脱硫脱硝用活性炭研究进展_谢新苹
- 格式:pdf
- 大小:251.86 KB
- 文档页数:6
活性炭脱硫性能分析王翠萍【摘要】介绍了活性炭脱硫剂脱硫和再生的基本原理,分析了活性炭脱除无机硫、有机硫的效果,验证了活性炭再生的最佳温度,为活性炭新技术研究做提供参考.【期刊名称】《山西煤炭》【年(卷),期】2010(030)004【总页数】3页(P78-80)【关键词】活性炭;脱硫效果;再生温度【作者】王翠萍【作者单位】山西煤炭职业技术学院,煤化工系,山西,太原,030038【正文语种】中文【中图分类】TQ424.1活性炭脱硫剂是最早使用的干法脱硫剂之一,20世纪30年代西欧及北美一些国家已被广泛采用。
我国是在20世纪50年代开始使用活性炭脱硫,70年代创建了活性炭脱硫——过热蒸汽再生工艺。
早先的活性炭脱硫技术设备庞大,再生和硫回收过程复杂、操作烦锁,逐渐被湿法所取代。
近年来,由于又采用了新的脱硫剂生产技术,有不少中小型合成氨厂、尿素厂、联醇生产厂利用活性炭脱硫剂干法脱除原料气中的部分硫化物。
此法具有硫容大、适应性强、操作温度低、并可再生反复使用和能回收硫磺等优点。
活性炭本身具有非极性、疏水性、较高的化学稳定性和热稳定性,可进行活化和改进,加之它的催化能力、选择性、负载性能和还原性能、以及独特的孔隙结构和表面化学特性,价格便宜、来源广泛,决定了活性炭作为一种脱硫剂具有非常好的先天条件。
我国的活性炭工业发展迅速,平均年增长率超过15%。
2003年达到22万t/a左右,居世界第一位。
近几年,我们一直进行活性炭脱硫剂的脱硫效果和再生性能的调查研究,期望能为活性炭脱硫剂的性能改善和推广使用做些工作。
采用活性炭脱除工业气体中的硫化氢及有机硫化物,称为活性炭脱硫。
室温下,气态的硫化氢与空气中的氧能生下列反应:它是一个放热反应。
在一般条件下,其反应速度很慢。
催化剂可以加速其反应。
1)活性炭既是吸附剂又是催化剂,兼有催化剂和双重作用。
硫化氢及氧在活性炭表面的反应分两步进行:第一步是活性炭表面化学吸附氧,形成作为催化中心的表面氧化物;这一步极易进行,工业气体中只要含少量氧便能满足活性炭脱硫的需要。
活性炭联合脱硫脱硝技术探讨活性炭联合脱硫脱硝技术是一种新型的烟气处理技术,它采用活性炭吸附脱除烟气中的二氧化硫和氮氧化物,有效地减少了烟气中有害气体的排放,保护了环境。
本文将探讨活性炭联合脱硫脱硝技术的原理、应用及其优势。
一、技术原理活性炭联合脱硫脱硝技术利用活性炭的吸附特性,将烟气中的有害气体吸附到活性炭表面上,从而达到脱硫脱硝的目的。
具体而言,该技术分为三个步骤:吸附脱硫、吸附脱硝和再生吸附剂。
1. 吸附脱硫烟气中的二氧化硫经过烟气净化设备的处理后,进入活性炭吸附器内。
在吸附器内,烟气与活性炭接触时,活性炭表面的微孔会对二氧化硫进行吸附作用,将其从烟气中去除。
此过程中,活性炭的表面积越大,其脱硫效果就越好。
烟气中的氮氧化物主要包括氮氧化物和一氧化氮等有害物质。
这些物质通常是通过液态还原剂在还原反应器内还原为氨,再通过吸附剂进行吸附,形成固体颗粒物质,从而达到去除氮氧化物的目的。
通常活性炭的吸附剂是一种具有高表面积、孔径适中、催化活性好、吸附能力强的物质。
3. 再生吸附剂吸附后的活性炭会逐渐失去吸附能力,需要进行再生处理。
