毕业设计指导书框架结构设计内力计算及组合
- 格式:docx
- 大小:164.88 KB
- 文档页数:25
第4章内力分析与内力组合结构设计时,需要计算各单项作用下的结构内力,然后根据《建筑结构荷载规范》 GB 50009 2012和《建筑抗震设计规范》GB 50011-2010有关条款进行各种内力组合,组合结果作为结构配筋的依据。
多层框架结构在竖向荷载作用下的手算方法通常采用分层法或弯矩二次分配法,水平荷载作用下采用反弯点法或D值法。
本章介绍上述结构内力计算方法以及结构在无地震作用和有地震作用下的内力组合方式。
4. 1 竖向荷载作用下内力分析4.1.1 分层法1.基本假定在竖向荷载作用下的框架近似作为无侧移框架进行分析。
根据弯短传递的特点,当某层框架梁作用竖向荷载时,假定竖向荷载只在该层梁及相邻柱产生弯矩和剪力,而在其他楼层梁和隔层的框架柱不产生弯矩和剪力。
2.计算方法(1)叠加原理计算方法按照叠加原理,多层多跨框架在多层竖向荷载同时作用下的内力,可以看成是各层竖向荷载单独作用下内力的叠加,见图4-1 (a)。
又根据分层法所作的假定,可将各层框架梁及与其相连的框架柱作为一个独立的计算单元,柱远端按固定端考虑,图4-1 (b)。
先分别采用弯矩分配法计算独立计算单元在各自竖向荷载作用下的内力,然后叠加得到多层竖向荷载共同作用下的多层框架内力。
各独立计算单元竖向荷载作用下计算得到的梁端弯矩即为其最终弯矩,而每一层柱的最终弯矩由相邻独立计算单元对应柱的弯矩叠加得到。
(2)计算误差的修正由于各独立计算单元柱的远端按固定端考虑,这与实际框架节点的弹性连接情况不吻合,因此在计算中采用下列措施进行修正:除底层外其他各层柱的线刚度均乘以折减系数0.9;除底层柱外,其他各层柱的弯矩传递系数由1/2改为1/3;底层柱线刚度和弯短传递系数保持不变。
(3)不平衡弯矩的处理方法由于每一层柱均是由相邻上下独立计算单元对应柱的弯矩叠加得到,因此除顶层外各节点肯定存在不平衡弯矩。
节点处不平衡弯矩较大的可再分配一次,但不再传递。
根据弯矩计算结果,竖向荷载作用下梁的跨中弯矩、梁端剪力及柱的轴力由静力平衡条件得到。
目录1绪论 (1)1.1工程背景 (1)1.1.1设计资料 (1)1.1.2材料 (1)1.2 工程特点 (1)1.3 本章小结 (2)2结构设计 (3)2.1框架结构设计计算 (3)2.1.1工程概况 (3)2.1.2 设计资料 (3)2.1.3 梁柱截面、梁跨度及柱高度的确定 (4)2.1.4 荷载计算 (5)2.1.5 水平地震作用下框架的侧向位移验算 (11)2.1.6 水平地震作用下横向框架的内力分析 (15)2.1.7 竖向荷载作用下横向框架的内力分析 (16)3.1.8 内力组合 (22)2.1.9 截面设计 (30)2.2板的计算 (50)2.2.3 屋面板 (53)2.3 楼梯设计 (57)2.3.1 计算简图及截面尺寸 (57)2.3.2 设计资料 (57)2.3.3 梯段板设计 (58)2.3.4 平台板计算 (59)2.3.5 平台梁计算 (59)结论 (62)致谢 (63)参考文献 (64)1 绪论1.1工程背景本项目为6层钢筋混凝土框架结构,占地面积约为960.96㎡,总建筑面积约为5765.76㎡;层高3.6m,平面尺寸为18.3m×52.0m。
采用桩基础,室内地坪为±0.000m,室外内高差0.6m。
框架梁、柱、楼面、屋面板板均为现浇。
1.1.1设计资料(1)气象资料夏季最高气温40℃,冬季室外气温最低-20℃。
冻土深度25cm,基本风荷载W。
=0.35kN/㎡;基本雪荷载为0.2 kN/㎡。
年降水量500mm。
(2)地质条件建筑场地地形平坦,粘性土层,不考虑地下水。
(3)地震设防烈度八度1.1.2材料柱采用C30,纵筋采用HRB335,箍筋采用HPB235,梁采用C30,纵筋采用HRB335,箍筋采用HPB235。
