《概率论与数理统计》期末考试(A卷)(附参考答案)
- 格式:docx
- 大小:233.68 KB
- 文档页数:9
第1页(共3页)中国矿业大学(北京) 2017-2018 学年 第1 学期《概率论与数理统计》试卷( A 卷)答案和评分标准一、填空题(每小题3分,共30分)1、设,A B 为两个事件,()0.4,()0.8,()0.5P A P B P AB ===,则(|)P B A =____0.75__________ 2、设随机变量X 在(3,3)-上服从均匀分布,关于t 的方程24420t Xt X +++=有实根的概率为______21_________ 3、设随机变量X 的概率密度函数为)(x f X ,则随机变量X e Y 3=的概率密度函数为=)(y f Y _____⎪⎩⎪⎨⎧+∞<<⎪⎭⎫ ⎝⎛其他,00,13ln y y y f X ___________4、如果随机变量X 在)10,0(上服从均匀分布,现在对X 进行4次独立重复观测,至少有3次观测值大于5的概率为____516__________ 5、设随机变量X 服从参数为(0)λλ>的泊松分布,且[(1)(2)]1E X X --=,则λ=______1_________6、设随机变量,X Y 相互独立,且都服从参数2θ=的指数分布,则{max{,}2}P X Y ≤=_____12(1)e --_________7、设随机变量X 的方差为2.5,由切比雪夫不等式估计概率{|()|7.5P X E X -≥≤____245_______ 8、设总体2~(,)X N μσ,12,,,n X X X 是该总体X 的一个样本,1211()n i i i c X X -+=-∑为2σ的无偏估计,则c =_______)1(21-n ___________9、设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129,,X X X 和129,,,Y Y Y 分别来自正态总体X 和Y 的简单随机样本,则统计量Y服从____)9(t ________分布10、设总体),(~2σμN X ,抽取容量16n =的样本n x x x ,,,21 ,经计算得均值,2.5=x 样本标准方差2=s ,则未知参数μ的置信度为0.95的置信区间为_____)266.6,134.4(____________二、(10分)设工厂A 和工厂B 的产品次品率分别为1%和2%.现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,求该次品属于工厂A 生产的概率.解:设事件A 表示产品来自工厂A ,事件B 表示产品来自工厂B ,事件C 表示抽取到的产品是次品,则%1)|(=A C P ,%2)|(=B C P ,%60)(=A P ,%40)(=B P 5分从而73%2%40%1%60%1%60)|()()|()()|()()|(=∙+∙∙=+=B C P B P A C P A P A C P A P C A P 5分第2页(共3页)三、(12分)学生完成一道作业的时间X 是一个随机变量,单位为小时.它的概率密度函数为21,0()20,cx x x f x ⎧+≤≤⎪=⎨⎪⎩其他(1)确定常数c ;(2)写出X 的分布函数;(3)试求出在20分钟以内完成一道作业的概率.解:(1)由概率密度函数的性质()122011()248c f x dx cx x dx +∞-∞==+=+⎰⎰ 解得21c = 4分(2)由2121,0()20,x x x f x ⎧+≤≤⎪=⎨⎪⎩其他,则()2230001()()217022112xxx x F x f t dt t t dt x x x -∞⎧<⎪⎪⎪==+=+≤≤⎨⎪⎪>⎪⎩⎰⎰ 4分 (3)1117()()3354P X F ≤==4分 四、(10分)设,X Y 是两个相互独立的随机变量,其概率密度函数分别是1,01()0,X x f x ≤≤⎧=⎨⎩其他 ,0()0,y Y e y f y -⎧>=⎨⎩其他 求随机变量Z X Y =+的概率密度函数.解:由卷积公式()()()X Y X Y f z f x f z x dx +∞+-∞=-⎰3分易知仅当010x z x ≤≤⎧⎨->⎩ 即 01x x z≤≤⎧⎨<⎩时被积函数不为零 2分()01()00,0()011zz x X Y z x z f z e dx z e dx z --+--⎧<⎪⎪=≤<⎨⎪⎪≥⎩⎰⎰ 3分即0,0()101(1)1zX Y z z f z ez e e z -+-<⎧⎪=-≤<⎨⎪-≥⎩2分 五、(10分)设(Y X ,)具有概率密度为26,01,01(,),0,xy x y f x y ⎧<<<<=⎨⎩其它 (1)求边缘概率密度(),()X Y f x f y ,并判断,X Y 是否独立; (2) 求条件概率密度)(y x f YX.