膨胀土隧道
- 格式:docx
- 大小:21.10 KB
- 文档页数:5
膨胀土工程案例膨胀土工程是指在土壤中添加化学药剂,以使土壤膨胀,从而产生一定的力量,用于地基加固、隧道支护等领域。
下面列举了十个膨胀土工程案例。
1. 基于膨胀土的地基加固在某个城市的一座高层建筑工程中,工程师们发现地基土壤膨胀性较强,容易发生沉降。
为了避免这种情况的发生,他们采用了膨胀土工程的方法,将化学药剂注入土壤中,使其膨胀并产生一定的力量,从而增强了地基的承载能力。
2. 膨胀土在坝体防渗中的应用在某个水利工程中,工程师们采用了膨胀土工程的方法,在坝体防渗层中加入了一定的化学药剂,使土壤膨胀并填满了坝体中的裂缝和孔隙,从而有效地提高了坝体的防渗性能。
3. 膨胀土在隧道支护中的应用在某个隧道工程中,由于隧道地质条件较差,存在较大的土体膨胀性,因此工程师们采用了膨胀土工程的方法,将化学药剂注入土壤中,使其膨胀并产生一定的力量,从而加强了隧道的支护效果。
4. 膨胀土在地铁隧道工程中的应用在某个地铁隧道工程中,由于隧道地质条件较差,存在较大的土体膨胀性,因此工程师们采用了膨胀土工程的方法,将化学药剂注入土壤中,使其膨胀并产生一定的力量,从而有效地加强了隧道的支护效果。
5. 膨胀土在桥梁基础工程中的应用在某个桥梁基础工程中,由于地质条件较差,土壤存在较大的膨胀性,因此工程师们采用了膨胀土工程的方法,将化学药剂注入土壤中,使其膨胀并产生一定的力量,从而增强了桥梁基础的承载能力。
6. 膨胀土在海洋工程中的应用在某个海洋工程中,由于地质条件较差,土壤存在较大的膨胀性,因此工程师们采用了膨胀土工程的方法,在海底土壤中注入了化学药剂,使其膨胀并产生一定的力量,从而增强了海洋工程的承载能力。
7. 膨胀土在地下管道隧道工程中的应用在某个地下管道隧道工程中,由于隧道地质条件较差,存在较大的土体膨胀性,因此工程师们采用了膨胀土工程的方法,将化学药剂注入土壤中,使其膨胀并产生一定的力量,从而加强了地下管道的支护效果。
8. 膨胀土在道路工程中的应用在某个道路工程中,由于地质条件较差,土壤存在较大的膨胀性,因此工程师们采用了膨胀土工程的方法,在路面下部注入了化学药剂,使其膨胀并产生一定的力量,从而增强了道路的承载能力。
膨胀土地区隧道施工的几点经验作者:黄艳飞杨艳来源:《现代装饰·理论》2011年第08期摘要本文基于工作经验,分析了膨胀土地区隧道施工易出现的一些问题,着重介绍了加强对膨胀土地区隧道施工的监测预警、灵活应对,采取动态施工方案、注重工作人员的技能培训三种解决方案及其具体应用。
希望给相关工作人员一些启发和思考,在膨胀土地区施工时提高重视,加强对施工过程的动态监测与方案制定,降低隧道施工的难度,提高施工的安全性与工作效率。
关键词膨胀土地区;隧道施工;经验膨胀土是一种富含亲水性矿物的粘性土壤,由于受到蒙脱石、伊利石的影响,它膨胀结构较多,裂隙性很强,衰减强度较大,这种土壤在天然的情况下坚硬无比,但如果受气候和其他条件的影响,膨胀土的敏感性很强,会对建筑物工程造成严重的破坏,带给人类巨大的灾难。
这些膨胀土的分布很广泛,亚洲的中国,印度都有,还有美洲的美国,加拿大,包括大洋洲的澳大利亚等都存在这样的问题。
而且随着经济的发展,科技水平的提高,膨胀土的危害越来越大,引起了很多地区广泛关注。
由于整个工程是埋在土地之下的,因此在施工时对该地区的地质条件和水文条件要进行详细的勘察和研究,尽可能的掌握那个工程施工的范围,岩石的结构,地质稳定的情况,地下水的状态。
再利用现在的高技术水平采取声波探测,超前钻孔等保证工程的安全稳固。
而且国内现在采用的施工方法对在膨胀土遇水后使土壤膨胀坚硬度降低的情况下隧道的施工很不利,因此要加紧采取措施,改进隧道施工的方法,尽量降低危害的发生。
1.膨胀土地区隧道施工的一些现状及问题分析1.1膨胀土的特性对隧道施工不利膨胀土的强粘性会随着气候与水利的变化而发生胀缩性,当这种特性达到一定的程度的时候,就会膨胀或者是收缩,而这种遇水膨胀,失水收缩的特性使由其制成的砖石结构不能持稳定状态,就会使建筑物容易塌方或扭曲,特别是对隧道的施工也会非常的不利。
尤其是在粘土含水发生变化的时候,它就会向水平和垂直两个不同的方向膨胀发展,体积不断地增大,这样的建筑,道路对人们的危害特别的大。
膨胀性泥岩特性及膨胀岩隧道工程特定和应对措施分析发布时间:2022-01-20T03:21:33.022Z 来源:《防护工程》2021年30期作者:田松[导读] 根据近年来国内外学者围绕膨胀性泥岩工程地质特性取得的研究成果,对膨胀性泥岩及其工程应用多年来的研究进展做了系统性的总结,内容包括膨胀岩及膨胀性泥岩的概念和类型、膨胀岩的判别指标、试验研究、工程应用等几个大的方面,从而对膨胀岩的判别指标和试验研究及膨胀性泥岩的工程应用等问题多年来的研究进展做了重点阐述。
1.中国铁建大桥工程局集团有限公司天津 300300;2.中铁建大桥工程局集团第五工程有限公司四川成都 610500摘要:根据近年来国内外学者围绕膨胀性泥岩工程地质特性取得的研究成果,对膨胀性泥岩及其工程应用多年来的研究进展做了系统性的总结,内容包括膨胀岩及膨胀性泥岩的概念和类型、膨胀岩的判别指标、试验研究、工程应用等几个大的方面,从而对膨胀岩的判别指标和试验研究及膨胀性泥岩的工程应用等问题多年来的研究进展做了重点阐述。