一般情况下,对活性炭在吸附过程中脱除的二氧化硫和氮氧化物,再度进行煅烧和氧化处理,使其脱离吸附剂表面,从而使吸附剂恢复正常的吸附性能。
同时,煅烧后的二氧化硫和氮氧化物会形成氧化物排放,需要采用其他烟气净化设备进行处理。
二、技术应用活性炭联合脱硫脱硝技术已经在国内外得到了广泛的应用,尤其是在火力发电厂、钢铁厂等大型企业中的烟气治理中。
通过该技术,可以有效地去除燃煤烟气中的二氧化硫和氮氧化物等有害气体,使环保达到国家标准,并且对环境污染减少,净化作用良好。
与此同时,由于原料和制造成本的不断降低,活性炭的市场需求也越来越大。
在烟气治理中广泛应用活性炭的同时,如何降低其制造成本,提高其利用效率也是分析的方向。
三、技术优势相对于其他烟气净化技术,活性炭联合脱硫脱硝技术具有许多优势。
其中最突出的几点包括:1. 高效性:活性炭联合脱硫脱硝技术能够有效地去除烟气中的二氧化硫和氮氧化物等有害气体,同时净化率高。
活性炭联合脱硫脱硝技术探讨一、活性炭联合脱硫脱硝技术的原理活性炭联合脱硫脱硝技术是一种通过在燃煤锅炉烟气中喷入活性炭并将矿物吸附剂与之混合,以达到同时去除烟气中的二氧化硫和氮氧化物的技术。
该技术主要包括两个部分,一是活性炭脱硫技术,二是活性炭脱硝技术。
在活性炭脱硫技术中,烟气中的二氧化硫在与喷入的活性炭接触后,通过化学吸附和物理吸附等机制吸附到活性炭上,从而实现了对二氧化硫的去除。
而在活性炭脱硝技术中,喷入的活性炭与氨气在燃煤锅炉的烟气中发生氨基化反应,生成亚硝酸盐或亚硝酸,再通过亚硝化反应将NOx还原成N2。
二、活性炭联合脱硫脱硝技术的优势与传统的脱硫脱硝技术相比,活性炭联合脱硫脱硝技术具有一系列明显的优势。
活性炭联合脱硫脱硝技术具有高效率的特点。
在活性炭的作用下,烟气中的二氧化硫和氮氧化物可以被有效地吸附和还原,使脱硫脱硝效率得到大幅度提高。
该技术具有良好的适应性。
活性炭联合脱硫脱硝技术能够适用于不同种类的燃煤锅炉,且对烟气中的杂质和湿度变化的适应能力强。
活性炭联合脱硫脱硝技术具有较低的成本。
相比传统的脱硫脱硝技术,该技术需要的设备和投入都相对较少,且运行成本也较低。
活性炭联合脱硫脱硝技术对环境的影响较小。
该技术在去除大气污染物的产生的废渣也相对较少,对环境影响较小。
三、活性炭联合脱硫脱硝技术的应用活性炭联合脱硫脱硝技术已经被广泛应用于我国的电力、冶金、化工、石化等行业。
以电力行业为例,由于燃煤锅炉是主要的大气污染源,因此脱硫脱硝技术在电力行业中有着广泛的应用前景。
在大型火电厂中,通过引入活性炭联合脱硫脱硝技术,可以有效地降低烟尘、二氧化硫和氮氧化物的排放浓度,实现了大气污染物的减排。
该技术也为火电厂的清洁生产提供了有力的技术支持。
活性炭联合脱硫脱硝技术还可以应用于一些特殊行业,如冶金、化工等。
在这些行业中,由于生产过程产生的废气中含有较高浓度的二氧化硫和氮氧化物,因此引入该技术可以有效地减少废气对环境的影响,保障生产过程的环境安全。
活性炭用于循环流化床烟气脱硫脱硝的试验研究的开题报告一、研究背景:尽管现代工业在制造过程中不断采用新的环保技术,但仍存在环境污染。
这就需要环保科技不断创新与发展,以保护环境和人类健康。
与此同时,大量燃烧排放的烟气中也存在大量的二氧化硫和氮氧化物等污染物,它们直接造成空气污染,甚至会对人体造成伤害。
因此,对烟气脱硫、脱硝等技术的研究具有非常重要的现实意义。