解:(1)1206201()(,)0X xy dy x x f x f x y dy +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他12206301()(,)0Y xy dx y y f y f x y dx +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他 显然,(,)()()X Y f x y f x f y =,所以,X Y 相互独立 6分(2)当10<<y 时,⎩⎨⎧<<==取其他值x x x y f y x f y x f Y Y X ,010,2)(),()( 4分第3页(共3页)六、(10分)设二维随机变量),(Y X 的联合概率密度函数为⎩⎨⎧<<<=其他,010,3),(x y x y x f (1)求随机变量),(Y X 的协方差cov(,)X Y ; (2)求随机变量),(Y X 的相关系数. 解:(1)⎰⎰⎰⎰⎰+∞∞-+∞∞-====103233),()(1040210dx x ydy x dx dxdy y x xyf XY E x4333),()(1030210====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dy y x xf dx X E x83233),()(103010====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy xy dx dy y x yf dx Y E x则3cov(,)=()()()160X Y E XY E X E Y -= 5分(2)5333),()(104031022====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dy y x f x dx X E x513),()(104021022====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy xy dx dy y x f y dx Y E x8034353)()()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D320198351)()()(222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y D 193)()(),(==Y D X D Y X Cov ρ 5分 七、(8分)一个复杂的系统由100个相互独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为0.10,为了使整个系统起作用,至少必须84个部件正常工作,求整个系统起作用的概率.解:设X 表示正常工作的部件个数,则~(100,0.9)X B ,由棣莫弗-拉普拉斯定理,近似服从(0,1)N 分布, 4分则()()908490(84)1(84)11220.977233X P X P X P --⎛⎫≥=-<=-<≈-Φ-=Φ= ⎪⎝⎭4分八、(10分)设总体X 的概率密度函数为23,0,(,)0,.x e x f x x θθθ-⎧>⎪=⎨⎪⎩其他其中θ为未知参数且大于零,12,,,n X X X 为来自总体X 的简单随机样本,(1)求θ的矩估计量;(2)求θ的最大似然估计量.解:(1)由于22320()xxx E X xe dx e dx e d x x x θθθθθθθθ---+∞+∞+∞⎛⎫===-= ⎪⎝⎭⎰⎰⎰, 令X θ=,解得θ的矩估计量为11=ni i X X n θ==∑ 5分(2)似然函数为2311,0(1,2,,)()(,)0,.i n xni i i ii e x i n L f x x θθθθ-==⎧>=⎪==⎨⎪⎩∏∏其他当0(1,2,,)i x i n >=时,()L θ=231inx i iexθθ-=∏,两边取对数31ln ()2ln ln ni i i L x x θθθ=⎡⎤=--⎢⎥⎣⎦∑令11ln ()21210n n i i i i d L n d x x θθθθ==⎡⎤=-=-=⎢⎥⎣⎦∑∑,解得θ的最大似然估计量为12=1ni inX θ=∑ 5分第4页(共3页)。
上海应用技术学院2011—2012学年第一学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073 学分: 3 考试时间: 100 分钟 课程序号: 112-7244、7246、7248、7249、7251、7254、7255、7257、7258等共9个教学班 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。
试卷共6页,请先查看试卷有无缺页,然后答题。
一、填空题(每题3分,共计18分)1、有321,,R R R 三个电子元件,用321,,A A A 分别表示事件“元件i R 正常工作”)3,2,1(=i ,试用321,,A A A 表示事件“至少有一个元件正常工作”:_______________。
2、连续型随机变量X 的分布函数为20,0,(),01,1, 1.x F x x x x ⎧<⎪=≤<⎨⎪≥⎩则(0.5 1.5)P X <<=_____。
3、设随机变量X 服从(3,7)F 分布,则随机变量1~Y X=____________。
4、设()28,10~N X ,()=<<200X P (用()Φ表示)。
5、已知随机变量,X Y ,有cov(,)5X Y =,设31U X =+,24V Y =-,则cov(,)U V =____。
6、设随机变量,X Y 相互独立~(5,0.5)X N ,~(2,0.6)Y N ,则()E XY =___________。
