自动控制原理第9章 系统的设计与校正
- 格式:ppt
- 大小:5.11 MB
- 文档页数:90
9 控制系统的非线性问题9.1概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是非线性系统。
例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。
当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有非线性特性。
如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。
图9-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。
图9-1 伺服电动机特性9.1.1控制系统中的典型非线性特性的类型常见典型非线性特性有饱和非线性、间隙非线性、死区非线性、继电非线性等。
9.1.1.1饱和非线性控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。
如图9-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。
许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。
有时,工程上还人为引入饱和非线性特性以限制过载。
图9-2 饱和非线性9.1.1.2不灵敏区(死区)非线性控制系统中的测量元件、执行元件等一般都具有死区特性。
例如一些测量元件对微弱的输入量不敏感,电动机只有在输入信号增大到一定程度的时候才会转动等等。
如图9-3所示,其特性是输入信号在∆<<∆-x 区间时,输出信号为零。
超出此区间时,呈线性特性。
这种只有在输入量超过一定值后才有输出的特性称为不灵敏区非线性,其中区域∆<<∆-x 叫做不灵敏区或死区。
232第9章 线性离散系统初步从控制系统中信号的形式来划分控制系统的类型,可以把控制系统划分为连续控制系统和离散控制系统,在前面各章所研究的控制系统中,各个变量都是时间的连续函数,称为连续控制系统。
随着计算机被引入控制系统,使控制系统中有一部分信号不是时间的连续函数,而是一组离散的脉冲序列或数字序列,这样的系统称为离散控制系统。
离散控制系统是以微处理器及微型计算机为基础,融汇计算机技术、数据通信技术、CRT 屏幕显示技术和自动控制技术为一体的计算机控制系统,它对生产过程进行集中操作管理和分散控制。
离散系统与连续系统相比,有许多分析研究方面的相似性。
利用z 变换法研究离散系统,可以把连续系统中的许多概念和方法,推广应用于离散系统。
本章首先给出信号采样和保持的数学描述,然后介绍z 变换理论和脉冲传递函数,最后研究线性离散系统稳定性、稳态误差、动态性能的分析与综合方法。
9.1 离散系统通常,当离散控制系统中的离散信号是脉冲序列形式时,称为采样控制系统或脉冲控制系统;而当离散系统中的离散信号是数码序列形式时,称为数字控制系统或计算机控制系统。
在理想采样及忽略量化误差情况下,数字控制系统近似于采样控制系统,将它们统称为离散系统。
9.1.1 采样控制系统采样器在采样控制系统中可以有多个位置,用得最多的是误差采样控制的闭环采样系统,其典型结构图如图9-1所示。
图中,S 为采样开关,)(s G h 为保持器的传递函数,)(0s G 为被控对象的传递函数,)(s H 为测量元件的传递函数。
233*图9-1 采样系统典型结构图9.1.2 数字控制系统数字控制系统的典型原理图如图9-2所示。
它由工作于离散状态下的计算机(数字控制器))(s G c ,工作于连续状态下的被控对象)(0s G 和测量元件H(s)组成。
在每个采样周期中,计算机先对连续信号进行采样编码(即D A 转换),然后按控制律进行数码运算,最后将计算结果通过A D 转换器转换成连续信号控制被控对象。
自动控制原理课程设计报告专业:自动化班级:12403011学号:***************1. 已知一个二阶系统其闭环传递函数如下Φ=ks s ++25.0k 求k=0.2,0.5,1,2,5时,系统的阶跃响应和频率响应。
绘出系统的阶跃响应和频率响应曲线。
程序如下: 一.阶跃响应i=0;for k=[0.2,0.5,1,2,5]num=k;den=[0.5,1,k];sys=tf(num,den);i=i+1;step(sys,25)hold onendgridhold offtitle('k 不同时的阶跃响应曲线')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),g text('k=5')二.频率响应for k=[0.2,0.5,1,2,5]num=k;den=[0.5,1,k];bode(num,den)[mag,phase,w]=bode(num,den);mr=max(mag)wr=spline(mag,w,mr)hold onendgridhold offtitle('k不同时的频率响应曲线')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),g text('k=5')gtext('k=0.2'),gtext('k=0.5'),gtext('k=1'),gtext('k=2'),g text('k=5')2.