活性炭是一种优良的吸附材料,具有表面积大、微孔结构良好、化学性质稳定等优点,因而被广泛应用于环境治理中,尤其是烟气脱硫、脱硝等领域。
活性炭作为循环流化床脱硫、脱硝的吸附剂,具有无二氧化碳排放,设备占地面积小,化学反应速度快,易于实现自动化控制、长寿命等优势。
二、研究目的:本试验旨在对活性炭在循环流化床烟气脱硫、脱硝中的应用进行研究,探究活性炭在脱硫、脱硝过程中的吸附机理。
同时,通过不同活性炭材料的筛选,研究其对二氧化硫和氮氧化物的吸附性能,并优化其吸附性能,提高活性炭的使用效率。
三、研究内容:1. 研制循环流化床脱硫、脱硝试验装置,搭建试验平台,采集样品。
2. 筛选不同孔径的活性炭进行实验,分析不同孔径的活性炭对二氧化硫和氮氧化物的吸附效果。
3. 研究悬浮流化床对活性炭的吸附效果,探究其吸附机理。
4. 优化活性炭的吸附性能,提高其吸附效率。
5. 通过实验结果,总结活性炭在循环流化床烟气脱硫、脱硝技术中的优缺点,提出进一步完善和改进的建议。
四、研究意义:本试验可以对循环流化床烟气脱硫、脱硝技术中活性炭的应用进行深入研究,探究其吸附机理,为一定程度上解决烟气污染问题提供新思路和方法。
同时,通过优化活性炭的吸附性能,提高活性炭的使用效率,为实现绿色低碳环保煤电产业的可持续发展做出贡献。
活性炭联合脱硫脱硝技术探讨活性炭联合脱硫脱硝技术是一种利用活性炭对废气中的硫氧化物和氮氧化物进行吸附还原处理的技术。
本文将对活性炭联合脱硫脱硝技术进行探讨。
活性炭联合脱硫脱硝技术通过将活性炭作为吸附剂,吸附废气中的硫氧化物和氮氧化物,再经过还原反应,将其转化为无害的氮气和二氧化硫。
该技术具有处理效果好、投资成本低、运行成本低等优点,因此受到了广泛的关注和应用。
活性炭联合脱硫脱硝技术主要包括吸附和还原两个阶段。
在吸附阶段,活性炭用于吸附废气中的硫氧化物和氮氧化物。
活性炭具有大比表面积和孔径分布,可以有效地吸附废气中的有害气体。
在还原阶段,通过加热或加入还原剂,将活性炭吸附的气体进行还原反应,将其转化为无害气体。
活性炭联合脱硫脱硝技术的具体操作参数有吸附剂种类、床层高度、空气速度、反应温度等。
吸附剂的选择对于技术的效果具有重要影响。
一般来说,活性炭具有较好的吸附性能,可以选择合适的活性炭作为吸附剂。
床层高度和空气速度影响吸附物质在床层中的停留时间,需要根据实际情况进行调整。
反应温度会影响吸附剂的吸附和还原性能,需要控制在适宜的范围内。
活性炭联合脱硫脱硝技术的应用领域主要包括石油化工、电力、冶金等工业领域。
石油化工行业废气中的硫氧化物和氮氧化物含量较高,采用活性炭联合脱硫脱硝技术可以有效地减少废气对环境的污染。
电力行业燃煤发电过程中会产生大量的硫氧化物,采用该技术可以降低二氧化硫的排放量。
冶金行业烧结烟气中也含有大量的氮氧化物,采用活性炭联合脱硫脱硝技术可以降低废气对大气的污染。
活性炭联合脱硫脱硝技术是一种有效处理废气中硫氧化物和氮氧化物的技术。
该技术具有处理效果好、投资成本低、运行成本低等优点,适用于石油化工、电力、冶金等工业领域。
在实际应用中,需要合理选择吸附剂、调整操作参数,以达到最佳的处理效果。
生物质活性炭烟气脱硫脱硝的研究进展摘要:在一些燃煤电厂中为了能够实现对电厂烟气污染物的控制,往往会采用多种烟气脱硫脱硝技术,在近年来,生物质活性炭脱硫脱硝技术逐渐成为研究的热点,应用生物质脱硫脱硝技术也获得了较好的效果。
