂活性化,挥发性的物质从锡膏中挥发。
一般普遍的活性温度范围是120~150°C,如果活性区的温度设定太高,助焊剂没有足够的时间活性化,温度曲线的斜率是一个向上递增的斜率。
虽然有的锡膏制造商允许活性化期间一些温度的增加,但是理想的曲线要求相当平稳的温度,这样使得PCB的温度在活性区开始和结束时是相等的。
市面上有的炉子不能维持平坦的活性温度曲线,选择能维持平坦的活性温度曲线的炉子,将提高可焊接性能,使用者有一个较大的处理窗口。
回流区,有时叫做峰值区或最后升温区。
这个区的作用是将PCB装配的温度从活性温度提高到所推荐的峰值温度。
活性温度总是比合金的熔点温度低一点,而峰值温度总是在熔点上。
典型的峰值温度范围是205~230°C,这个区的温度设定太高会使其温升斜率超过每秒2~5°C,或达到回流峰值温度比推荐的高。
这种情况可能引起PCB的过分卷曲、脱层或烧损,并损害元件的完整性。
今天,最普遍使用的合金是Sn63/Pb37,这种比例的锡和铅使得该合金共晶。
共晶合金是在一个特定温度下熔化的合金,非共晶合金有一个熔化的范围,而不是熔点,有时叫做塑性装态。
本文所述的所有例子都是指共晶锡/铅,因为其使用广泛,该合金的熔点为183°C。
理想的冷却区曲线应该是和回流区曲线成镜像关系。
越是靠近这种镜像关系,焊点达到固态的结构越紧密,得到焊接点的质量越高,结合完整性越好。
作温度曲线的第一个考虑参数是传输带的速度设定,该设定将决定PCB在加热通道所花的时间。
典型的锡膏制造厂参数要求3~4分钟的加热曲线,用总的加热通道长度除以总的加热感温时间,即为准确的传输带速度,例如,当锡膏要求四分钟的加热时间,使用六英尺加热通道长度,计算为:6英尺÷ 4分钟=每分钟1.5 英尺=每分钟18 英寸。
接下来必须决定各个区的温度设定,重要的是要了解实际的区间温度不一定就是该区的显示温度。
显示温度只是代表区内热敏电偶的温度,如果热电偶越靠近加热源,显示的温度将相对比区间温度较高,热电偶越靠近PCB的直接通道,显示的温度将越能反应区间温度。
明智的是向炉子制造商咨询了解清楚显示温度和实际区间温度的关系。
本文中将考虑的是区间温度而不是显示温度。
表一列出的是用于典型PCB装配回流的区间温度设定。
表一、典型PCB回流区间温度设定
区间区间温度设定
区间末实际板温
预热210°C(410°
140°C(284°F)
F)
活性177°C(350°
F)
150°C(302°F)
回流250°C(482°
C)210°C(482°F)
速度和温度确定后,必须输入到炉的控制器。
看看手册上其它需要调整的参数,这些参数包括冷却风扇速度、强制空气冲击和惰性气体流量。
一旦所有参数输入后,启动机器,炉子稳定后(即,所有实际显示温度接近符合设定参数)可以开始作曲线。
下一部将PCB放入传送带,触发测温仪开始记录数据。
为了方便,有些测温仪包括触发功能,在一个相对低的温度自动启动测温仪,典型的这个温度比人体温度37°C(98.6°F)稍微高一点。
例如,38°C(100°F)的自动触发器,允许测温仪几乎在PCB刚放入传送带进入炉时开始工作,不至于热电偶在人手上处理时产生误触发。
一旦最初的温度曲线图产生,可以和锡膏制造商推荐的曲线或图二所示的曲线进行比较。
首先,必须证实从环境温度到回流峰值温度的总时间和所希望的加热曲线居留时间相协调,如果太长,按比例地增加传送带速度,如果太短,则相反。
下一步,图形曲线的形状必须和所希望的相比较(图二),如果形状不协调,则同下面的图形(图三~六)进行比较。
选择和实际图形形状最相协调的曲线。
应该考虑从左道右(流程顺序)的偏差,例如,如果预热和回流区中存在差异,首先将预热区的差异调正确,一般最好每次调一个参数,在作进一步调整之前运行这个曲线设定。
这是因为一个给定区的改变也将影响随后区的结果。
我们也建议新手所作的调整幅度相当较小一点。
一旦在特定的炉上取得经验,则会有较好的“感觉”来作多大幅度的调整。
图三、预热不足或过多的回流曲线
图四、活性区温度太高或太低
图五、回流太多或不够
图六、冷却过快或不够
当最后的曲线图尽可能的和所希望的图形相吻合,应该把炉的参数记录或储存以备后用。
虽然这个过程开始很慢和费力,但最终可以取得熟练和速度,结果得到高品质的PCB 的高效率的生产。