七年级下册第三次月考试卷
- 格式:doc
- 大小:184.50 KB
- 文档页数:6
七年级下册第三次月考语文试题及答案卷部编人教版七年级下册七年级下册第三次月考语文试题卷(本卷共四个大题,满分150分;考试时间:120分钟)亲爱的同学们:在这个红五月、繁忙月里,我们将用勤奋点燃希望,用智慧见证成长,用沉稳与干练书写华美的篇章。
拿起你的笔,勇往直前,准备开启成功的大门吧!A卷(100分)一、基础知识及运用(每小题3分,共9分)1.下列带横线的字注音正确的一项是()A.亢奋(kànɡ)戛然(kǎ)阴霾(lí)白皙(xī)B告罄(qìnɡ)疮痍(yí)赫然(hè)彷徨(páng)C.庇荫(yìn)缀行(chuò)弛担(chí)深邃(suì)D.砭骨(fá)云鬓(bìn)胡骑(jī)义愤填膺(yīng)2.下面词语书写完全正确的一项是()(3分)A.家喻户晓慷概淋漓锋芒毕露撺掇B.蓦然回首嘎然而止鞠躬尽粹惬意C.低回婉转博学多识潜心贯注磐石D.义奋填膺一拍既合历尽心血静穆3.下列加点词语运用不准确的一项是()(3分)A.车展会的展位供不应求。
得到展位的各个企业,都使出浑身解数,充分地展示自己。
B.这位著名演唱家的歌声气冲斗牛,声入九霄。
C.不少人认为孟子锋芒毕露,太过张扬。
其实他如此咄咄逼人,并不完全是个性使然。
D.刘谦的魔术表演,真是让人大开眼界,令人叹为观止。
二.阅读《口技》,完成4---6题。
(每小题3分,共9分)未几,夫齁声起,妇拍儿亦渐拍渐止。
微闻有鼠作作索索,盆器倾侧,妇梦中咳嗽。
宾客意少舒,稍稍正坐。
忽一人大呼“火起”,夫起大呼,妇亦起大呼。
两儿齐哭。
俄而百千人大呼,百千儿哭,百千犬吠。
中间力拉崩倒之声,火爆声,呼呼风声,百千齐作;又夹百千求救声,曳屋许许声,抢夺声,泼水声。
凡所应有,无所不有。
虽人有百手,手有百指,不能指其一端;人有百口,口有百舌,不能名其一处也。
人教版七年级下册数学第三次月考试卷一、单选题1.在﹣3,0,π)A.0 B.﹣3 C.πD2.若x是9的算术平方根,则x是()A.3 B.-3 C.9 D.81 3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 334.下列计算不正确的是()A=±2 B9C0.4 D 65.方程1ax yx by+=⎧⎨+=⎩的解是11xy=⎧⎨=-⎩,则a,b为( )A.1ab=⎧⎨=⎩B.1ab=⎧⎨=⎩C.11ab=⎧⎨=⎩D.ab=⎧⎨=⎩6.在数轴上表示不等式组21xx>-⎧⎨≤⎩的解集,其中正确的是()A.B.C.D.7.下列语句中,是假命题的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.互补的两个角是邻补角D.垂线段最短8.实数a,b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0 B.1﹣a<0 C.b﹣1>0 D.﹣1﹣b<09.如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°10.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”,小刚却说:“只要把你的13给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出方程组正确的是()A.210330x yx y+=⎧⎨+=⎩B.210310x yx y+=⎧⎨+=⎩C.220310x yx y+=⎧⎨+=⎩D.220330x yx y+=⎧⎨+=⎩二、填空题112的相反数是____________,绝对值是_________________.12.87.19.(不用计算器)13.将方程2x+3y=6写成用含x的代数式表示y,则y=________.14.不等式3x﹣5≤1的正整数解是_______.15.在一本书上写着方程组21x pyx y+=⎧⎨+=⎩的解是0.5xy=⎧⎨=⎩,其中,y的值被墨渍盖住了,不过,我们可解得出p=___________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.一个立方体的体积是64m3,若把这个立方体体积扩大1000倍,则棱长为______.三、解答题183|.19.解方程组4421x y x y -=⎧⎨+=-⎩.20.如图,经过平移,四边形ABCD 的顶点A 移到点A′,作出平移后的四边形.21.求不等式组34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩的整数解.22.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.某电器超市销售每台进价分别200元,170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台;(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a-3b|+(a+b-4)²=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案1.D【分析】从四个数中先找出无理数,再根据实数大小比较的法则进行比较即可得出答案.【详解】∵﹣3,0是有理数,∴无理数有π∴故选:D.【点睛】本题考查实数大小的比较,解题的关键是掌握实数大小比较的基本方法.2.A【详解】试题解析:∵32=9,,故选A.3.B【详解】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.4.A【分析】根据平方根和立方根的求解方法对原式各项计算得到结果,即可作出判断.【详解】A、原式=2,错误;B、原式=|﹣9|=9,正确;C、原式=0.4,正确;D、原式=﹣6,正确.故选:A.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的计算法则. 5.B【解析】由题意得:1011ab-=⎧⎨-=⎩,解得:1ab=⎧⎨=⎩,故选B.6.A【分析】先根据题意得出不等式组的解集,再在数轴上表示出来即可.【详解】由题意不等式组的解集为;﹣2<x≤1,在数轴上表示为:.故选:A.【点睛】本题考查解一元一次不等式组和在数轴上表示解集,熟练掌握解不等式组的方法是解此题的关键.7.C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、所有的实数都可用数轴上的点表示,正确是真命题,B、等角的补角相等,正确是真命题,C、互补的两个角不一定是邻补角,错误是假命题,D、垂线段最短,正确是真命题,故选:C.【点睛】此题主要考查命题的真假,涉及到补角和垂线段的知识,难度一般.8.A【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得b<a<0,再根据有理数的加减法法则可得答案.【详解】解:由题意,可得b<a<0,则b﹣a<0,1﹣a>0,b﹣1<0,﹣1﹣b与0无法比较,表示正确的是A;故选:A.【点睛】本题考查实数与数轴,关键是掌握在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.也考查了有理数的加减法法则.9.A【分析】如图,过点D作c∥a.由平行线的性质进行解题.【详解】如图,过点D作c∥a.则∠1=∠CDB=25°.又a ∥b ,DE ⊥b , ∴b ∥c ,DE ⊥c , ∴∠2=∠CDB+90°=115°. 故选A . 【点睛】本题考查了平行线的性质.能正确作出辅助线是解决此题的关键. 10.D 【详解】试题解析:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为102xy +=, 化简得220x y +=;根据把小龙的13给小刚,小刚就有10颗,可表示为103y x +=,化简得3x+y=30. 列方程组为220330.x y x y +=⎧⎨+=⎩ 故选D.11.2 2【详解】2的相反数是-2)=2,根据绝对值的2的绝对值是22.故答案为22. 考点:相反数;绝对值. 12.4.487 【详解】试题分析:被开方数的小数点每移动两位,其算术平方根的小数点移动一位..87,.487 考点:算术平方根 13.6−2x 3(或2−23x )【分析】将x 看做已知数求出y 即可. 【详解】解:方程2x+3y=6, 解得:y=6−2x 3=2−23x . 故答案为6−2x 3(或2−23x )14.2或1 【分析】解出不等式3x ﹣5≤1的解集,即可得到不等式3x ﹣5≤1的正整数解. 【详解】 解:3x ﹣5≤1 3x≤6 x≤2,∴不等式3x ﹣5≤1的正整数解是2或1, 故答案为:2或1. 【点睛】本题考查解一元一次不等式和正整数的定义,解题的关键是掌握解一元一次不等式. 15.3 【详解】解:将x=0.5代入第二个方程可得:0.5+y=1,则y=0.5,将x=0.5和y=0.5代入第一个方程可得:0.5+0.5p=2,解得:p=3. 故答案为:3. 16.65 【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可. 【详解】解:如图,由题意可知, AB ∥CD , ∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.40m【分析】根据体积扩大1000倍,可得立方体的体积,根据开方运算,可得答案.【详解】解:64×1000=64000m3,40,故答案为:40m.【点睛】本题考查立方根,解题的关键是先求体积再开方.18.2【分析】根据立方根和平方根的定义以及去绝对值法则,对式子化简即可得到答案.【详解】3|=2+0﹣3+3=2.【点睛】本题主要考查了立方根和二次根式的化简以及去绝对值法则,熟练掌握各知识点是解题的关键.19.7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【分析】方程组利用代入消元法求出解即可.