二、选择题(每题3分,共计18分)1、设S 表示样本空间,下述说法中正确的是( )(A )若A 为一事件,且()0P A =,则A =∅(B )若B 为一事件,且()1P B =,则B S = (C )若C S =,则()1P C =(D )若,A B 相互独立,则()()()P AB P A P B =+2、设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ。
《概率论与数理统计》期末考试试卷(A1)2、下列叙述中正确的是( A ). (A) ()1X EX D DX -= (B) ~(0,1)X EXN DX- (C) 22)(EX EX = (D) 22()EX DX EX =-3、设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,下面说话正确的是( D ).(A) 以),(θθ估计θ的范围,不正确的概率是a -1 (B) θ 以概率a -1落入),(θθ (C) θ以概率a 落在),(θθ之外 (D) ),(θθ以概率a -1包含θ4、设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积分别为,G D S S ,则{(,)}(B )P x y D ∈=.(A)GD S S (B) ⎰⎰Ddxdy y x f ),( (C) (,)G g x y dxdy ⎰⎰ (D) G G D S S5、设总体分布为),(2σμN ,若μ未知,则要检验20:100H σ≥,应采用统计量( B ).(A)nS X /μ- (B)100)(21∑=-ni iX X(C)100)(21∑=-ni iXμ (D)22)1(σS n -6、有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( A ).(A)157 (B)4519 (C)135(D)3019 7、设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( B ). (A) ⎰-=-adx x f a F 0)(1)((B) ∑⎰-=-adx x f a F 0)(21)((C) )()(a F a F =- (D) 1)(2)(-=-a F a F题目 一 二 三 四 五 六 七 八 九 十 总分 得分一.填空题:(本大题共7小题,每小题3分,共21分)1. 已知样本1621,,,X X X 取自正态分布总体(3,1)N ,X 为样本均值,已知{}0.5P X λ<=,则=λ 3 。
上海应用技术学院2009—2010学年第二学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073/B2220071 学分: 3 考试时间: 100 分钟课程序号: 1441、1447、1451、1455、1456、1457、1458、1459、1460、1461、1976 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。
试卷共5页,请先查看试卷有无缺页,然后答题。
一、填空题(每题3分,共计18分)1、设A 、B 、C 为三事件,则事件“A 、B 、C 不都发生”可表示为_______________。
2、设()4.0=A P ,()7.0=+B A P ,若B A ,相互独立,则()=B P ___________。
3、100件产品中有5件次品,任取10件,恰有2件为次品的概率为______________。
4、设随机变量X 的概率密度为()⎩⎨⎧≤≤=其他,0,10,32x x x f ,则()=X E __________。
5、设由总体~(,)X F x θ(θ未知)的样本观察值求得9.0}5.455.35{=<<θP ,则称区间[35.5,45.5]为θ的一个置信度为________的置信区间。
6、设Z Y X ,,相互独立,X 在]6,0[上服从均匀分布,)4,1(~N Y ,Z 服从参数2=λ 的泊松分布,32+--=Z Y X W ,()D W = 。
二、选择题(每题3分,共12分)1、对于任意两个随机变量X 和Y ,若)()()(Y E X E XY E =,则( )。
(A ))()()(Y D X D XY D = (B ))()()(Y D X D Y X D +=+ (C )X 和Y 相互独立(D )X 和Y 不独立2、设321,,X X X 是来自正态总体)1,(μN 的样本,现有μ的三个无偏估计量1123131ˆ5102X X X μ=++,2123115ˆ3412X X X μ=++,3123111ˆ362X X X μ=++其中方差最小的估计量是( )。