被控对象传递函数为)20030()(2++=s s s K s G 设计超前校正环节,使系统性能指标得到满足如下要求:1) 速度误差常数=102) γ=45°由速度误差常数=10,k v =10=)20030(lim 20s ++→s s s k s , 得k=2000 程序如下:num=[2000];den=[1,30,200,0];g0=tf(num,den);figure(1);margin(g0);hold onfigure(2);sys=feedback(g0,1);step(sys)w=0.1:0.1:2000;[gm,pm,wcg,wcp]=margin(g0);[mag,phase]=bode(g0,w);magdb=20*log10(mag);phim1=45;data=18;phim=phim1-pm+data;alpha=(1+sin(phim*pi/180))/(1-sin(phim*pi/180));n=find(magdb+10*log10(alpha)<=0.0001);wc=w(n(1));w1=wc/sqrt(alpha);w2=wc*sqrt(alpha);numc=[1/w1,1];denc=[1/w2,1];gc=tf(numc,denc);g=gc*g0;[gmc,pmc,wcgc,wcpc]=margin(g);gmcdb=20*log10(gmc);disp('校正装置传递函数和校正后系统开环传递函数'),gc,g,disp('校正系统的频域性能指标KG,V,WC'),[gmc,pmc,wcpc], disp('校正装置的参数T 和a 值:'),t=1/w2;[t,alpha],bode(g0,g);hold on ,margin(g)校正装置传递函数和校正后系统开环传递函数gc =0.1647 s + 1-------------0.05404 s + 1Continuous-time transfer function.g =329.4 s + 2000-------------------------------------------0.05404 s^4 + 2.621 s^3 + 40.81 s^2 + 200 sContinuous-time transfer function.校正系统的频域性能指标KG ,V ,WCans =3.4126 45.8576 10.5873校正装置的参数T 和a 值:ans =0.0540 3.04723.被控对象传递函数为)5()(+=s s K s G 设计滞后校正环节,使系统性能指标满足如下要求:1)单位斜坡稳态误差小于5%2)闭环阻尼比ζ=0.707,ωn =1.5 rad/s由单位斜坡稳态误差小于5%,ε=v k 1=5%,得v k =20,又由v k =)5(lim 0s +→s s k s ,得k=100.由闭环阻尼比ζ=0.707,ωn =1.5 rad/s ,可算出相角裕度ν=65.5°,穿越频率c w =0.965程序如下:num=100;den=[1,5,0];go=tf(num,den);margin(go);gammao=65.5;delta=6;gamma=gammao+delta;w=0.01:0.01:1000;[mag,phase]=bode(go,w);n=find(180+phase-gamma<=0.1);wgamma=w(n(1)); [mag,phase]=bode(go,wgamma);lhc=20*log10(mag);beta=10^(lhc/20);w2=wgamma/10;w1=w2/beta;numc=[1/w2,1];denc=[1/w1,1];gc=tf(numc,denc) g=go*gcbode(go,g),hold on,margin(g),betaTransfer function:gc =5.988 s + 1-----------68.02 s + 1Continuous-time transfer function.g =598.8 s + 100---------------------------68.02 s^3 + 341.1 s^2 + 5 sContinuous-time transfer function.beta =11.35924.设已知单位负反馈系统其开环传递函数为())1125.0)(15.0(s ++=s s s k G 要求系统具有的性能指标是:1 ) 控制输入为单位速度信号(T RAD/S )时,其稳态误差E<0.15RAD2 ) 控制输入为单位阶跃信号时,其超调量σ<35%,调整时间s t <10秒3) 控制输入为单位阶跃信号时,其超调量σ<25%,调整时间s t <4秒 由 1)可求出6.67<k<10,取k=82) 由题意σ=0.16+0.4(vsin 1-1)<0.35, t s =]1)sinv12.5(1)- sinv 11.5(2[2-++c w pi <10,得相角裕度v>42.68°, 穿越频率 w c >0.96,取v=45°rad/s ,得w c =1.22 rad/s程序如下:num=8;den=conv([1,0],conv([0.5,1],[0.125,1]));g0=tf(num,d en);margin(g0);gammao=45;delta=5;gamma=gammao+delta;w=0.01:0.01:1000;[mag,phase]=bode(g0,w);n=find(180+phase-gamma<=0.1);wgamma=w(n(1));[mag,phase]=bode(g0,wgamma);lhc=20*log10(mag);beta=10^(lhc/20);w2=wgamma/10;w1=w2/beta;numc=[1/w2,1];denc=[1/w1,1];gc=tf(numc,denc)g=g0*gcbode(g0,g),hold on ,margin(g),betaTransfer function:gc =8.197 s + 1-----------45.36 s + 1Continuous-time transfer function.g =65.57 s + 8-------------------------------------2.835 s^4 + 28.41 s^3 + 45.99 s^2 + s Continuous-time transfer function. beta =5.53413 )由题意σ=0.16+0.4(v sin 1-1)<0.25 t s =]1)sinv12.5(1)- sinv 11.5(2[2-++c w pi <4,得相角裕度v>54.7°,穿越频率w c >1.935 rad/s程序如下:num=8;den=conv([1,0],conv([0.5,1],[0.125,1]));g0=tf(num,d en);[kg,gamma,wg,wc]=margin(g0);kgdb=20*log10(kg);w=0.001:0.001:100;[mag,phase]=bode(g0,w);disp('未校正系统参数:20LGKG,WC,');[kgdb,wc,gamma], gamma1=54.7;delta=5;phim=gamma1-gamma+delta;alpha=(1+sin(phim*pi/180))/(1-sin(phim*pi/180));wcc=2.5;w3=wcc/sqrt(alpha);w4=sqrt(alpha)*wcc;numc1=[1/w3,1];denc1=[1/w4,1];gc1=tf(numc1,denc1);g01=g0*gc1;[mag1,phase1]=bode(g01,wc);lhc=20*log10(mag1);beta=10^(lhc/20);w2=wcc/10;w1=w2/beta;numc2=[1/w2,1];denc2=[1/w1,1];gc2=tf(numc2,denc2);gc=gc1*gc2;g=gc*g0;[gmc,pmc,wcgc,wcpc]=margin(g);gmcdb=20*log10(gmc); disp('超前校正部分的传递函数'),gc1,disp('滞后校正部分的传递函数'),gc2,disp('串联超前—滞后校正传递函数'),gc,disp('校正后整个系统的传递函数'),gdisp('校正后系统参数:20LGKG,WC,R 及A 值'),[gmcdb,wcpc,pmc,alpha],bode(g0,g),hold on ,margin(g),beta未校正系统参数:20LGKG,WC, ans =1.9382 3.5703 5.2057 超前校正部分的传递函数gc1 =1.249 s + 1------------0.1281 s + 1Continuous-time transfer function. 滞后校正部分的传递函数gc2 =4 s + 1-----------16.63 s + 1Continuous-time transfer function.串联超前—滞后校正传递函数gc =4.998 s^2 +5.249 s + 1-----------------------2.13 s^2 + 16.76 s + 1Continuous-time transfer function.校正后整个系统的传递函数g =39.98 s^2 + 42 s + 8--------------------------------------------------0.1331 s^5 + 2.378 s^4 + 12.67 s^3 + 17.38 s^2 + s Continuous-time transfer function.校正后系统参数:20LGKG,WC,R及A值ans =12.4993 3.5771 54.8601 9.7561beta =4.1575。
《自动控制原理》课程标准一、课程概述(一)课程性质地位自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。
由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。
本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。
(二)课程基本理念为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。
(三)课程设计思路本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。
课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。
在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。
在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。
二、课程目标(一)知识与技能通过本课程的学习,使学员掌握自动控制原理的基本概念和基本的分析与设计方法,重点培养学生利用自动控制的基本理论分析与解决工程实际问题的思维方式和初步能力,并为学习后续相关专业课程,以及进一步学习和应用自动控制方面的新知识、新技术打下必要基础。