【详解】解:4421x yx y-=⎧⎨+=-⎩①②,由①得:x=y+4,代入②得:4y+16+2y=﹣1,解得:y=﹣176,将y=﹣176代入①得:x=76,则方程组的解为7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查方程组的解法,解题的关键是掌握代入消元法的应用.20.见解析.【分析】根据题意分别作BB′、CC′、DD′与AA′平行且相等,即可得到B、C、D的对应点,顺次连接即可.【详解】解:如图:四边形A′B′C′D′即为所求.【点睛】本题考查的是平移变换作图.注意掌握作平移图形时,找关键点的对应点也是关键的一步.21.不等式组的所有整数解为3,4.【分析】根据题意先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】 解:34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩①②, ∵解不等式①得:x <92, 解不等式②得:x >52, ∴不等式组的解集为52<x <92, ∴不等式组的所有整数解为3,4.【点睛】本题考查解一元一次不等式以及解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.22.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x=x=±.解得3【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【详解】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.(1)A、B两种型号电风扇的销售单价分别为250元,210元;(2)A型号电风扇最多能采购10台;(3)在(2)的条件下,超市不能实现利润为1400元的目标,理由见解析【分析】(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y元,根据总价=单价×数量结合近两周的销售情况统计表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号的电风扇采购a台,则B种型号的电风扇采购(30-a)台,根据进货总价=进货单价×进货数量结合超市准备用不多于5400元的金额采购两种型号的电风扇共30台,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售完这30台电风扇实现利润为1400元时的A种型号电风扇采购台数a,再结合(2)的取值范围判断即可.【详解】(1)设A、B两种型号的电风扇销售单价分别为x元、y元.⎧⎨⎩3518004103100x yx y+=+=解得:250210xy=⎧⎨=⎩答:A、B两种型号电风扇的销售单价分别为250元,210元.(2)设采购A种型号电风扇a台.200a+170(30-a)≤5400 解得:a≤10答:A型号电风扇最多能采购10台.(3)依题意解(250-200)a+(210-170)(30-a)=1400解得:a=20 ∵a≤10∴在(2)的条件下,超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.25.(1)a=3,b=1;(2)A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD.【分析】(1)根据非负数的性质列方程组求解即可;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况:①在灯A射线到达AN之前;②在灯A射线到达AN之后,分别列出方程求解即可;(3)设A灯转动时间为t秒,则∠CAN=180°−3t,∠BAC=∠BAN−∠CAN=3t−135°,过点C作CF∥PQ,则CF∥PQ∥MN,得出∠BCA=∠CBD+∠CAN=180°−2t,∠BCD=∠ACD−∠BCA=2t−90°,即可得出结果.【详解】解:(1)∵|a-3b|+(a+b-4)²=0,∴3040a ba b-=⎧⎨+-=⎩,解得:31ab=⎧⎨=⎩,故a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①在灯A射线到达AN之前,由题意得:3t=(20+t)×1,解得:t=10,②在灯A射线到达AN之后,由题意得:3t−180°=180°−(20+t)×1,解得:t=85,综上所述,A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD;理由:设A灯转动时间为t秒,则∠CAN=180°−3t,∴∠BAC=∠BAN−∠CAN=45°−(180°−3t)=3t−135°,∵PQ∥MN,如图2,过点C作CF∥PQ,则CF∥PQ∥MN,∴∠BCF=∠CBD,∠ACF=∠CAN,∴∠BCA=∠BCF+∠ACF=∠CBD+∠CAN=t+180°−3t=180°−2t,∵CD⊥AC,∴∠ACD=90°,∴∠BCD=∠ACD−∠BCA=90°−(180°−2t)=2t−90°,∴2∠BAC=3∠BCD.【点睛】本题考查了非负数的性质、解二元一次方程组、平行线的性质等知识,熟练掌握平行线的性质是解题的关键.。
七年级下学期数学第三次月考试卷一、选择题(共10小题,每小题3分,共30分)1.下列汽车标志中可以看作是由某图案平移得到的是()A B C D2.∠1、∠2是邻补角的为()A B C D3.下列方程组中是二元一次方程组的是()A.⎩⎨⎧=+=+1487764zxyxB.⎪⎪⎩⎪⎪⎨⎧=-=+211342yxyx C.⎩⎨⎧=+=321yxxyD.⎪⎪⎩⎪⎪⎨⎧=+=+422652yxyx4.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上.若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°4题图 6题图 8题图5.若⎩⎨⎧-==12yx是关于x、y的二元一次方程ax+by-5=0的一组解,则2a-b-2的值为()A.-3 B.3 C.-7 D.76.如图,下列条件中不能判断AB∥CD的是()A.∠1+∠3=180°B.∠1=∠2 C.∠1+∠2=180° D.∠1=∠47.下列命题是真命题的是()A.互补的角是邻补角B.内错角相等C.过一点,有且只有一条直线与这条直线平行D.在同一平面内,已知直线a⊥b,直线b⊥c,则直线a∥c8.将一张长方形纸条ABCD沿EF折叠后点B、A分别落在B′、A′位置上,FB′与AD的交点为G.若∠DGF=100°,则∠FEG的度数为()A.40°B.45°C.50°D.55°9.我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两多7两,每人半斤少半斤.设有x 人、y 两银(古代1斤等于16两),则所列方程组正确的是( )A .⎩⎨⎧=+=-y x y x 8877B .⎩⎨⎧=-=-y x y x 8877C .⎩⎨⎧=+=+y x y x 8877D .⎩⎨⎧=-=+y x y x 8877 10.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人二、填空题(本大题共5个小题,每小题4分,共20分)11.如图,把小河里的水引到田地C 处,作CD 垂直于河岸,沿CD 挖水沟,则水沟最短,其理论依据是___________________________12.如图,AD ∥BC ,∠C =30°,∠2=2∠1,则∠2的度数是____________13.如图,将周长为14的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD 的周长等于___________11题图 12题图 13题图14.在同一平面内,两条直线的位置关系只有两种 , .15. 设m是的整数部分,n是的小数部分,则2m ﹣n= .三、解答题(一)(本大题共5个小题,每小题6分,共30分)16.解二元一次方程组:⎩⎨⎧-=--=+ ②y x ①y x 5231217.解三元一次方程组:⎪⎩⎪⎨⎧=-+=+-=+-③z y x ②z y x ①z y x 132723343218.填空,并在后面的括号中填理由:如图,已知∠B +∠E =∠BCE ,求证:AB ∥DE证明:如图,过点C 作CF ∥AB∴∠B =∠_______( )∵∠B +∠E =∠BCE即∠B +∠E =∠1+∠2∴∠E =∠_______∴_______∥_______( )∵AB ∥CF ,____________(已证)∴_______∥_______( )19.若关于x 、y 的方程组⎩⎨⎧--=++=-4525223k y x k y x 的解x 、y 互为相反数,求k 的值20.如图,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB=60°,求∠EDC 的度数.四、解答题(二)(本大题共5个小题,每小题8分,共40分)21..已知 A D ⊥BC ,FG ⊥BC ,垂足分别为 D 、G ,且∠1=∠2.求证:∠BDE=∠C22.如图,直线AB ,CD 相交于点O ,∠DOE ︰∠BOE =3︰1,OF 平分∠AOD ,∠AOC =∠AOF -30°,求∠EOF ;23.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?24.如图所示,已知∠1+∠2=180°,∠B=∠3,DE和BC平行吗?如果平行,请说明理由.25.