安徽大学2020-2021学年第二学期数理统计期末考试试卷(A卷)出卷人:王学军1填空题(5小题×2分=10分)1.设X1,X2,···,X n相互独立,且X i∼N(µi,σ2),i=1,2,···,n.则1σ2ni=1(X i−µi)2的分布为.2.设随机变量X∼t(10),已知P(X2>x0)=0.05,则x0=.3.已知某型号的导线电阻值服从N(µ,σ2).现测量16次,算得¯X=1nni=1X i=10.78Ω,S∗=1n−1ni=1(X i−¯X)2=1.40Ω,则均值µ的置信水平1−α=0.95的置信区间为.其中t0.025(15)=2.131,t0.05(15)=1.753.4.设X1,X2,···,X m是来自Bernoulli分布总体B(n,p)的简单随机样本,¯X=1mmi=1X i,S∗=1m−1mi=1(X i−¯X)2.若¯X+kS2∗是np2的无偏估计,则k=.5.设总体X的概率密度函数为f(x;θ),X1,X2,···,X n是来自总体的简单随机样本.考虑假设H0:θ=θ0↔H1:θ=θ1的UMP检验,利用似然比检验法,拒绝域为.2选择题(5小题×2分=10分)6.设X1,X2,···,X n是来自总体U(θ1,θ2)的简单随机样本,其中θ1已知,θ2未知,则是统计量.A.X1+X n+¯X−θ2B.min(X1,X2,X3)+θ1C.¯X−θ1θ22D.S2−θ1θ227.总体X∼N(µ,σ20),σ20已知.样本容量n不变时,若置信度1−α减小,则µ的置信区间.A.长度变小B.长度变大C.长度不变D.以上都有可能8.设X1,X2,X3,X4是来自总体N(0,4)的简单随机样本,若,则随机变量X=a(X1−2X2)2+b(3X3−4X4)2的分布为χ2分布.A.a=112,b=128B.a=120,b=1100C.a=130,b=140D.a=140,b=1609.下列说法正确的是.A.设一个正态总体均值µ的95%置信区间是(8.6,10.4),这意味着µ有95%的概率落在(8.6,10.4)中B.未知参数的最大似然估计是唯一的C.在假设检验中,原假设H0和对立假设H1的地位是平等的D.UMP检验是指在限制第一类错误概率不超过α的条件下,犯第二类错误概率最小的检验10.设X1,X2,···,X n是来自总体X∼N(µ,σ20)的样本,其中σ20已知.若在显著性水平α=0.05下接受了H0:µ=µ0,则在显著性水平α=0.01下,下面结论正确的是.A.必接受H0B.必拒绝H0C.可能接受H0,也可能拒绝H0D.无法求解3解答题(4小题×12分=48分)11.设X1,X2,···,X n是来自总体U(0,θ)的简单随机样本.考虑假设检验问题H0:θ=3↔H1:θ=2,拒绝域W={(X1,X2,···,X n)|max(X1,X2,···,X n)<1.5}.求:(1)功效函数;(2)第一类和第二类错误的概率和检验水平.12.设总体X的概率密度函数为f(x;µ)=χ[µ,+∞)(x)eµ−x.其中µ∈R是未知参数,X1,X2,···,X n是来自总体的简单随机样本.(1)求参数µ的矩估计ˆµ1和最大似然估计ˆµM;(2)判断ˆµ1和ˆµM是否是µ的无偏估计.若否,则进行修正,并求两个无偏估计的均方误差.13.设X1,X2,···,X n是来自Poisson分布总体P(λ)的简单随机样本,其中λ>0为未知参数.(1)求未知参数λ的充分完全统计量;(2)求g(λ)=λ的UMVUE;(3)判断(2)中的UMVUE的方差是否达到Cramer-Rao下界.14.设X1,X2,···,X n是来自总体N(µ,32)的简单随机样本,其中µ∈R为未知参数.求检验问题H0:θ≥0↔H1:θ<0的水平α的UMP检验.4证明题(12分)15.设X1,X2,···,X n是来自正态总体X的简单随机样本,且Y1=166i=1X i,Y2=139i=7X i,S2∗=129i=7(X i−Y2)2,Z=Y1−Y2S∗/√2.求证Z∼t(2).5应用题(2小题×10分=20分)16.在一正20面体的20个面上,分别标以数字0,1,2,···,9,每个数字在两个面上标出.为检验它是否质地匀称,共做了800次投掷试验,数字0,1,2,···,9朝正上方的次数如下.问:能否在显著性水平α=0.05下认为该20面体是匀称的?χ2 0.05(10)=18.307,χ20.05(9)=16.919,χ20.025(10)=20.483,χ20.025(9)=19.023.数字0123456789频数7492837980737775769117.某批矿砂的5个样品中的Ni含量经测定为3.25%,3.27%,3.24%,3.26%,3.24%.设测定值总体服从正态分布,但参数均未知.问:在显著性水平α=0.01下能否认为这批矿砂的Ni含量均值为3.25%?。
《概率论与数理统计》期末考试试题(A )专业、班级: 姓名: 学号: 题 号一二三四五六七八九十十一十二总成绩得 分一、单项选择题(每题3分 共18分)1.D 2.A 3.B 4.A 5.A 6.B(1).0)(,0)(;;0)(0)();(( ).,0)(=>===A B P A P (D)B A (C)B P A P (B)B A (A)AB P B A 则同时出现是不可能事件与或互不相容互斥与则以下说法正确的是适合、若事件(2)设随机变量X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4则( )。
=≤}5.1{X P (A)0.6 (B) 1 (C) 0 (D)21(3)设事件与同时发生必导致事件发生,则下列结论正确的是()1A 2A A (A ) (B ))()(21A A P A P =1)()()(21-+≥A P A P A P (C ) (D ))()(21A A P A P =1)()()(21-+≤A P A P A P (4)).54,0);46,0();3,0();5,0(~,72,),1,2(~),1,3(~(D)N (C)N (B)N (A)Z Y X Z Y X N Y N X 则令相互独与且设随机变量+-=-(N 立).((5)设为正态总体的一个简单随机样本,其中n X X X ,,2,1 ),(2σμN μσ,2=未知,则( )是一个统计量。