基础采用C30,纵筋采用HRB400,箍筋采用HPB235。
1.2 工程特点本工程为六层,主体高度为21.6米。
建筑采用的结构可分为钢筋混凝土结构、钢结构、钢-钢筋混凝土组合结构等类型。
一、工程概况1.工程概况1.1建设项目名称:中学教学楼本工程建筑功能为公共建筑,使用年限为50年;建筑平面的横轴轴距为6.0m ,纵轴轴距为5.4m 和4.5m ;内、外墙体材料为陶粒混凝土空心砌块,外墙装修使用乳白色涂料仿石材外墙涂料,内墙装修喷涂乳胶漆,教室内地面房间采用水磨石地面,教室房间墙面主要采用石棉吸音板,门窗采用塑钢窗和装饰木门。
全楼设楼梯两部。
1.2建筑地点:重庆沙坪坝 1.3设计资料:1.3.1.地质水文资料:根据工程地质勘测报告,拟建场地地势平坦,表面为平均厚度0.3m 左右的杂填土,以下为1.2~1.5m 左右的淤泥质粘土,承载力的特征值为70kN/m 2,再下面为较厚的垂直及水平分布比较均匀的粉质粘土层,其承载力的特征值为180kN/m 2,可作为天然地基持力层。
1.3.2抗震设防要求:六度四级设防1.3.3.底层室内主要地坪标高为±0.000,相当于黄海高程220.5m 。
1.3.4.地下潜水位达黄海高程213.5m, 对本工程无影响。
1.4主要构件材料及尺寸估算 1.4.1主要构件材料框架梁、板、柱采用现浇钢筋混凝土构件, 墙体采用混凝土空心砌块,混凝土强度:梁、板、柱均采用C30混凝土,钢筋使用HPB235,HPB335,HRB 400三种钢筋。
1.4.2.主要构件的截面尺寸、 按高跨比条件,当mm l h 55401=≥时,满足刚度要求,可不验算挠度。
对于工业建筑的楼盖板,要求mm h 80≥,取板厚mm h 100=3、次梁的截面高度应满足 121(=h ~475()181=L ~mm )316,取mm h 400= 则21(=b ~133()31=h ~mm )200,取mm b 200=。
4、主梁的截面高度应该满足81(=h ~440()141=L ~mm )660,mm h 400=,则21(=h ~200()31=h ~mm )300,取mm b 250=。
结构设计计算说明书第一章 工程概况该建筑为陕西陕焦化工有限公司招待所,地址位于渭南市富平县。
该建筑结构类型采用钢筋混凝土现浇框架构。
建筑场地范围大约54米³18米;建筑面积:约为4800平方米。
层数:5层;拟建场地的场地类别为Ⅱ类;基本风压:0.35 kN/m²;基本雪压:0.20 kN/m²。
结构的使用环境类别为一类,雨篷等外露构件为二b类。
抗震设防烈度为7度, 设计基本地震加速度值为0.15g,地震分组为第一组设计, 设计特征周期T g=0.35s, 阻尼比为0.05。
第二章 结构布置根据该房屋的使用功能及建筑设计的要求,进行了建筑平面、立面及剖面设计,填充墙采用240mm厚的混凝土心砖砌筑,楼盖及屋盖均采用现浇钢筋混凝土结构,楼板厚度取100mm。
该建筑为招待所,房间布局较为整齐规则,所以采用横向框架承重方案,四柱三跨不等跨的形式。
柱网布置形式详见建筑平面图。
平面详图结构简图2.1 梁截面尺寸估算2.2 柱截面尺寸估算n为验算截面以上楼层层数,g为折算在单位建筑面积上的重力荷载代表值,框架结构近似取15 kN/m²,F为简支状态计算的柱的负荷面,β为考虑地震作用组合后柱轴压力增大系数。
由设计要求得,抗震设防烈度为7度,房屋高度不超过30m,丙类建筑,该框架的抗震等级为三级。
抗震等级为三级的框架结构轴压比限值 [μn]=0.9。
根据上述结果,并综合考虑其它因素,本设计柱截面尺寸取值如下2.3 基础尺寸估算第三章 框架侧移刚度3.1 横向框架梁侧移刚度3.2 横向框架柱侧移刚度0.760.751~5层楼面4.2 屋面及楼面可变荷载标准值∑D 1/∑D 2=>0.7,该框架为规则框架。