如图1,E点在BC上,∠A=∠D,∠ACB+∠BED=180°(1) 求证:AB∥CD(2) 如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E七年级下学期数学第三次月考参考答案一、选择题(共10小题,每小题3分,共30分)二、填空题(共5小题,每小题3分,共15分) 11.垂线段最短12.100° 13.16 14. 平行,相交 15.6-5三、解答题(共5题,共35分)16.解:由①×2得4X+2Y+-2 ③③+②得X=-1把X=-1代入得Y=1所以原方程组的解为⎩⎨⎧=-=11y x 17解:③×2-①得7Y-10Z=-1④③×3-②得8Y-10Z=-4⑤⑤-④得Y=-3把Y =-3代入④ 得Z=-2把Y=-3 Z=-2代入③ 得X=1所以原方程组的解⎪⎩⎪⎨⎧-=-==231z y x18.解:1,两直线平行,内错角相等2DE 、CF 、内错角相等,两直线平行DE ∥CFAB 、DE 、平行于同一条直线的两条直线平行19.解:根据题意得因为X 、Y 互为相反数,所以X=-Y方程可变为⎩⎨⎧--=+=-43525k y k y解得⎩⎨⎧-==35y k所以K 的值为520.解: ∵DE ∥BC∴∠EDC=∠DCB∵CD 是∠ACB 的平分线∴∠DCB=∠ACD=1/2∠ACB∵∠ACB=60°∴∠EDC=∠DCB=30°21.解:22.解:∵OF 平分∠AOD∴∠AOF=∠DOF=1/2∠AOD∵∠AOD+∠AOC=180∠AOC=∠AOF-30∴∠AOF=∠DOF=70∵∠DOE:∠BOE=3:1∠AOC=∠DOB∴∠DOE=30∴∠EOF=∠DOF +∠DOE=70+30=10023.解:设A 饮料生产了X 瓶,B 饮料生产了Y 瓶。
2022-2023学年度下学期七年级第三次月考数学试题参考答案一、C D B D B C A A B B 二、11. 523x y -=12. (21,0) 13. 40° 14. 4 15. (2+3,23) 16.-1 17. 25- 18. 30° 或110° 19. 4a 一c =9 20.60三、21. (1)⎩⎨⎧=-=31y x (2)⎩⎨⎧==11y x 解法略22.(1)解:如图,三角形A 1B 1C 1即为所求.∴点A 的对应点A 1的坐标为(0,0). (2)解:构造如图所示的长方形,△A 1B 1C 1的面积为: 3×3−12×1×3−12×2×3−12×1×2=72; (3)解:∵点A 1的坐标为(0,0),点B 1坐标为(−1,−2),点P 在x 轴上,设点P 的坐标为(m ,0), 则:11A B P S=12A 1P ×2=12•|m ﹣0|×2=2,解得:m =±2, ∴点P 的坐标为:(2,0),(﹣2,0); 23.(1)a =-1,b =10方程组的解为⎪⎩⎪⎨⎧==52914y x (2)解:(方法一)解:32232x y k x y k +=⎧⎨+=+⎩①② 由①+②得5522x y k +=+,整理得522x y k ,即225k x y ++=, ∵8x y +=③, ∴2285k +=,解得19k =; (方法二)解:32232x y k x y k +=⎧⎨+=+⎩①②由①-②得2x y -=-④联立③④得28x y x y -=-⎧⎨+=⎩,解得:35x y =⎧⎨=⎩,把35x y =⎧⎨=⎩带入①,得332519k =⨯+⨯=;(方法三)解:32232x y k x y k +=⎧⎨+=+⎩①② 由③3⨯-①2⨯得56y k =+,解得65k y +=, 将65k y +=代入①得:6325k x k ++⨯=,解得:45k x -=,将45k x -=,65k y +=代入②得64855k k +-+=,解得19k =;24.(1)证明:∵∠A =∠ADE , ∴DE ∥AC , ∴∠E =∠ABE , ∵∠E =∠C , ∴∠ABE =∠C , ∴BE ∥CD .(2)解:∵DE ∥AC , ∴∠EDC +∠C =180°, ∵∠EDC =3∠C , ∴4∠C =180°, ∴∠C =45°. 25.解:(1)设每辆甲种货车能装货x 吨,每辆乙种货车能装货y 吨,依题意,得:4531,3630x y x y +=⎧⎨+=⎩解这个方程组,得43x y =⎧⎨=⎩.答:每辆甲种货车能装货4吨,每辆乙种货车能装货3吨. (2)设租用m 辆甲种货车,n 辆乙种货车, 依题意,得:4345m n +=, ∴4153n m =-, 又∵m ,n 均为正整数, ∴311m n =⎧⎨=⎩或67m n =⎧⎨=⎩或93m n =⎧⎨=⎩, ∴共有3种租车方案,A方案1:租用3辆甲种货车,11辆乙种货车; 方案2:租用6辆甲种货车,7辆乙种货车; 方案3:租用9辆甲种货车,3辆乙种货车.26. (1)证明:∵AD ∥BE∴∠E=∠DAF ∵∠DAF=∠BAC∴∠E=∠BAC ;----------------2’(2)证明:∵AD ∥BE∴∠ACB=∠DAC -------------1’ ∵∠DAF=∠BAC∴∠DAF+∠CAF =∠BAC+∠CAF 即 ∠DAC=∠BAF -------------1’ ∵∠CFE=∠ACB=∠DAC ∴∠CFE=∠BAF∴AB ∥CD ;----------------1’(3)解:由(2)得AB ∥CD∴∠BFC=∠A BF ,∠BFD+∠A BF =180° ∵∠BFD=120° ∴∠A BF =60°---------------1’ ∵∠AGH=∠BFC∴∠AGH=∠A BF =60°---------------1’ ∵∠AGH :∠GAH=2:1 ∴∠GAH=30° ∵AB ∥CD∴∠AFD=∠GAH= 30°---------------1’ ∵∠BFD=120° ∴∠AFB=90°∴三角形BFH 的面积=FH BF ⨯⨯21---------------1’ ∵BF=5,FH=4∴三角形BFH 的面积=10----------------1’ 注:不能使用三角形内角和定理,否则酌情扣分27. (1)解:∵a 、b 满足方程组⎩⎨⎧=-=+182303b a b a ,A∴解得a =12,c =6, ∴A (0,12),B (6,0); ∴O A =12,OB =6; ∴三角形AOB 的面积=366122121=⨯⨯=⋅OB OA (2)由已知条件可知,点P 从点B 运动到点O 时间是616÷=(秒). 点Q 从点O 运动到点A 的时间是1226÷=(秒) ∴06t <≤,点P 在线段OC 上,点Q 在线段OA 上 ∴2OQ t =,6OP t =-如图,做CG ⊥x 轴于G ,CH ⊥y 轴于H ∵点 C 的坐标为()3,6, ∴CG=6,CH=3∴三角形OCP 的面积=t t CG OP 3186)6(2121-=⨯-=⋅ 三角形OCQ 的面积=t t CH OQ 3322121=⨯⨯=⋅∴1833t t -= ∴3t =, (3)过点Q 作QM ∥AB , ∵QM ∥AB ∴∠ACQ =∠CQM ∵OA 平分∠DOC ∴∠DOA =∠COA∵∠BOC =∠OBC ,∠COA +∠BOC =∠AOB =90°∴∠DOB +∠CBO =∠DOA +∠COA +∠BOC +∠OBC =180° ∴OD ∥AB 又∵QM ∥AB∴QM∥OD∴∠AOD=∠OQM∴∠OQC=∠AOD+∠ACQt=由(2)得3∴OQ=63,6∵点C的坐标为()∴CQ⊥y轴,∴∠OQC=90°∴∠AOD+∠ACQ=90°。
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.4的算术平方根是()A.-2B.2C.±2D.22.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解3.下列式子正确的是()A.a2>0B.a2≥0C.(a+1)2>1D.(a﹣1)2>1 4.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可以画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个5.下列实数中是无理数的是()A.0.38B.πC D.2276.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A .80°B .85°C .90°D .95°8.下列语句:①同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A .①、②是真命题B .②、③是真命题C .①、③是真命题D .以上结论皆错9.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N 的坐标是()A .(﹣1,0)B .(﹣6,0)C .(0,﹣4)D .(0,0)10.当a<0时,-a 的平方根是()A .aB a -C .aD .-a 11.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是()A .2B .0C .﹣1D .112.不等式组12x a x <+⎧⎨>-⎩有3个整数解,则a 的取值范围是()A .1<a≤2B .0<a≤1C .0≤a<1D .1≤a<2二、填空题13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.14.关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______.15.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是_____.16.若()1231a a x y --+=是关于x 、y 的二元一次方程,则a=____.17.某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y +1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2017的坐标为____________.三、解答题19120.