(A) (B)212σ+∑=ni iX 21)(μ-∑=ni i X (C) (D)μ-X σμ-X (6)设样本来自总体未知。
统计假设n X X X ,,,21 22),,(~σσμN X 为 则所用统计量为( )。
:已知)(:01000μμμμμ≠=H H (A) (B) nX U σμ0-=nSX T 0μ-=(C) (D)222)1(σχS n -=∑=-=ni iX1222)(1μσχ二、填空题(每空3分 共15分)1. 2. , 3. 4. )(B P ⎩⎨⎧≤>=-00)(x x xe x f x23-e1-)9(t (1)如果,则 .)()(,0)(,0)(A P B A P B P A P =>>=)(A B P (2)设随机变量的分布函数为X ⎩⎨⎧>+-≤=-.0,)1(1,0,0)(x e x x x F x则的密度函数,.X =)(x f =>)2(X P (3).ˆ,________,ˆ3ˆ2ˆˆ,ˆ,ˆ,ˆ321321是的无偏估计量也时当的无偏估计量是总体分布中参数设θθθθθθθθθθ=+-=a a (4)设总体和相互独立,且都服从,是来自总体的X Y )1,0(N 921,,X X X X 样本,是来自总体的样本,则统计量 921,,Y Y Y Y 292191Y Y X X U ++++= 服从分布(要求给出自由度)。
2013-2014学年《概率论与数理统计》期末考试试卷 (A)一、 填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ______________. 3.设随机变量 X的分布函数为,2,1 21 ,6.011 ,3.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} =_________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ________, D (X ) = ___________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) = _________.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) =σ2, 则由切比雪夫不等式有P{|X -μ| < 3σ} ≥_________________.8.从正态总体N(μ, 0.12) 随机抽取的容量为16 的简单随机样本, 测得样本均值5=x,则未知参数μ的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示).二、选择题(只有一个正确答案,每小题3分,共18分)1.设A, B, C是三个随机变量,则事件“A, B, C不多于一个发生”的逆事件为( ).(A) A, B, C都发生(B) A, B, C至少有一个发生(C)A, B, C都不发生(D)A, B, C 至少有两个发生2.设随机变量X的概率密度为f (x), 且满足f (x) = f (-x), F(x) 为X 的分布函数, 则对任意实数a, 下列式子中成立的是( ).(A)(B)(C)(D)3.设随机变量 X , Y 相互独立, 与 分别是X 与 Y 的分布函数, 则随机变量 Z = max{X ,Y } 分布函数 为 ( ).(A) max{,} (B)+ -(C)(D)或4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N (0, 1) 和 N (1, 1), 则 ( ).21}0{ )A (=≤+Y X P 21}1{ )B (=≤+Y X P 21}0{ )C (=≤-Y X P21}1{ )D (=≤-Y X P 5.对任意两个随机变量 X 和 Y , 若 E (XY ) = E (X )E (Y ), 则 ( ).(A) X 和 Y 独立 (B) X 和 Y 不独立(C) D (XY ) = D (X )D (Y ) (D) D (X + Y ) = D (X ) + D (Y )6.设 X 1, X 2, …, X n (n ≥ 3) 为来自总体 X 的一个简单随机样本, 则下列估计量中不是总体期望 μ 的无偏估计量的是 ( ). (A)X(B) 0.1⨯ (6X 1 + 4X 2) (C)(D) X 1 + X 2 - X 3三、解答(本题 8 分)某大型连锁超市采购的某批商品中, 甲、乙、丙三厂生产的产品分别占45%、35%、20%,各厂商的次品率分别为4%、2%、5%,现从中任取一件产品,(1) 求这件产品是次品的概率; (2) 若这件产品是次品, 求它是甲厂生产的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧<<= ,0 0,sin )(πx x A x f求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F (x ); (3)}.23{ππ≤≤X P五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为X k -1 0 2 4 P k0.10.50.30.1求 E (X ), D (X ).