第四章 重力荷载计算4.1 屋面及楼面永久荷载标准值屋面(不上人)∑D 1/∑D 2=>0.7,该框架为规则框架。
3.3 纵向框架梁侧移刚度3.4 纵向框架柱侧移刚度3.4.1 中框架柱侧移刚度3.4.2 边框架柱侧移刚度3.2.1 中框架柱侧移刚度3.2.2 边框架柱侧移刚度恒载5层2~4层1层4.4 计算重力荷载代表值 墙体为240mm厚粘土空心砖,外墙面贴瓷砖0.5kN/m²内墙面为20厚抹灰,内墙体为240mm厚粘土空心砖,两侧均为20厚抹灰。
73 1XXXXX设计学生:指导老师:三峡大学XX学院摘要:本设计课题为。
Abstract:The project is the design of a express hotel.关键词:框架结构抗震等级内力分析荷载组合独立基础板式楼梯Keywords:frame structure前言毕业设计是大学本科教育培养目标实现的重要阶段,是毕业前的综合学习阶段,是深化、拓宽、综合教与学的重要过程,是对大学期间所学专业知识的全面总结。
本组毕业设计题目为。
1.建筑设计1.1工程概况本工程为该工程采用钢筋混凝土框架结构,抗震设防烈度为7度(0. 1g),设计地震分组为第一组,抗震等级为三级。
1.2地质资料工程重要性等级为三级,本地区属亚热带大陆行季风气候,1.3平面布置在平面布置中73 2 1.4立面布置1.5各种用房和交通联系的设计本工程工程重要性等级为三级,根据《旅馆建筑设计规范》1.6建筑各构件用料、装饰及做法1.墙体:2.结构设计2.1.1结构布置方案及结构选型根据建筑使用功能要求,本工程采用框架承重方案。
框架柱网布置如下图2.1.1:2.1.2确定结构计算简图(1)计算基本假定:○1一片框架可以抵抗在本身平面内的侧向力,而在平面外的刚度很小,可以忽略(因而整个结构可以划分成若干个平面结构共同抵抗与平面结构平行的侧向荷载,垂直于该方向的结构不参加受力);○2楼板在其自身平面内刚度无限大,楼板平面外刚度很小,可以忽略(因而在侧向力作用下,楼板可做刚体平移或转动,各个平面抗侧力结构之间通过楼板无相互联系和协同工作)。
73 3图2.1.1:框架柱网布置图框架近似计算补充假定:a.忽略梁、柱轴向变形及剪切变形;b.杆件为等截面等刚度,以杆件轴线作为框架计算轴线;c.在竖向荷载的作用下结构的侧移很小,因此,在计算竖向荷载作用时,假定结构无侧移。
(2)计算简图如下图2.1.2(1)根据图2.1.1框架柱网布置图,如图2.1.2(1)所示,选定阴影部分作为框架结构的计算单元,假定框架柱嵌固于基础顶面,框架梁与柱刚接。
框架结构毕业设计任务书篇一:框架结构毕业设计任务书和指导书毕业设计基本要求1 目的(1)综合运用所学专业理论知识与设计技能,处理建筑设计中有关方针、政策、功能、经济、安全、美观等方面的问题。
解决总体、单体、空间等关系,以创造富有时代气息的优美建筑形象与环境。
依据建筑设计完成结构体系的布置、结构在各种荷载工况下的计算、构造和施工图。
(2)掌握一般建筑工程的设计思路,进而举一反三熟悉有关建筑工程的设计、施工、预算等建设过程。
为即将走上工作岗位奠定基础。
(3)学以致用,学习科学技术和技能的目的是应用。
一个工程师在设计、建设实际工程中应具备的知识,都是我们在毕业设计中应予以加强的。
因此深切领悟总体概念设计、掌握具体理论设计和实际工程技术处理措施的结合作为重点来训练。
(4)树立正确的设计思想,全面对待建筑与结构的关系,培养勤奋、严谨、认真的工作作风及分析解决一般工程技术问题的能力。
(5)掌握调查研究、理论联系实际的学习方法,养成既能独立思考,又能相互配合密切合作的工作态度。
(6)使学生对一般工业与民用建筑的土建设计的内容和构成有比较全面的了解,并熟悉有关设计标准、规范、手册和工具书,增强毕业后到生产第一线工作的适应能力。