解方程组:35215x yx y-=⎧⎨-+=⎩.21.解不等式组21023 23xx x+>⎧⎪-+⎨≥⎪⎩.22.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知,在平面直角坐标系中,点A,B 的坐标分别是(a,0),(b,0)420a b ++-=.(1)求a,b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位写出此时点Q 的坐标.参考答案1.B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.2.B【解析】【详解】解:二元一次方程5a-11b=21中a,b都没有限制故a,b可任意实数,只要方程成立即可,故原成有无数解,故选B3.B【解析】试题分析:根据偶次方具有非负性解答即可.解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a﹣1)2≥0,D错误.故选B.考点:非负数的性质:偶次方.4.C【解析】①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个,故选C.5.B【解析】根据无理数的三种形式,结合选项找出无理数的选项.解:A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、227是有理数,故本选项错误.故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.8.A【解析】三条直线只有两个交点,则其中两条直线互相平行,所以①正确;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,所以②正确;过直线外一点有且只有一条直线与已知直线平行,所以③错误。
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D . 2.点P(-2,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 4.下列方程组不是二元一次方程组的是( )A .43624x y x y +=⎧⎨+=⎩B .44x y x y +=⎧⎨-=⎩C .141y x x y ⎧+=⎪⎨⎪-=⎩D .35251025x y x y +=⎧⎨+=⎩ 5.在311.41407π-,,, 1.14,3.212212221(每两个1之间多一个2),这些数中无理数的个数为( )A .3B .2C .5D .46.若点P ()31m m ,+-在x 轴上,则点P 的坐标为( )A .(0,-2)B .(4,0)C .(2,0)D .(0,-4) 7.如图,由下列条件不能得到AB ∥CD 的是( )A .∠B +∠BCD =180° B .∠1=∠2C .∠3=∠4D .∠B =∠5 8.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(-3,4)B .(4,-3)C .(3,-4)D .(-4,3) 9.下列说法中正确的是( )A .9的平方根是3B .4平方根是2±C 4D .-8的立方根是2± 10.已知x y 、是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是( ) A .0 B .5 C .-1 D .111.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为( )A .50°B .60°C .40°D .30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是( )A .(5,6)B .(6,0)C .(6,3)D .(3,6)二、填空题 13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知x y 、()230y -=,则xy 的值是_______.15 1.732 5.477≈≈,≈_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(−1,−2),“马”位于点(2,−2),则“兵”位于点__________.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题19.计算:(1)(2)已知(x –2)2=16,求x 的值.20.已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111A B C △;(3)计算111A B C △的面积.21.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=20°,求∠BOE 和∠AOG 的度数.22.若关于x y 、的方程组59x y k x y k +=⎧⎨-=⎩的解满足236x y +=,求k 的值.23.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.如图,△ABO 的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB 的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的25,求点M的坐标.参考答案1.B【分析】对顶角是两条直线相交,其中一个角是另一个角的边的反向延长线,据定义即可判断.【详解】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故选B【点睛】本题主要考查对顶角的定义,是一个基础题.理解定义是关键.2.C【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点在平面直角坐标系中,点P(−2,−5)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.B【解析】【分析】<<,推出23即可.【详解】解:<<,∴23,2和3之间.【点睛】.4.C【解析】【分析】根据二元一次方程组的定义对各选项分析判断后利用排除法求解.【详解】解:A、是二元一次方程组,故本选项错误;B、是二元一次方程组,故本选项错误;C、第一个方程x在分母上,不是二元一次方程组,故本选项正确;D、是二元一次方程组,故本选项错误.故选:C.【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项的最高次数都应是一次的整式方程.5.A【解析】【分析】根据无理数是无限不循环小数,直接判定即可.【详解】,π,3.212212221(每两个1之间多一个2),共3个;故选:A.【点睛】本题主要考查无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.6.B【解析】【分析】根据点P在x轴上,即m-1=0,可得出m的值,从而得出点P的坐标.【详解】解:∵点P(m+3,m-1)在x轴上,∴m-1=0,解得:m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.7.B【解析】【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【详解】解:A、∵∠B+∠BCD=180°,∴AB∥CD,正确,故本选项不选;B、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,错误,故本选项选;C、∵∠3=∠4,∴AB∥CD,正确,故本选项不选;D、∵∠B=∠5,∴AB∥CD,正确,故本选项不选;故选:B.【点睛】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.8.A【解析】【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【详解】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:−3,∴P(−3,4),故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.B【解析】【分析】根据算术平方根的定义、平方根的定义、立方根的定义即可作出判断.【详解】解:A、9的平方根是±3,故选项错误;B、4的平方根是±2,故选项正确;C2,故选项错误;D、-8的立方根是-2,故选项错误.故选:B.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作(a≥0);也考查了立方根的定义.10.B【解析】【分析】两个二元一次方程相加可得4x+4y=20,两边同时除以4即可得到结果. 【详解】解:31238x yx y+=⎧⎨+=⎩①②,①+②得:4x+4y=20,∴x+y=5,故选:B.【点睛】本题考查了二元一次方程组的解,理解方程组解的定义是解题关键.11.D【解析】【分析】反向延长DE交BC于M,根据平行线的性质求出∠BMD的度数,由补角的定义求出∠CMD 的度数,根据三角形外角的性质即可得出结论.【详解】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°−∠BMD=120°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE−∠CMD=150°−120°=30°.故选:D.【点睛】本题考查的是平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等.12.D【解析】【分析】根据题目中所给点运动的特点,从中找出规律,即可得出答案.