七、(本题6分)设某供电区域中共有10000 盏电灯,夜晚每盏灯开着的概率均为 0.7,假设各灯开、关时间彼此独立,求夜晚同时开着的灯的数量在6800 至 7200 间的概率.(其中999999.0)36.4()2120(=≈ΦΦ).八、(10分) 设总体 X 的概率密度为,其他⎩⎨⎧<<+= ,010 ,)1()(x x x f θθ其中θ > -1 是未知参数, X 1,X 2, …, X n 为来自总体的一个简单随机样本,x 1, x 2, …, x n 为样本值, 求 θ 的矩估计量和极大似然估计量.参考答案: 一、填空题 1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-详解:4.因为0.5+0.2+a=1,所以 a=0.3 Y = 2X + 3所以P {Y > 5} =0.2+0.3=0.5二、选择题1. D2. A3. C4. B5. D6. C 详解:2. 因为⎰∞-=xtt f x F d )()( 故⎰-∞-=-att f a F d )()( 令u =-t⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=at t f 0d )(21 (21d )(0=⎰+∞t t f ) 详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P三、解答题解:设A 事件表示“产品为次品”,B 1事件表示“是甲厂生产的产品”,B 2事件表示“是乙厂生产的产品”,B 3事件表示“是丙厂生产的产品”(1) 这件产品是次品的概率:)()()()()()()(332211B P B A P B P B A P B P B A P A P ++= 035.02.005.035.002.045.004.0=⨯+⨯+⨯=(2) 若这件产品是次品,求它是甲厂生产的概率:3518035.045.004.0)()()()(111=⨯==A PB P B A P A B P 四、解答题 解:(1) A x x A x x f 2d sin d )(10===⎰⎰∞∞-π21=∴A (2) ⎰∞-=xt t f x F d )()(0d 0d )()(0===≤⎰⎰∞-∞-xxt t t f x F x 时,当)cos 1(21d sin 210d d )()(00x t t t t t f x F x xx-=+==<<⎰⎰⎰∞-∞-时,当π 10d d sin 210d d )()(0=++==≥⎰⎰⎰⎰∞-∞-x xt t t t t t f x F x πππ时,当 所以⎰∞-=xt t f x F d )()(=⎪⎩⎪⎨⎧≥<<-≤ππx x x x ,10),cos 1(210,0(3)414121)3()2(}23{=-=-=≤≤ππππF F X P 五、解答题 (1)⎪⎩⎪⎨⎧≤≤-=-==⎰⎰∞∞-其它,020),2(21d )2(d ),()(10x x y y x y y x f x f X ⎪⎩⎪⎨⎧≤≤=-==⎰⎰∞∞-其它,010,2d )2(d ),()(20y y x y x x y x f y f Y因为 ),()()(y x f y f x f Y X =⋅,所以X 与Y 是相互独立的.(2)247d )1)(2(21d )2(d }1{1021010=--=-=≤+⎰⎰⎰-x x x y y x x Y X P x六、解答题1.043.025.001.01)(⨯+⨯+⨯+⨯-=X E =0.9 1.043.025.001.0)1()(22222⨯+⨯+⨯+⨯-=X E =2.9 2229.09.2])([)()(-=-=X E X E X D =2.09七、解答题解:设X 为夜晚灯开着的只数,则X ~)7.0,10000(b}72006800{≤≤X P }3.07.0100007.010********.07.0100007.0100003.07.0100007.010*******{⨯⨯⨯-≤⨯⨯⨯-≤⨯⨯⨯-=X P}21203.07.0100007.010*******{≤⨯⨯⨯-≤-=X P 1)2120(2)]2120(1[)2120()2120()2120(-Φ=Φ--Φ=-Φ-Φ≈999998.01999999.02=-⨯=八、解答题 解:(1) 矩估计法21d )1()(101++=+==⎰θθθμθx x x X E 11112μμθ--=∴∑===ni iX n X A 111 所以θ的矩估计量∧θXX --=112(2) 最大似然法似然函数θθi ni x L )1(1+∏==,10<<ixθθi ni x L )1(1+∏==θθi n i n x 1)1(=∏+=∑=++=ni ix n L 1ln )1ln(ln θθ∑=++=ni ix nL 1ln 1d ln d θθ 令0d ln d =θL得θ的最大似然估计值 ∧θ1ln 1--=∑=ni ixnθ的最大似然估计量 ∧θ1ln 1--=∑=ni iXn。
2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。