研究总结得出:裂隙性是膨胀岩区别于一般岩体的显著特征之一;膨胀性判别指标的选用虽有所差异,但不尽相同;水环境对其膨胀性泥岩的影响显著,特别是在干湿循环条件下变形具有一定的不可逆性,且膨胀性与亲水性矿切相关;最后介绍了膨胀性泥岩隧道工程应用的相关研究进展。
关键词:膨胀岩,泥岩,隧道工程,研究进展Research progress of expansive mudstoneTian Song1.China Railway Construction Bridge Engineering Bureau Group Co. Ltd.,Tianjing 300300,P.R. China;2.China Railway Construction Bridge Engineering Bureau Group 5rd Engineering Co., Ltd., Sichuan Chengdu610500,P.R. ChinaAbstract: Based on the research results obtained by domestic and foreign scholars on the engineering geological characteristics of expansive mudstone in recent years, a systematic summary of the research progress of expansive mudstone and its engineering application over the years, including the concepts and types of expansive mudstone and expansive mudstone , The identification index of swelling rock, experimental research, engineering application and other major aspects, so as to the identification index of swelling rock, experimental research and engineering application of swelling mudstone and other issues over the years have been focused on the research progress. The study concluded that: fissure is one of the distinguishing characteristics of swelling rock from general rock mass; although the selection of swelling discrimination index is different, but not all the same; water environment has a significant impact on its swelling mudstone, especially The deformation is irreversible under the conditions of dry and wet cycles, and the expansibility is related to the hydrophilic ore cut. Finally, the relevant research progress of the application of expansive mudstone tunnel engineering is introduced.Key words: Expansive rock, mudstone, Tunnel engineering, Research progress.引言膨胀性岩土地层在我国有着较广的分布,已知膨胀岩土在我国至少有26个省、市、自治区有区域性均有分布,其中,中国西北地区最老的膨胀性泥岩地层为侏罗纪。
膨胀土高边坡勘察及设计分析摘要:针对隧道口高边坡工程而言,其破坏后的影响区域内有重要建筑物隧道。
本文将以该处边坡岩土工程特性、施工前期变形特征等工程地质条件为基础,对其设计和施工管理进行相关探讨,以期提供借鉴作用。
关键词:膨胀土;高边坡;勘察;设计;分析Investigation and Design Analysis of High Slope of Expansive SoilChen JinwenShaanxi Provincial Transport Planning Design and ResearchInstituteAbstract: For the project of high slope at tunnel portal, thereare important building tunnels in the affected area after destruction. Based on the engineering geological conditions such as thegeotechnical engineering characteristics of the slope and the deformation characteristics of the pre-construction period, the design and construction management of the slope are discussed in this paper.Key words: Expansive soil; high slope; survey; design; analysis1.