上海交通大学热力学初步第二部分
- 格式:ppt
- 大小:1.53 MB
- 文档页数:45
工程热力学考研难度排名表
以下是根据考生反馈和历年考研情况整理的工程热力学考研难度排名表,供广大考生参考。
排名第一:清华大学
清华大学工程热力学考研难度较大,考题难度高、内容全面,需要考生具备扎实的基础知识和较强的分析解决问题的能力。
排名第二:北京大学
北京大学的工程热力学考研难度也比较大,需要考生在学科基础上加强练习和实践,熟练掌握各种相关知识和技能。
排名第三:上海交通大学
上海交通大学的工程热力学考研难度适中,需要考生深入掌握各种理论知识和技能,对于实践经验的要求也比较高。
排名第四:华中科技大学
华中科技大学的工程热力学考研难度相对较小,但也需要考生有较好的基础和掌握各种相关知识和技能,注重实践能力的提升。
排名第五:中国科学技术大学
中国科学技术大学的工程热力学考研难度适中,需要考生扎实的理论基础和实践能力,注重综合素质的提升。
以上是工程热力学考研难度排名表,希望考生在备考过程中可以根据自己的实际情况,选择适合的学校进行准备。
- 1 -。
《工程热力学I》课程教学大纲课程名称:工程热力学I课程代码:学分/学时:3学分/48学时开课学期:春季学期适用专业:机械工程及自动化、热能与动力工程、核工程、建筑环境与设备及相关专业先修课程:大学物理、高等数学后续课程:工程热力学II开课单位:机械与动力工程学院一、课程性质和教学目标(需明确各教学环节对人才培养目标的贡献,专业人才培养目标中的知识、能力和素质见附表)课程性质:工程热力学是机械工程、热能动力工程、工业工程、核科学与工程、航空航天工程等专业的一门重要技术基础课,是机械、能源动力类专业必修主干课。
教学目标:工程热力学是研究热能有效利用以及热能与其它能量转换规律的科学。
本课程不仅为学生学习有关专业课程提供必要的基础理论知识,也为从事相关专业技术工作、科学研究工作及管理工作提供重要的理论基础。
(A5.1, A5.2, B2, C2)本课程由基本概念、热力学基本理论、纯物质热物理性质、基本热力过程及应用五部分组成。
通过本课程教学,不仅使学生在能量转换和利用特别是热能与机械能的转换和合理利用方面树立正确的概念,同时培养学生科学抽象、逻辑思维能力,进一步强化实践是检验理论的唯一标准的认识观。
具体来说:(1)掌握热能和机械能相互转换的基本规律,并能推广应用于其它能量的转换问题。
(A5.1)(2)初步掌握热力过程和热力循环的分析方法,了解提高能量利用经济性的基本原则和主要途径。
(A5.1)(3)能运用常用工质物性公式、图表(如水蒸气)和电子软件等进行一般热力过程计算。
(A5.2)(4)初步具有从实际问题抽象为理论,并运用理论分析解决实际问题能力。
(B2)(5)强化理论来源于实践,实践是检验理论的唯一标准的认识观。
(A5.1, A5.2, C2)二、课程教学内容及学时分配(含实践、自学、作业、讨论等的内容及要求)1.绪论:能源和能源利用(2学时):能源利用、热能与机械能及其它能量形式的转换。
自学及要求:我国及全球的能源及能源利用情况;团组大作业及要求:选择:我国能源及能源政策;能源与环境;生活中的能源利用及思考之一完成一篇报告(3~5千字)其他:观看录像。
《物理化学(含实验)》考试大纲适用于报考上海交通大学化学类专业硕士研究生入学考试。
本《物理化学(含实验)》课程的主要内容包括化学热力学、化学动力学、电化学、界面化学与胶体化学和物理化学实验。
要求考生熟练掌握物理化学的基本概念、基本原理及计算方法,具有综合运用所学知识分析和解决实际问题的能力。
掌握基本实验原理和技能、数据处理和误差分析。
主要参考书《物理化学》(第五版),傅献彩、沈文霞、姚天扬等编,高等教育出版社,2005年。
《物理化学实验》(第三版),复旦大学等编,庄继华等修订,高等教育出版社,2004年。
主要题型题型有:填空题、简答题、计算题、综合题等。
基本要求一、热力学第一定律及其应用明确热力学的一些基本概念和功和热正负号的取号惯例。
明确准静态过程与可逆过程的意义。
掌握U及H都是状态函数以及状态函数的特性。
了解摩尔定压、定容热容的概念。
熟练应用热力学第一定律计算理想气体和实际气体在等温、等压、绝热等过程中的Q、W、ΔU和ΔH.熟练应用标准摩尔生成焓、标准摩尔燃烧焓计算不同温度下的化学反应热。
了解节流过程的特点及焦耳-汤姆逊系数的定义与实际应用。
从微观角度了解热力学第一定律的本质。
二、热力学第二定律明确热力学第二定律的意义。
理解克劳修斯不等式的重要性。
熟记热力学函数U、H、S、F、G的定义。
明确ΔG在特殊条件下的物理意义,熟练计算过程的ΔS、ΔF和ΔG 并用于判断变化的方向和限度。
熟练应用克拉贝龙方程式和克劳修斯-克拉贝龙方程式。
明确偏摩尔量和化学势的意义。
了解热力学第三定律的内容,明确规定熵及标准熵值的意义。
初步了解不可逆过程热力学关于熵流和熵产生等基本内容。
三、溶液-多组分体系热力学在溶液中的应用熟悉溶液浓度的各种表示法及其相互关系。
理解理想液态混合物、稀溶液与实际溶液三者的区别和联系。
掌握拉乌尔定律和亨利定律以及它们的应用。
理解理想体系(理想气体、理想液态混合物、理想稀溶液)中各组分化学势的表达式及其应用。