设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。
5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。
第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。
1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。
《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。
答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
《概率论与数理统计》期末考试卷一、是非题(共7分,每题1分)1.设A ,B ,C 为随机事件,则A 与C B A ⋃⋃是互不相容的. ( ) 2.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. ( ) 3.若随机变量X 与Y 独立,它们取1与1-的概率均为5.0,则Y X =. ( ) 4.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. ( ) 5. 样本均值的平方2X 不是总体期望平方2μ的无偏估计. ( ) 6.在给定的置信度α-1下,被估参数的置信区间不一定惟一. ( ) 7.在参数的假设检验中,拒绝域的形式是根据备择假设1H 而确定的. ( )二、选择题(15分,每题3分)(1)设A B ⊂,则下面正确的等式是 。
(a))(1)(A P AB P -=; (b))()()(A P B P A B P -=-; (c))()|(B P A B P =; (d))()|(A P B A P =(2)离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是 。
(a)1)1(-+=A λ且0>A ; (b)λ-=1A 且10<<λ; (c)11-=-λA 且1<λ; (d)0>A 且10<<λ.(3)设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D .(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.(4)设),,,(21n X X X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有 。
(a))1,0(~N X ; (b))1,0(~N X n ; (c))1(~/-n t S X ; (d))1,1(~/)1(2221--∑=n F XX n ni i.(5)设),,,(21n X X X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是 。
(a)∑=-=n i i X X n 121)(1σ; (b)∑=--=n i i X X n 1222)(11σ; (c)∑=-=n i i X n 123)(1μσ; (d)∑=--=n i i X n 1224)(11μσ.三、填空题(18分,每题3分)(1)设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P . (2)设随机变量X 服从(-2,2)上的均匀分布,则随机变量2X Y =的概率密度函数为=)(y f Y .(3)设随机变量)0;3,1;2,0(~),(22N Y X ,则概率)12(≥-Y X P = .(4)设随机变量),(Y X 的联合分布律为),(Y X )0,1( )1,1( )0,2( )1,2(P 4.0 2.0 a b若8.0)(=XY E ,则=),cov(Y X .(5)设(621,,,X X X )是来自正态分布)1,0(N 的样本,264231)()(∑∑==+=i i i i X X Y当c = 时, cY 服从2χ分布,)(2χE = .(6)设某种清漆干燥时间),(~2σμN X (单位:小时),取9=n 的样本,得样本均值和方差分别为33.0,62==S X ,则μ的置信度为95%的单侧置信区间上限为: .四、计算与应用题(54分,每题9分)1. 某厂卡车运送防“非典”用品下乡,顶层装10个纸箱,其中5箱民用口罩、2箱医用口罩、3箱消毒棉花. 到目的地时发现丢失1箱,不知丢失哪一箱. 现从剩下9箱中任意打开2箱,结果都是民用口罩,求丢失的一箱也是民用口罩的概率.2. 设随机变量(,)X Y 的联合密度函数⎩⎨⎧<<<=他其,20),(xy x Ay x f求 (1) 常数A ; (2) 条件密度函数)(x y f XY ; (3) 讨论X 与Y 的相关性.3.设随机变量)1,0(~U X (均匀分布),)1(~E Y (指数分布),且它们相互独立,试求Y X Z -=2的密度函数)(z f Z .4.某彩电公司每月生产20万台背投彩电,次品率为0.0005. 检验时每台次品未被查出的概率为0.01. 试用中心极限定理求检验后出厂的彩电中次品数超过3台的概率.5.设总体X 的概率分布列为:X 0 1 2 3 P p 2 2 p (1-p ) p 2 1-2p其中p (2/10<<p ) 是未知参数. 