【详解】解:由图可得,4秒后跳蚤所在位置的坐标是(2,0);16秒后跳蚤所在位置的坐标是(4,0);36秒后跳蚤所在位置的坐标是(6,0);∴42秒时根据跳蚤向上跳动6个单位可以到达(6,6),45秒时根据跳蚤向左跳动3个单位可以到达(3,6),故选:D.【点睛】本题主要考查点的坐标问题,解决本题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.13.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行【解析】【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:“同位角相等,两直线平行”的条件是:“同位角相等”,结论为:“两直线平行”,所以写成“如果…,那么…”的形式为:“如果同位角相等,那么两直线平行”.14.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.17.32【解析】【分析】根据题目中的数据和算术平方根的求法可以解答本题.【详解】==≈,17.32故答案为:17.32.【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出所求数据的算术平方根.16.3【解析】【分析】BE 即是平移的距离,根据线段和差求出即可.【详解】解:根据题意可知BE即为平移的距离,BE=BC-EC=3cm,故答案为:3.【点睛】本题考查平移的性质,根据题意找到平移的的方向和距离是解题关键.17.(−3,1)【解析】试题分析:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1).考点:平面直角坐标系18.17【解析】【分析】设晴天工作x 天,雨天工作y 天,根据题意列出二元一次方程组求解即可.【详解】解:设晴天工作x 天,雨天工作y 天, 根据题意得:()()1130%1141411120%11515x y x y ⎧+⨯-=⎪⎪⎨⎪+⨯-=⎪⎩, 解得:710x y =⎧⎨=⎩, ∴两个工程队各工作了x+y=17天,故答案为:17.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.19.(1)原式=4;(2)x=-2或x=6.【解析】【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=-+=+(2)()2216x -=,24x -=±,1262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.20.(1)见解析;(2)见解析;(3)面积为5.【解析】【分析】(1)找到点A 、B 、C 的位置,连接即可;(2)根据平移的性质找到A 1、B 1、C 1的位置,连接即可;(3)用111A B C △所在矩形的面积减去周围直角三角形的面积进行计算.【详解】解:(1)如图,△ABC 即为所求;(2)如图,111A B C △即为所求;(3)111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查平面直角坐标系和平移,熟练掌握平移的性质是解题关键.21.∠BOE=70°;∠AOG=55°. 【解析】【分析】先求出∠AOF ,根据对顶角的性质得出∠BOE ,再根据邻补角的性质求出∠AOE ,由角平分线即可求出∠AOG .【详解】解:∵AB ⊥CD ,∴∠AOD=∠AOC=90°,∵∠FOD=20°,∴∠AOF=90°-20°=70°,∴∠BOE=70°;∴∠AOE=180°-70°=110°,∵OG 平分∠AOE ,∴∠AOG=110°÷2=55°.【点睛】本题考查了垂线、对顶角、邻补角的定义,弄清各个角之间的数量关系是解决问题的关键. 22.34【解析】分析:先利用加减消元法解二元一次方程组,可得72x k y k=⎧⎨=-⎩,然后根据2x+3y=6可得:1466k k -=,解得34k =. 详解:解59x y k x y k +=⎧⎨-=⎩①②, 由①+②可得:214x k =,解得7x k =,把7x k =代入②可得:2y k =-, 因为2x+3y=6可得:1466k k -=,解得34k =. 点睛:本题主要考查含参数的二元一次方程组的解法,解决本题的关键是要熟练掌握加减消元法解二元一次方程组.23.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,∴AD ∥EG ,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD 平分∠BAC .(角平分线的定义)24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.(1)10;(2)P 点的纵坐标为8或-8,横坐标为任意实数;(3)M(-2,0),(2,0).【解析】【分析】(1)根据三角形面积公式可直接计算;(2)由于底不变,△OAP 的高是△OAB 的高的二倍即可;(3)分情况讨论,当M 在x 轴上时和当M 在y 轴上时,分别求出OM 即可.【详解】解:(1)∵O(0,0),A(5,0),B(2,4),∴S △OAB =0.5×5×4=10;(2)若△OAP 的面积是△OAB 面积的2倍,O ,A 两点的位置不变,则△OAP 的高应是△OAB 高的2倍,即△OAP 的面积=△OAB 面积×2=0.5×5×(4×2), ∴P 点的纵坐标为8或-8,横坐标为任意实数;(3) △OBM 的面积=21045⨯=, 当M 在x 轴上时,以OM 为底,OM 边上的高为4, ∴1442OM ⨯⨯=,解得OM=2, ∴M(-2,0),(2,0),同理当M在y轴上时,M(0,4),(0,-4).【点睛】本题考查了坐标与图形以及三角形的面积的求解,三角形的底边不变,则三角形的面积与高成正比,高不变,则三角形的面积与底边成正比,需要注意,在平面直角坐标系内,符合长度的点的坐标通常都有两种情况,不要漏解.。
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.若∠A与∠B是对顶角且互补,则它们两边所在的直线( )A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定2.4的平方根是()A.±16 B.2 C.﹣2 D.±2 3.在平面直角坐标系中,点(-3,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC5.在实数:3.141 59,1.010 010 001, 4.21,π,227中,无理数有( )A.1个B.2个C.3个D.4个6.下列命题是假命题的是().A.同位角相等B.平行于同一直线的两直线平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两直线平行,内错角相等7.已知32xy=⎧⎨=-⎩是二元一次方程3x﹣my=5的一组解,则m的值为()A.﹣2 B.2 C.﹣12D.128.如果方程组864x yy zz x+=⎧⎪+=⎨⎪+=⎩的解使代数式kx+2y﹣3z的值为8,则k=()A .13 B .﹣13 C .3 D .﹣3二、填空题9.如图,在线段AC ,BC ,CD 中,线段______最短,理由是________.10.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =68°,则∠BOD 的度数为________.11.若一个正数的平方根是2a-3与5-a ,则这个正数是_____.12.点P (2a,1-3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为6,则点P 的坐标是________.13.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为 .三、解答题14.3_____,绝对值是_____.15.计算:(1)(﹣2)22016(1)-;(22|16.求下列等式中x 的值:(1)2x 2﹣12=0;(2)(x +4)3=125.17.已知2a ﹣1的平方根是±3,11a +b ﹣1的立方根是4,求a +2b 的平方根.18.解下列方程组:(1)3219424x y x y +=⎧⎨-=⎩ (2)5323225x y x y ⎧+=⎪⎨⎪+=⎩19.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.20.如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,求证:AB ∥CD .21.如图所示,△ABC 中,A (﹣2,1)、B (﹣4,﹣2)、C (﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图,并且C的对应点C′的坐标为(4,1)。
七年级下第三次月考数学试卷(有答案) 七年级下第三次月考数学试卷(附答案)一、选择题(每小题3分,共计30分)1.若a>b,则下列不等式一定成立的是()A.a-b<0 B.a-b>0 C.1-a<1-b D.-1+a<-1+b2.给出下列四个命题,其中真命题的个数为()①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m²,-m)在第四象限内。
A.1 B.2 C.3 D.43.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个 B.3个 C.4个 D.5个4.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<-1 B.a<1 C.a>-1 D.a>15.立方根等于它本身的有()A.-1,0,1 B.-1,1 C.0,-1,1 D.16.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空。