关键词:生物质活性炭;脱硫;脱硝一、生物质活性炭烟气脱硫技术在烟气脱硫技术中应用生物质活性炭脱硫技术,其实就是应用生物质活性炭通过吸附与催化氧化的过程中在生物质活性炭的表面可以对SO2实现物理吸附,这样就能将该过程中产生的H2SO4吸附在生物质活性炭的空隙内,从而减少烟气中SO2的含量。
(一)生物质活性炭孔隙结构对脱硫性能的影响利用生物质活性炭脱硫,往往是生物质活性炭表面的孔隙吸附了SO2、O2、H2O,因此可以说该生物质活性炭的微孔容积越大,则其包含的活性位就越多,这就更加有利于吸附烟气中的SO2、O2、H2O,而且大量的实践也证明该说法的正确性,同时研究也发现生物质活性炭的孔隙结构的合理性也会其吸附性产生影响。
图1是比较常见的脱硫活性炭,该活性炭孔隙结构相对比较均匀。
图1 常见的脱硫活性炭(二)生物质活性炭表面化学性质对脱硫性能的影响在生物质活性炭的表面还存在多种官能团,诸如算酸性官能团与碱性官能团。
酸性官能团具有较强的分解功能,而富含氮碱性的碱性官能团则可以提升生物质活性炭对烟气中的酸性气体的吸附能力。
一些研究人员通过应用HNO3对各类生物质活性炭,诸如生杏壳活性炭、椰壳活性炭、煤基活性炭等进行改性,分析研究结果发现,对SO2的穿透时间被延长,而且可以吸附的SO2-也增多,这就可以大大的提升脱硫效率,获得较好的脱硫效果。
(三)生物质活性炭表面负载过渡金属对脱硫性能的影响在生物质活性炭避免还含有一定的金属及其氧化物,这也可以在一定程度上增强SO2的吸附能力,其中对Ce、Mn等金属及其氧化物的吸附能力进行研究。
通过对负载 Mn 的核桃壳活性炭(P/AC)与未负载 Mn 的核桃壳活性炭(AC)的实际脱硫率进行比较,可以发现前者的脱硫率是后者的1.6倍。
活性炭联合脱硫脱硝技术探讨
活性炭联合脱硫脱硝技术是一种比较成熟的大气污染控制技术。
该技术将活性炭与脱硫脱硝催化剂联合使用,可同时去除燃煤电厂排放的二氧化硫、氮氧化物和污染物中的有机物等。
活性炭是一种具有高度发达孔隙结构和表面积的多孔性材料。
它能够有效地吸附污染物中的有机物、气体和颗粒物等。
在脱硫脱硝技术中,活性炭通常被用作辅助剂。
通过将其与脱硫脱硝催化剂组合使用,能够提高催化剂的反应活性和稳定性,并且降低脱硫脱硝反应温度和催化剂用量,从而减少了催化剂的成本。
脱硫脱硝催化剂是一类可以在低温下催化脱除氮氧化物和二氧化硫的物质。
经过多年的研究和开发,现在已经有很多种脱硫脱硝催化剂可供选择。
其中较为常见的脱硫脱硝催化剂有:V2O5-TiO2、WO3-TiO2、Fe2O3-TiO2、CuO-CeO2等。
在活性炭联合脱硫脱硝技术中,这些催化剂被与活性炭混合使用。
活性炭联合脱硫脱硝技术实现的关键在于,在脱硫脱硝反应过程中,活性炭能够吸附并去除反应中形成的过程中间体和副产物。
这些中间体和副产物容易降低催化剂的反应活性和稳定性,影响脱硫脱硝反应的效果。
通过活性炭的吸附作用,可以防止这些中间体和副产物在反应过程中堆积,从而提高催化剂的反应效率和使用寿命。
值得注意的是,活性炭联合脱硫脱硝技术需要准确地确定活性炭、脱硫脱硝催化剂的配比和最佳使用条件。
过高的配比和过低的配比都会影响技术效果,并且会增加催化剂和活性炭的成本。
因此,在实际应用中需要进行条件优化和实验研究,以获得最佳的技术应用效果。