2 成果形式及要求(1)计算书和说明书:字数应不少于1万字,书写要工整,字迹要清楚,可采用计算机打印。
计算书内容要阐明设计依据或标准,方案构思、特点、必要的经济指标,结构选型、构造处理、材料特点及计算上的主要问题,还应包括结构计算全过程,计算要正确、完整、思路清晰、简图明了。
计算书格式:应严格按照毕业设计手册中的要求。
(2)图纸:绘图总量不少于8张2# 图。
计算机绘图要求至少1张2 图纸,手工绘图至少2#张2# 图。
可用CAD,也可用“天正软件”绘制平面图,但立面、剖面、节点详图必须用CAD绘制,以掌握建筑物空间的对应关系,从而强化视图、读图能力。
(3)外文翻译:英文摘要简单介绍有关所设计建筑的基本情况;外文翻译一篇3000字符以上的专业文章。
第三章 框架内力计算3.1计算方法框架结构一般承担的荷载主要有恒载、使用活荷载、风荷载、地震作用,其中恒载、活荷载一般为竖向作用,风荷载、地震则为水平方向作用,手算多层多跨框架结构的内力(M 、N 、V )及侧移时,一般采用近似方法。
如求竖向荷载作用下的内力时,有分层法、弯矩分配法、迭代法等;求水平荷载作用下的内力时,有反弯点法、改进反弯点法(D 值法)、迭代法等。
这些方法采用的假设不同,计算结果有所差异,但一般都能满足工程设计要求的精度。
本章主要介绍竖向荷载作用下无侧移框架的弯矩分配法和水平荷载作用下D 值法的计算。
在计算各项荷载作用效应时,一般按标准值进行计算,以便于后面荷载效应的组合。
1. 弯矩分配法在竖向荷载作用下较规则的框架产生的侧向位移很小,可忽略不计。
框架的内力采用无侧移的弯矩分配法进行简化计算。
具体方法是对整体框架按照结构力学的—般方法,计算出各节点的弯矩分配系数、计算各节点的不平衡弯矩,然用进行分配、传递,在工程设计中,每节点只分配两至三次即可满足精度要求。
相交于同一点的多个杆件中的某一杆件,其在该节点的弯矩分配系数的计算过程为: (1)确定各杆件在该节点的转动刚度杆件的转动刚度与杆件远端的约束形式有关,如图3-1:(a )杆件在节点A 处的转动刚度 (b )某节点各杆件弯矩分配系数图 3-1 A 节点弯矩分配系数(图中lEI i )(2)计算弯矩分配系数μ(3)相交于一点杆件间的弯矩分配弯矩分配之前,还需先要求出节点的固端弯矩,这可查阅相关静力计算手册得到。
表3-1为常见荷载作用下杆件的固端弯矩。
在弯矩分配的过程中,一个循环可同时放松和固定多个节点(各个放松节点和固定节点间间隔布置,如图3-2),以加快收敛速度。
计算杆件固端弯矩产生的节点不平衡弯矩时,不能丢掉由于纵向框架梁对柱偏心所产生的节点弯矩。
具体计算可见例题。
常见荷载作用下杆件的固端弯矩 表3-1注:梯形和三角形分布荷载下的固端弯矩以及反力:图 3-2 弯矩分配过程中放松和固定节点顺序图3-3 分层法的计算单元划分2.分层法分层法是弯矩分配法的进一步简化,它的基本假定是:1.框架在竖向荷载作用下的侧移忽略不计;2.可假定作用在某一层框架梁上的竖向荷载只对本楼层的梁以及与本层梁相连的框架柱产生弯矩和剪力,而对其他楼层的框架梁和隔层的框架柱都不产生弯矩和剪力。
计算过程仍然是先计算出各节点的弯矩分配系数、求出节点的固端弯矩,计算各节点的不平衡弯矩,然用进行分配、传递,只是分层法是对各个开口刚架单元进行计算(见图3-3), 这里各个刚架的上下端均为固定端。
在求得各开口刚架中的结构内力以后,则可将相邻两个开口刚架中同层同柱号的柱内力叠加,作为原框架结构中柱的内力。
而分层计算所得的各层梁的内力,即为原框架结构中相应层次的梁的内力。
如果叠加后节点不平衡弯矩较大,可在该节点重新分配一次,但不再作传递,最后根据静力平衡条件求出框架的轴力和剪力,并绘制框架的轴力图利剪力图。