若旅行团的人数为偶数,求旅行团共有多少人()A.27 B.28 C.29 D.307.点到直线的距离是指这点到这条直线的()A.垂线段 B.垂线 C.垂线的长度 D.垂线段的长度8.XXX用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么XXX最多能买笔的数目为()A.14 B.13 C.12 D.119.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款数(元) | 6 | 8 |人数 | x | y |表格中捐款6元和8元的人数不小心被墨水污染已看不清楚。
若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组6x+8y=320x+y=42A.B.C.D.10.点M(a,a-1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、认真填一填(每题3分,共24分)11.√2的平方根为2/√2=√2.12.关于x的不等式2x-a≤-3的解集如图所示,则a的值是3.13.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于80°。
人教部编版语文七年级下册第三次月考测试题(时间:120分钟分值:120分)卷面书写3分。
一、积累与运用(26分)1、读下面诗句完成①---③。
(4分)望黄河滚滚,奔向东南。
惊涛péngpài,掀起万丈狂澜.;浊流宛转,结成九曲连环;从昆仑山下,奔向黄海之边;把中原大地,劈.成南北两面。
①统领全诗的一个字是。
②根据拼音补全诗句。
Péngpài()。
③给加点的字注音。
澜.()劈.()2、按要求默写。
(8分)①深林人不知,。
(王维《竹里馆》)② ______________________,野渡无人舟自横。
(韦应物《滁州西涧》)③正是江南好风景,。
(杜甫《江南逢李龟年》)④,青草池塘处处蛙。
(赵师秀《约客》)⑤赵翼《论诗》中表明代代都有影响后世人才的两句诗是,。
⑥《木兰诗》中描写塞外艰苦的战地生活的诗句,。
3.下列加点词语使用正确的一项是()(2分)A.我家的相册里,有几张罕见的照片,在它们的背后藏着一些妇.孺皆知...的故事。
B.一个同学一下课就追问老师的问题,同学们在一旁议论,有的说是勤学好问,有的说是不.耻下问...。
C. 7.1级强震让玉树县结古镇成为重灾区,那里到处都是倒塌的房屋,少数站立的楼房也都有明显的裂横,所见一片狼藉,让初到当地的专家叹为观止....。
D.看到电影《可可西里》中藏羚羊被盗猎分子枪杀而横尸荒野的惨状,我们无不感到义愤填...膺.。
5.名著阅读。
(3分)互联网上的论坛是网民发表感言的地方。
现在,有个文学论坛准备向大家征集“我最喜欢的名著”阅读感言,请你从下列名著中选取一篇,写上几句感言。
(注意:不一定要在句式上模仿示例,关键在于谈出自己的真实感受。
)名著:《钢铁是怎样炼成的》《童年》《鲁宾逊漂流记》《西游记》《水浒传》《安徒生童话》《伊索寓言》示例:初读《骆驼祥子》,觉得故事好玩:再读,看到了祥子挣扎的痛苦,看到了他在困苦中走向堕落的无奈。
人教版数学七年级下册第三次月考试题评卷人得分一、单选题1.下列各式的值一定是正数的是()A BC.21a D.a2.下列式子中,是一元一次不等式的是()A.x2<1B.y–3>0C.a+b=1D.3x=23.上海是世界知名金融中心,以下能准确表示上海市地理位置的是()A.在中国的东南方B.东经121.5C.在中国的长江出海口D.东经12129',北纬3114'4.如图,已知a∥b,小明把三角板的直角顶点放在直线b上,若∠1=35°,则∠2的度数为()A.65°B.120°C.125°D.145°5.若点P(a,b)在第二象限,则点Q(b+2,2﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限6.直线l外一点P与直线l上两点的连线段长分别为3cm,5cm,则点P到直线l的距离是()A.不超过3cm B.3cm C.5cm D.不少于5cm 7.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.7385y xy x=+⎧⎨+=⎩B.7385y xy x=+⎧⎨-=⎩C.7385y xy x=-⎧⎨=+⎩D.7385y xy x=+⎧⎨=+⎩8.下列计算或命题:a的算术平方根是2;④实数和数轴上的点是一一对应的,其中正确的个数有()A .1个B .2个C .3个D .4个9.如图,AB ∥CD ∥EF ,EH ⊥CD 于H ,则∠BAC+∠ACE+∠CEH=().A .180°B .270°C .360°D .540°10.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?()A .36,8B .28,6C .28,8D .13,311.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为()A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)12.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--.现已知x 1=-21x 3,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为()A .13-B .1-C .34D .4评卷人得分二、填空题13.下列实数中:3.14,π,0,2270.3232232223(⋯每相邻两个3之间依次增加一个2),0.123456;其中无理数有______个.14.化简(21+-+的结果为_____.15.不等式7﹣2x >1的非负整数解为:_______________.16.如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3m,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为_____cm.17.编队飞行(即平行飞行)的两架飞机A、B在直角坐标系中的坐标分别为A(﹣1,2)、B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是_____.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是_____.评卷人得分三、解答题19.如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.20.解方程(或方程组):(1)4x2=81;(2)(2x+10)3=﹣27.(3)24{4523x yx y-=-=-(4)11{233210.x yx y+-=+=21.长阳公园有四棵古树A,B,C,D (单位:米).(1)请写出A,B,C,D 四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH 用围栏圈起来,划为保护区,请你计算保护区的面积.22.已知()267567190a b a b +-+--=.(1)求a 和b 的值;(2)当x 取何值时,ax b -的值大于2.23.如图,已知直线AB 和CD 相交于O 点,射线OE ⊥AB 于O ,射线OF ⊥CD 于O ,且∠BOF =25∘.求:∠AOC 与∠EOD 的度数.24.在平面直角坐标系xOy 中,有一点P (a ,b ),实数a ,b ,m 满足以下两个等式:2a -6m +4=0,b +2m -8=0.(1)当a =1时,点P 到x 轴的距离为______;(2)若点P 在第一三象限的角平分线上,求点P 的坐标;(3)当a <b 时,则m 的取值范围是______.25.列方程组解应用题:某学校在筹建数学实验室过程中,准备购进一批桌椅,现有三种桌椅可供选择:甲种每套150元,乙种每套210元,丙种每套250元.若该学校同时购买其中两种不同型号的桌椅50套,恰好花费了9000元,则共有哪几种购买方案?26.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC度数.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC 有何数量关系?并说明理由.参考答案1.C 【解析】【分析】根据实数、绝对值以及算术平方根的性质进行选择即可.【详解】解:A 、当a≤0时,,故A 错误;B 、当a=0时,,故B 错误;C 、∵a≠0,∴a 2>0,∴21a >0,故C 正确;D 、当a=0时,|a|=0,故D 错误;故选:C .【点睛】本题考查了实数,立方根,非负数:绝对值和算术平方根,掌握非负数的性质是解题的关键.2.B 【解析】【分析】根据一元一次不等式的定义,只含有一个未知数,并且未知数的次数是1的不等式,即可解答.【详解】解:A 、未知数次数是2,属于一元二次不等式,故本选项错误;B 、符合一元一次不等式的定义,故本选项正确;C 、含有2个未知数,属于二元一次方程,故本选项错误;D 、含有1个未知数,是一元一次方程,故本选项错误.故选B .【点睛】本题考查一元一次不等式的定义,解题的关键是熟练掌握一元一次不等式的定义.3.D 【解析】【分析】根据坐标确定点的位置可得.【详解】解:A、在中国的东南方,无法准确确定上海市地理位置;B、东经121.5 ,无法准确确定上海市地理位置;C、在中国的长江出海口,法准确确定上海市地理位置;D、东经12129',北纬3114',是地球上唯一的点,能准确表示上海市地理位置;故选:D.【点睛】本题主要考查坐标确定点的位置,掌握将平面用两条互相垂直的直线划分为四个区域,据此可表示出平面内每个点的准确位置是关键.4.C【解析】【分析】根据两直线平行,同位角相等,即可得到∠AEB=∠ACD=125°,再根据两直线平行,同位角相等,即可得到∠2的度数.