利用总体X 的如下样本值: 1, 3, 0, 2, 3, 3, 1, 3求 (1) p 的矩估计值; (2) p 的极大似然估计值 .6.某冶金实验室对锰的熔化点作了四次试验,结果分别为12690C 12710C 12630C 12650C设数据服从正态分布),(2σμN ,以5α= % 的水平作如下检验:(1) 这些结果是否符合于公布的数字12600C ?(2) 测定值的标准差是否不超过20C ? 须详细写出检验过程.五、证明题(6分)设随机变量X 与Y 相互独立,且都服从参数为3的泊松(Poisson)分布,证明X Y +仍服从泊松分布,参数为6.参考答案一. 是非题是 是 非 非 是 是 是 . . 二. 选择题(b)(a)(b)(d)(c). 三. 填空题(18分,每题3分)1. 4/7 .2. ⎩⎨⎧<<=他其040)4/(1)(y y y f Y3. 0.8446 .4. 0.1 .5. 1/3 ; 2 .6. 上限为 6.356 .四. 计算与应用题1. A 任取2箱都是民用口罩,k B 丢失的一箱为k 3,2,1=k 分别表示民用口罩,医用口罩,消毒棉花.3685110321)()()(29252925292431=⋅+⋅+⋅==∑=C C C C C C B A P B P A P k k k.83368363)(/21)(/)()()(2924111=÷=⋅==A P C C A P B A P B P A B P2. (1) .4/1=A(2) ⎪⎩⎪⎨⎧<<===⎰⎰-∞∞-他其0202/)4/1(),()(x x dy dy y x f x f xx X当20<<x 时,⎩⎨⎧<<-==他其0)2/(1)(),()(x y x x x f y x f x y f X X Y(3) ⎰==22,3/4)2/()(dx x X E ⎰⎰==-2,0)4/()(x xdy y dx Y E⎰⎰==-2,0)4/()(xxdy y xdx XY E 0)()()(),c o s (=-=Y E X E XY E Y X所以X 与Y 不相关.3. ⎩⎨⎧<<=他其0101)(x x f X ⎩⎨⎧<≥=-00)(y y e y f y Y⎰∞∞--=dx z x f x f z f Y X Z )2()()(⎩⎨⎧>-<<0210z x x ⎩⎨⎧><<⇒2/10z x x ⇒得z 轴上的分界点0与2 ⎪⎪⎩⎪⎪⎨⎧≥<<-=≤-==⎰⎰------20202/)1(02/)1()(12/2)2(102)2(z z e dx e z e e dx e z f z z x z z x z Z 4. 设 ⎩⎨⎧=他其出台彩电为次品且未被查第01i X i 5102~1⨯=i6105)(-⨯=i X E , )1051(105)(66--⨯-⨯=i X D经检验后的次品数 ∑⨯==51021i iXY ,1)(=Y E ,61051)(-⨯-=Y D ,由中心极限定理,近似地有 )1051,1(~6-⨯-N Y.0228.0)2(11051131)3(1)3(6=Φ-≈⎪⎪⎭⎫⎝⎛⨯--Φ-≈≤-=>-Y P Y P 5. (1) 28/1681===∑=i iXX , 令 X p X E =-=43)(,得 p 的矩估计为 4/14/)3(ˆ=-=X p. (2) 似然函数为4281)]3()[2()]1()[0()()(=======∏=X P X P X P X P x X P p L i i42)21()1(4p p p --=)21ln(4)1ln(2ln 64ln )(ln p p p p L -+-++=令 0218126])(ln [=----='pp p p L , 0314122=+-⇒p p 12/)137(±=⇒p . 由 2/10<<p ,故12/)137(+=p 舍去 所以p 的极大似然估计值为 .2828.012/)137(ˆ=-=p6. 由样本得 1267=X , 65.33/40)(31412==-=∑=i i X X S . (1) 要检验的假设为 1260:,1260:10≠=μμH H )检验用的统计量 )1(~/0--=n t nS X T μ,拒绝域为 1824.3)3()1(025.02==-≥t n t T α.1824.3836.34/65.3126012670>=-=T ,落在拒绝域内,故拒绝原假设0H ,即不能认为结果符合公布的数字12600C.(2) 要检验的假设为 2:,2:10>≤σσH H检验用的统计量)1(~)1(2222--=n S n χσχ,拒绝域为 815.7)3()1(205.022==->χχχαn815.7104/4020>==χ,落在拒绝域内,故拒绝原假设0H ,即不能认为测定值的标准差不超过20C. 五、证明题 (6分)由题设 3!3)(-==e m m X P m ,3!3)(-==e n n Y P n , ,2,1,0,=m n∑∑==-===-====+ik i k k i Y P k X P k i Y k X P i Y X P 0)()(),()(∑∑=--=---⋅-=-⋅=ik k i k ik k i k k i k i i e e k i e k 0603333!)(!!!1!)(3!3 66!6)33(!1--=+=e i i ei i, ,2,1,0=i 所以 Y X +仍服从泊松分布,参数为6.。