在计算柱的轴力时,应特别注意某一柱的轴力除与相连的梁剪力有关外,不要忘记节点的集中荷载对柱轴力的贡献。
为了改善误差,计算开口刚架内力时,应做以下修正:①除底层以外其他各层柱的线刚度均乘0.9的折减系数;②除底层以外其他各层柱的弯矩传递系数取为1/3。
活荷载为可变荷载,应按其最不利位置确定框架梁、柱计算截面的最不利内力。
竖向活荷载最不利布置原则:(1)求某跨跨中最大正弯矩——本层同连续梁(本跨布置,其它隔跨布置),其它按同跨隔层布置(图3-4a );(2)求某跨梁端最大负弯矩——本层同连续梁(本跨及相邻跨布置,其它隔跨布置),相邻层与横梁同跨的及远的邻跨布置活荷载,其它按同跨隔层布置(图3-4b );(3)求某柱柱顶左侧及柱底右侧受拉最大弯矩——该柱右侧跨的上、下邻层横梁布置活荷载,然后隔跨布置,其它层按同跨隔层布置(图3-4c );当活荷载作用相对较小时,常先按满布活荷载计算内力,然后对计算内力进行调整的近似简化法,调整系数:跨中弯矩1.1~1.2,支座弯矩1.0。
(a ) (b ) (c )图 3-4 竖向活荷载最不利布置1.反弯点法在图3-5中,如能确定各柱内的剪力及反弯点的位置,便可求得各柱的柱端弯矩,并进而由节点平衡条件求得梁端弯矩及整个框架结构的其他内力。
为此反弯点法中假定:图3-5 框架在水平力作用下的弯矩图(1)求各个柱的剪力时,假定各柱上下端都不发生角位移,即认为梁的线刚度与柱的线刚度之比为无限大; (2)在确定柱的反弯点位置时,假定除底层以外,各个柱的上、下端节点转角均相同,即除底层外,各层框架柱的反弯点位于层高的中点;对于底层柱。
,则假定其反弯点位于距支座2/3层高处。
(3)梁端弯矩可由节点平衡条件求出,并按节点左右梁的线刚度进行分配。
当梁的线刚度与柱的线刚度之比超过3时,由上述假定所引起的误差能够满足工程设计的精度要求,可采用反弯点法。
反弯点法具体计算方法是将每层的层间总剪力按柱的抗侧刚度直接分配到每根柱上,求出每根柱的剪力,然后根据反弯点位置,即能求出柱端弯矩,计算公式为:式中:jk V 为第j 层第k 柱所分配到的剪力;jk i 为第j 层第k 柱的线刚度;m 为j 层框架柱数;j V 第j 层层间剪力。
根据柱剪力和反弯点位置,可计算柱上、下端弯矩,对于底层柱,柱端弯矩为:对于上部各层,柱端弯矩为:上jk M 、下jk M 分别为第j 层第k 柱的上、下端部弯矩; h j 为第j 层柱柱高。
求出柱端弯矩后,再求节点弯矩平衡,最后按节点左右梁的线刚度对节点不平衡弯矩进行分配可求出梁端弯矩。
式中lb M 、r b M 为节点处左、右梁端弯矩;uc M 、l c M 为节点处柱上、下端弯矩;l b i 、rb i 为节点处左、右梁的线刚度。
最后以各梁为隔离体,将梁的左右端弯矩之和除以该梁的跨长,可得梁内剪力,自上而下逐层叠加节点左右的梁端剪力,即可得到柱内轴向力。
2. D 值法D 值法为修正反弯点法,修正后柱的抗侧刚度为212zi D hα=,式中α为柱刚度修正系数,可按表3-2采用;柱的反弯点高度比修正后可按下式计算:y=y 0+y 1+y 2+y 3 ,式中 y 0为标准反弯点高度比,是在各层等高、各跨相等、各层梁和柱线刚度都不改变的情况下求得的反弯点高度比;y 1为因上、下层梁刚度比变化的修正值;y 2为因上层层高变化的修正值; y 3为因下层层高变化的修正值。
y 0,y 1,y 2,y 3的取值见附表1-1~表1-4。
风荷载作用下的反弯点高度按均布水平力考虑,地震作用下按倒三角分布水平力考虑。
D 值法具体计算步骤为:先计算各层柱修正后的抗侧刚度D 及柱的反弯点高度,将该层层间剪力分配到每个柱,柱剪力分配式为:根据柱剪力和反弯点位置,可计算柱上、下端弯矩为:式中:jk V 为第j 层第k 柱所分配到的剪力;jk D 为第j 层第k 柱的侧向刚度D 值;m 为j 层框架柱数;j V 第j 层层间剪力;jkM 为第j 层第k 柱的弯矩;jk y 为第j 层第k 柱的反弯点高度比0123jk y y y y y =+++;h 为柱高。