【详解】如图所示,∵∠1=35°,∠ACB=90°,∴∠ACD=125°,∵a∥b,∴∠AEB=∠ACD=125°,∴由图可得∠2=∠AEB=125°,故选:C.【点睛】本题考查了平行线的性质,直角三角形的性质,熟记性质并准确识图是解题的关键.5.A【解析】【分析】直接利用第二象限内点的坐标特点得出a,b的符号进而得出答案.【详解】∵点P(a,b)在第二象限,∴a<0,b>0,∴b+2>0,2﹣a>0,∴点Q(b+2,2﹣a)所在象限应该是第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标特点是解题关键.6.A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P到直线l的距离是小于或等于3,故选A.【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短.7.C【解析】【分析】根据题意确定等量关系为:①组数×每组7人=总人数-3人;②组数×每组8人=总人数+5人.由此列方程组即可.【详解】根据组数×每组7人=总人数-3人,得方程7y=x-3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为73 85 y xy x=-⎧⎨=+⎩.故选C.【点睛】本题考查了二元一次方程组的应用,根据题意确定等量关系为组数×每组7人=总人数-3人和组数×每组8人=总人数+5人是解决问题的关键.8.D【解析】【分析】利用实数的定义、算术平方根的定义以及立方根的性质,分别判定各项即可解答.【详解】①有理数和无理数统称为实数,①正确;=a,②正确;,4的算术平方根是2,③正确;④实数和数轴上的点是一一对应的,④正确.故选D.【点睛】本题考查了命题与定理,熟练运用相关定义是解决问题的关键.9.C【解析】【分析】根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF 的度数即可.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,同理∠DCE+∠CEF=180°,∴∠BAC+∠ACE+∠CEF=360°;又∵EH⊥CD于H,∴∠HEF=90°,∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF-∠HEF=360°-90°=270°.故选B .【点睛】本题主要考查了平行线的性质:两直线平行同旁内角互补.10.A 【解析】【分析】此题不变的是井深,用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】设绳长x 米、井深y 米,依题意有4314xy x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得368x y =⎧⎨=⎩,即:绳长36米、井深8米.故选:A【点睛】本题考核知识点:二元一次方程组的应用.解题关键点:设好未知数,根据题意,找出等量关系,列出方程(组).11.D 【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.12.D【解析】【分析】根据已知条件可以先计算出几个x的值,从而可以发现其中的规律,求出x2019的值.【详解】解:由已知可得,x1=1 3-,213,14 13x==⎛⎫-- ⎪⎝⎭314,314x==-411, 143x==--可知每三个一个循环,2019÷3=673,故x2019=4.故选D.【点睛】本题考查数字的规律问题,解题的关键是发现其中的规律,求出相应的x的值.13.4【解析】【分析】根据无理数的定义即可求出答案.【详解】π,0.3232232223…(每相邻两个3之间依次增加一个2)是无理数.故答案为:4.【点睛】本题考查了无理数的定义,解题的关键是熟练运用无理数的定义,本题属于基础题型.14.3+【解析】【分析】先算平方,再去绝对值,然后算立方根,从左往右依次相加即可.【详解】原式3故答案为3【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.15.0、1、2【解析】【分析】首先根据不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:不等式7-2x>1,整理得,2x<6,x<3,则不等式的非负整数解是:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键;解不等式应根据不等式的基本性质.16.20【解析】【分析】根据平移的距离表示出长方形A'ECF的长和宽,即可求出结论.【详解】解:由题意得到BE=3cm,DF=4cm,∵AB=DC=7cm,BC=10cm,∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.【点睛】本题考查了平移的性质,认准图形,准确求出长方形A'ECF的长和宽是解题的关键.17.(1,0)【解析】【分析】先根据飞机A确定出平移规律,再求出飞机B的横坐标与纵坐标即可得解.【详解】∵飞机A(-1,2)到达(2,-1)时,横坐标加3,纵坐标减3,∴飞机B(-2,3)的横坐标为-2+3=1,纵坐标为3-3=0,∴飞机B的坐标为(1,0).故答案为(1,0)【点睛】本题考查了坐标与图形的变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.18.(2018,0)【解析】分析:根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.详解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2018次运动后,动点P的横坐标为2018,纵坐标为1,0,2,0,每4次一轮,∴经过第2018次运动后,动点P的纵坐标为:2018÷4=504余2,故纵坐标为四个数中第2个,即为0,∴经过第2018次运动后,动点P的坐标是:(2018,0),故答案为:(2018,0).点睛:此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.19.50°.【解析】【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【详解】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.20.(1)x=92±;(2)x=132-;(3)436{313xy==;(4)=3{1=2xy.【解析】【分析】(1)系数化为1后,利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可;(3)利用代入消元法进行求解即可;(4)整理后,利用加减消元法进行求解即可.【详解】(1)4x2=81,x2=81 4,x=所以x=9 2±;(2)(2x+10)3=﹣27,,2x+10=-3,x=13 2 -;(3)244523x yx y-=⎧⎨-=-⎩①②,由①得y=2x-4③,把③代入②得,4x-5(2x-4)=-23,解得x=43 6,把x=436代入③,得y=313,所以436313x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)整理得3283210x y x y -=⎧⎨+=⎩①②,①+②得,6x=18,x=3,②-①得,4y=2,y=12,所以312x y =⎧⎪⎨=⎪⎩.【点睛】本题考查了利用平方根定义、立方根定义解方程,解二元一次方程组,熟练掌握相关定义以及求解方法是解题的关键.21.(1)A(10,10),B(20,30),C(40,40),D(50,20);(2)1950m 2【解析】试题分析:(1)根据图形即可直接写出A 、B 两点坐标;(2)用大长方形面积减去三个小三角形面积即可.试题解析:(1)A (10,10)、B (20,30);(2)保护区面积为:60×50﹣12×10×60﹣12×10×50﹣12×20×50=1950m 2.考点:点的坐标.22.(1)21a b =⎧⎨=-⎩;(2)当12x >时,21x +的值大于2【解析】【分析】(1)已知()267567190a b a b +-+--=,由非负数的性质可得675067190a b a b +-=⎧⎨--=⎩,解方程组即可求得求a 和b 的值;(2)根据题意可得2ax b ->,把a 和b 的值代入后解不等式即可求得x 的取值范围.【详解】(1)由题意得,675067190a b a b +-=⎧⎨--=⎩,解得,21a b =⎧⎨=-⎩;(2)2ax b ->∵2a =,1b =-∴()212x -->即12x >所以,当12x >时,21x +的值大于2.【点睛】本题考查了非负数的性质、二元一次方程组的解法及一元一次不等式的解法,根据非负数的性质得到方程组675067190a b a b +-=⎧⎨--=⎩是解决问题的关键.23.∠AOC =115°,∠EOD =25°.【解析】【分析】根据垂线的性质和余角及补角的定义可求出∠AOC ,由垂线的性质和余角的定义可求出∠EOD【详解】解:∵OF ⊥CD ,∴∠COF =90°,∴∠BOC =90°-∠BOF =65°,∴∠AOC =180°-65°=115°.∵OE ⊥AB ,∴∠BOE =90°,∴∠EOF =90°-25°=65°,∵OF ⊥CD∴∠DOF=90°∴∠EOD=∠DOF−∠EOF=90°-65°=25°.【点睛】垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键. 24.(1)6.(2)(4,4).(3)m<2【解析】【分析】(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.