题目控制系统设计与校正课程名称自动控制原理课程设计院部名称机电工程学院专业电气工程及其自动化班级10电气工程及其自动化(单)学生姓名学号课程设计地点 C306课程设计学时1周指导教师目录一、绪论1.1、相关背景知识 (3)1.2、课程设计任务 (3)二、设计过程 (4)2.1、确定校正传递函数 (4)2.2、利用MATLAB绘画未校正系统的bode图 (4)三、三种响应曲线 (8)3.1、校正前的三种响应曲线 (8)3.2、校正后三种响应曲线 (11)四、特征根 (13)4.1、校正前的特征根 (13)4.2、系统校正后的特征根 (14)五、系统的动态性能指标 (14)5.1、校正前动态性能指标σ%、tr、tp、ts (14)5.2、校正后的动态性能指标 (15)5.3、系统的稳态误差 (17)六、根轨迹 (17)6.1、校正前的根轨迹 (17)6.2、校正后的根轨迹 (19)七、系统的Nyquist图 (21)7.1、求系统校正前的Nyquist图 (21)7.2、求系统校正后的Nyquist图 (22)八、参考文献 (24)一、绪论1.1、相关背景知识所谓校正,就是在系统中加入一些其参数可以根据需要而改变的机构或装置,使系统整个特性发生变化,从而满足给定的各项性能指标。
系统校正的常用方法是附加校正装置。
按校正装置在系统中的位置不同,系统校正分为串联校正、反馈校正和复合校正。
按校正装置的特性不同,又可分为超前校正、滞后校正和滞后-超前校正、PID 校正。
这里我们主要讨论串联校正。
串联超前校正是利用超前网络或PD 控制器进行串联校正的基本原理,是利用超前网络或PD 控制器的相角超前特性实现的,使开环系统截止频率增大,从而闭环系统带宽也增大,使响应速度加快。
1.2、课程设计任务(1)、要求:a 、掌握自动控制原理的时域分析法,根轨迹法,频域分析法,以及各种补偿(校正)装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标。
第9章 习题参考答案9-1 设一阶非线性系统的微分方程为3x x x =-+试确定系统有几个平衡状态,分析各平衡状态的稳定性,并作出系统的相轨迹。
解 3x x x =-+由30x x -+=解得1230, 1, 1e e e x x x ===-。
作出系统的相轨迹图如下:平衡状态(0, 0)稳定,平衡状态(1, 0), (1, 0)-不稳定。
9-2 已知非线性系统的微分方程为(1) 320x x x ++= (2) 0x xx x ++= (3) 0x x x ++= (4) 2(1)0x x x x --+= 试确定系统的奇点及其类型,并概略绘制系统的相轨迹图。
解 (1) 奇点(0, 0)。
特征方程为2320λλ++=两个特征根为1,21, 2λ=--平衡点(0, 0)为稳定节点。
在奇点附近的概略相轨迹图:x(2) 奇点(0, 0)。
在平衡点(0, 0)的邻域内线性化,得到的线性化模型为0x x +=其特征方程为210λ+=两个特征根为1,2j λ=±平衡点(0, 0)为中心点。
在奇点附近的概略相轨迹图:x(3) 奇点(0, 0)。
原方程可改写为0000x x x x x x x x ++=≥⎧⎨+-=<⎩其特征方程、特征根和类型为21,221,2100.50.866 10 1.618, 0.618 j λλλλλλ⎧++==-±⎪⎨+-==-⎪⎩稳定焦点鞍点 在奇点附近的概略相轨迹图:(4) 奇点(0, 0)。
在平衡点(0, 0)的邻域内线性化,得到的线性化模型为x x x-+=其特征方程为210λλ-+=两个特征根为1,20.50.866jλ=±平衡点(0, 0)为不稳定焦点。
在奇点附近的概略相轨迹图:xx9-3 非线性系统的结构图如图9-48所示。
系统开始是静止的,输入信号r(t)=4·1(t),试写出开关线方程,确定奇点的位置和类型,在e-e平面上画出该系统的相平面图,并分析系统的运动特点。
自动控制原理知识要点与习题解析第2章 控制系统的数学模型数学模型有多种表现形式:传递函数、方框图、信号流图等。
;; )()()()(t e t c t n t r )()()()()()(s s s s s H s G en n e ΦΦΦΦ; P32 (自动控制原理p23)2-17P33解:(e)4232121123211)(G H G G H G G H G G G G s ++-+=Φ;P37 (p73)2-21 试绘制与题2-21图中系统方框图对应的信号流图,并用梅森增益公式求传递函数C (s )/R (s ) 和误差传递函数E (s )/R (s )注:P21(2) 依据系统方框图绘制信号流图首先确定信号流图中应画出的信号节点,再根据方框图表明的信号流向,用支路及相应的传输连接信号节点。
步骤如下,(a)系统的输入为源点,输出为阱点;(b)在方框图的主前向通路上选取信号节点,即相加点后的信号和有分支点的信号,两信号是同一个题2-21图 系统方框图 题2-1 7图 控制系统方框图 题2-17解图 控制系统简化方框图信号时只作为一个节点;(c)其它通路上,仅反馈结构求和点后的信号选作节点; (d)最后,依据信号关系,用支路连接这些节点。
解:图(a)信号流图如题2-21解图(a)所示。
计算C (s )/R (s )和E (s )/R (s )过程中,关于回路和特征式的计算是完全相同,可统一计算。
回路111H G L -=,232H G L -=,213213H H G G G L -=;特征式 21312132123111H H G G H H G G G H G H G ++++=∆。
计算C (s )/R (s ):前向通路 3211G G G P =,342G G P =; 特征子式 11=∆,1121H G +=∆;2131223111134321)1(1)1()()(H H G G G H G H G H G G G G G G s R s C ++++++=; 计算E (s )/R (s ):前向通路 11=P ;21342H H G G P -=; 特征子式 2311H G +=∆,12=∆;213122311213423)1(11)()(H H G G G H G H G H H G G H G s R s E ++++-+=;P38 (p73)2-22 试用梅森增益公式求题2-22图中各系统信号流图的传递函数)(/)(s R s C 。