梁端弯矩的计算与反弯点法相同。
表3-2注:边框情况下,式中3i ,1i 或1p i 取0值。
水平荷载作用下侧移近似计算一般采用D 值法,层间侧移及顶点总侧移计算公式为:式中j V 第j 层层间剪力;jk D 为第j 层第k 柱的侧向刚度D 值;j u ∆为第j 层由梁柱弯曲变形所产生的层间位移;u 为框架顶点总侧移;n 框架结构总层数。
3.2例题计算1. 弯矩分配系数(1)计算弯矩分配系数根据上面的原则,可计算出本例横向框架各杆件的杆端弯矩分配系数,由于该框架为对称结构,取框架的一半进行简化计算,如图3-6。
节点A 1:1010440.364 1.456A A A A S i ==⨯=(相对线刚度见表2-3)节点B 1: 121220.985 1.97B D B D S i ==⨯= 节点A 2:()21230.52640.2210.526 1.3330.5264A A A A μμ⨯===++⨯节点B 2:()22 1.33340.4631.3330.5260.52640.9852B A μ⨯==++⨯+⨯节点A 4:()44 1.33340.7171.3330.5264A B μ⨯==+⨯节点B 4:()44 1.33340.5670.98520.526 1.3334B A μ⨯==⨯++⨯A 3、B 3与相应的A 2、B 2相同。
2. 杆件固端弯矩计算杆件固端弯矩时应带符号,杆端弯矩一律以顺时针方向为正,如图3-6。
图 3-6 杆端及节点弯矩正方向1)横梁固端弯矩: (1)顶层横梁 自重作用:板传来的恒载作用: (2)二~四层横梁 自重作用: 板传来的恒载作用:2)纵梁引起柱端附加弯矩:(本例中边框架纵梁偏向外侧,中框架纵梁偏向内侧) 顶层外纵梁 (逆时针为正)m kN M M D A ..87.4075.091.6444=⨯=-= 楼层外纵梁 m kN M M D A .54.2075.091.3311=⨯=-=顶层中纵梁 m kN M M C B .29.4075.021.5744-=⨯-=-=楼层中纵梁m kN M M C B .49.3075.059.4611-=⨯-=-=3. 节点不平衡弯矩横向框架的节点不平衡弯矩为通过该节点的各杆件(不包括纵向框架梁)在节点处的固端弯矩与通过该节点的纵梁引起柱端横向附加弯矩之和,根据平衡原则,节点弯矩的正方向与杆端弯矩方向相反,一律以逆时针方向为正,如图3-7。
节点A 4的不平衡弯矩:本例计算的横向框架的节点不平衡弯矩如图3-7。
(a )恒载 (b )恒载产生的节点不平衡弯矩图 3-7 横向框架承担的恒载及节点不平衡弯矩4. 内力计算根据对称原则,只计算AB 、BC 跨。
在进行弯矩分配时,应将节点不平衡弯矩反号后再进行杆件弯矩分配。
节点弯矩使相交于该节点杆件的近端产生弯矩,同时也使各杆件的远端产生弯矩,近端产生的弯矩通过节点弯矩分配确定,远端产生的弯矩由传递系数C (近端弯矩与远端弯矩的比值)确定。
传递系数与杆件远端的约束形式有关,如图3-2。
恒载弯矩分配过程如图3-8,恒载作用下弯矩见图3-9,梁剪力、柱轴力见图3-10。
根据所求出的梁端弯矩,再通过平衡条件,即可求出恒载作用下梁剪力、柱轴力,结果见表3-3、表3-4、表3-5、表3-6。
AB 跨梁端剪力 (kN ) 表 3-3注:a 见表3-1图。
BC 跨梁端剪力(kN ) 表 3-4图 3-9 恒载作用下弯矩图(kN.m )AB 跨跨中弯矩(kN.m ) 表 3-5柱轴力(kN ) 表 3-6注意:各不利荷载布置时计算简图不一定是对称形式,为方便,近似采用对称结构对称荷载形式简化计算。