【详解】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.【点睛】本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.25.有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套【解析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.解:①若同时购买甲、乙两种桌椅,则设购买甲x套,购买乙y套.根据题意,得50 1502109000x yx y+=⎧⎨+=⎩,解方程组,得2525x y =⎧⎨=⎩;②若同时购买甲、丙两种桌椅,则设购买甲x 套,购买乙z 套.根据题意,得501502509000x z x z +=⎧⎨+=⎩,解方程组,得3515x z =⎧⎨=⎩,③若同时购买乙、丙两种桌椅,则设购买乙y 套,购买丙z 套.根据题意,得502102509000y z y z +=⎧⎨+=⎩,解方程组,得87.537.5y z =⎧⎨=-⎩(不符题意,舍),所以,共有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套.26.(1)80°;(2)详见解析;(3)详见解析【解析】【分析】(1)过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP ,再根据APC APE CPE BAP DCP ∠=∠+∠=∠+∠进行计算即可;(2)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠AKE =∠BAK ,∠CKE =∠DCK ,得到∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,同理可得,∠APC =∠BAP +∠DCP ,再根据角平分线的定义,得1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,进而得到1.2AKC APC ∠=∠(3)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠BAK =∠AKE ,∠DCK =∠CKE ,进而得到∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,同理可得,∠APC =∠BAP −∠DCP ,再根据角平分线的定义,得出1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,进而得到1.2AKC APC ∠=∠【详解】解:(1)如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠APE =∠BAP ,∠CPE =∠DCP ,∴602080APC APE CPE BAP DCP ∠=∠+∠=∠+∠=+= ;(2)1.2AKC APC ∠=∠理由:如图2,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠AKE =∠BAK ,∠CKE =∠DCK ,∴∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP +∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K ,∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,∴12AKC APC ∠=∠;(3)12AKC APC ∠=∠;理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP −∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K ,∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,∴1.2 AKC APC ∠=∠【点睛】考核知识点:平行线判定和性质综合.添辅助线,灵活运用平行线性质是关键.第21页。
饮泉初中2012~2013学年度第二学期第三次抽测考试 七年级数学试题 (答卷时间:100分钟 满分:130分) 一、填空题(每小题2分,共30分) 1.已知5-a +3+b =0,那么a —b= 。
2.满足53<<-x 的整数x 有 个。
3.点A (+3,-4)到x 轴的距离是_________。
4.把方程5y -2x=3改写成用含y 的式子表示x 的形式,得 5.将点(-3,y )向下平移3个单位,向右平移2个单位得到点(x ,-1),则xy =_ _ 6.若点A (m -3,1-3m )在第三象限,则m 的取值范围是 。
7.已知点A(a +5, 2b -4)和点B (2a +1, b +1)关于y 轴对称,则a = ,b = . 8.若3+x 是4的平方根,则=x 。
9.已知线段AB=3,AB ∥x 轴,若点A 的坐标为(1,2),则点B 的坐标为_______________。
10.若 ()16242=-x ,则x = 。
11. 364 的平方根是 。
12. 已知一个正数x 的两个平方根是1+a 和3-a ,x = 。
13.若方程m x x -=+33 的解是正数,则m 的取值范围是_________。
14.若方程组⎩
⎨⎧+=++=+1225
2k y x k y x 的解中x +y =5,则k= 。
15.已知关于x 的不等式组0321x a x -≥⎧⎨-≥-⎩的整数解共有5个,则
a 的取值范围是 .
二、单项选择题(每小题3分,共30分)
16.数3.14, 2 ,π,0.323232…,17 ,9 中,无理数的个数为( )
A.2个 B .3个 C .4个 D .5个
密
封
线
内
请
勿
答
题
学校
班
级
考试号
姓名
17.若点A (m ,n ),点B (n ,m )表示同一点,则这点一定在( )
A 第二、四象限的角平分线上
B 第一、三象限的角平分线上
C 平行于x 轴的直线上
D 平行于y 轴的直线上
18.方程组的解⎩⎨⎧=-⊗=+3y 2x y 2x 为⎩⎨⎧⊕
==y x 2,则⊗、⊕的两个数分别为( )
A .2,4
B .1,3
C .2,3
D . 5 ,1 19.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③
94的平方根是32; ④0.01的算术平方根是0.1,其中正确的有( )
A 1个
B 2个
C 3个
D 4个
20.已知点A(3a +6,a -3)在x 轴上,则点A 的坐标为( )
A.(3,0)
B. (-2,0) C . (0,-5) D. (15,0)
21.一个不等式组的解集为12x -<≤,那么在数轴上表示正确的是( )
22.下列说法(1)点(1,-a )一定在第四象限 (2)坐标轴上的点不属于任一象限
(3
) 横坐标为0的点在y 轴上,纵坐标为0的点在x 轴上 (4)平面直角坐标系中,在y 轴上且到原点距离为5的点的坐标是(0,5)。
其中正确地有( )
A 1个
B 2个
C 3个
D 4个
23.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( )
A 24.72
B 5.325
C 11.47
D 247.2
24.关于x 、y 的方程组⎩⎨⎧+=+=+4
53235k y x k y x 的解x 、y 的差为2,则k 的值 ( )
A . —9
B .9
C . 8
D .—8
25.如果关于x 、y 的方程组322x y x y a +=⎧⎨-=-⎩
的解是正数,则a 的取值范围是( ) A 、-4<a <5 B 、a <5 C 、a >-4 D 、无解
A B C D
三、解答题(共70分)
26.(5分)计算: 333327343125
12581---+--
27.解方程:(每题6分,共18分)
(1)⎩⎨⎧=-=-;1383,
32y x y x (代入法)
(2)⎪⎩⎪⎨⎧=+--=--232)21(3)2(4y x y y x
(3)8
31223
2=++-=-+-=--z y x z y x z y x
28.(7分)在平面直角坐标系中, △ABC 的三个顶点的位置如图所示,点A'的坐标是(-2,2), 现将△ABC 平移,使点A 变换为点A', 点B ′、C ′分别是B 、C 的对应点.
(1)请画出平移后的△A'B'C' ,并直接写出点B ′、C ′的坐标: B ′ 、C ′ ;
(2)若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P ′的坐标是 .
(3)求出△ABC 面积。
29.(6分)解不等式,并把解集表示在数轴上
34223
1x
x +≤--.
30.(7分)解不等式组,并写出它的整数解。
3(1)7251.3x x x
x --⎧⎪⎨--<⎪⎩≤, ①
②
31.(7分)关于y x ,的方程组⎩⎨⎧-=-+=+131
m y x m y x 的解满足x >y ,求m 的最小整数值. 32.(10分)我校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数?
密
封
线
内
请
勿
答
题
学校
班
级
考试号
姓名
33.(10分)今秋,某村水果喜获丰收,果农老王收获枇杷20吨、桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)老王如何安排甲、乙两种货车可一次性地运到销售地?有哪几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则老王应选择哪种方案,使运输费最少?最少运费是多少?。