引言本文以关中地区某公路隧道进口处高边坡勘察和试验测试资料等为依托,通过分析该地区膨胀土的基本工程特性与膨胀土边坡的破坏机理,提出适合设计和施工初期膨胀土边坡稳定性评价的有效方法,从而掌握和有效减少该类地层边坡病害。
刍议膨胀土隧道施工质量控制摘要:在隧道施工中,找到膨胀土的应对方案对整个工程具有十分重要的意义。
通过对膨胀土在隧道施工中的研究,找到其应对措施,不仅施工方便,进度大大加快,更重要的是工程质量也会得到有效的保证。
关键词:膨胀土;隧道施工;注意事项中图分类号:tu74 文献标识码:a 文章编号:在隧道施工中,找到膨胀土的应对方案对整个工程具有十分重要的意义。
通过对膨胀土在隧道施工中的研究,找到其应对措施,不仅施工方便,进度大大加快,更重要的是工程质量也会得到有效的保证。
一膨胀土隧道变形机理膨胀土产生膨胀与收缩的原因是很复杂的,一般由下述因素引起。
1.1超固结应力特征膨胀土的超固结特性,使土体中储存有较高的初始应力,当隧道或地下洞室开挖后,引起围岩应力释放,强度降低,产生卸载膨胀,产生较大的塑性变形。
1.2多裂隙土体的结构——力学特征膨胀土体的结构一力学特征,主要表现为具有明显的非均质性与不连续性,以及围岩强度与变形的各项异性和随时间的衰减性。
由于膨胀土体在天然原是结构状态下具有高强度特性,隧道开挖后洞壁土体失去边界支撑,一方面产生胀裂,同时因风干脱水使原生裂隙张弛,形成若干应力集中区,使围岩强度急剧衰减。
因此,隧道开挖过程中,常有初期围岩变形大,发展速度快,设防不及时等现象。
1.3物理化学效应膨胀土中孔隙水和其中膨胀性物质的物理化学反应也是膨胀土膨胀的主要原因,现场表现为吸水而膨胀,失水而收缩,使土体结构破坏,强度完全丧失,导致围岩压力增大。
以上各种因素在膨胀土变形破坏过程中并不是独立存在的,而是互为因果的,共同形成膨胀土变形不断发展的过程。
二膨胀土施工注意事项2.1膨胀土透水性差,在施工发现晾晒后,外表坚硬而内核由于含水量大呈软塑状,几乎没有强度,危害极大。
2.2对于表层土暴露时间长,造成龟裂的情况。
在施工时应尽量防止暴露,及时进行支护施工。
2.3 膨胀土围岩隧道在开挖过程中或过程后,周边土体容易向洞内膨胀突出,导致初期支护变形开裂及局部失稳,所以必须加大初期支护刚度以抵抗膨胀土开挖初期所产生的膨胀力,控制初期支护变形,将隧道围岩监控量测纳入工序管理,注意设计是否合理。
膨胀土隧道塌方成因及处理技术王大嵬(中铁十九局集团第二工程有限公司)摘要:结合新响沙湾隧道工程实例,通过对隧道膨胀土洞段塌方的研究,分析隧道塌方原因,详细阐述了塌方处理方案、施工注意要点,对同类围岩隧道施工具有一定的借鉴意义。
关键词:膨胀土塌方原因分析处理技术1 工程概况1.1 工程概况新响沙湾隧道全长3430m,除进口1057m,出口129m位于直线上,其余均位于半径为4500m的曲线上,纵坡11.5‰。
隧址区地震烈度Ⅷ地震动峰值加速度0.20g。
1.2 工程地质和水文地质1.2.1 工程地质新响沙湾隧道为鄂尔多斯台地剥蚀丘陵区,沟谷纵横,切割强烈,地形起伏较大。
围岩为白垩系下统(K1),紫红色、姜黄色、灰绿色含砾泥质砂岩,砂石含量5~20%左右,泥质胶结,砂状结构,薄层~中厚层构造。
局部夹薄层状紫红色泥岩。
强风化层约10~30米。
地层产状近水平。
1.2.2 水文地质特征地下水主要为赋存在河床冲洪积砂层中的空隙潜水,水量较丰富,膨胀土地带地下水丰富,基岩裂隙水不发育。
2 塌方过程描述2008年9月27日早7时,新响沙湾隧道GDK48+885~GDK48+950段边墙出现多条裂缝,裂缝内有水渗出,部分拱脚出现向外挤出的现象。
2008年9月28日~2008年10月9日期间,GDK48+885~GDK48+950段不时出现钢筋断裂的声音,多处出现环向裂纹,多处喷射混凝土面崩裂。
边墙从拱脚以上1.7米处钢架整体被压断,拱顶边墙变形严重。
掌子面已经全断面塌方封堵;缝宽1cm 以上的裂纹有十多条,最大裂缝宽度达到60cm;拱墙部位格栅钢架大部分挤出变形,最大变形达80cm;裂缝处渗漏水现象严重。
2008年10月10日下午15时10分GDK48+885~GDK48+950段出现整体坍塌,塌方过程无人员伤亡。
3 塌方原因分析塌体段为白垩系下统灰绿色泥质砂岩,泥质胶结,砂状结构,薄层~中厚层构造,水平层理极其发育,经铁四院检测后发现该种砂岩为膨胀性质,且属于中度膨胀。
由于膨胀土围岩具有“吸水而膨胀,失水而收缩”的特性。
塌体段为富水段,围岩遇水极易软化崩解,围岩中度膨胀性加速、加大围岩应力释放,造成围岩松动圈范围大,在初期支护支撑力不够的状态下,由于围岩压力和膨胀压力的综合作用,使围岩产生局部破坏,然后逐渐牵引周围土体连续破坏。
4 塌方处理方案处理塌体的总体方案:首先对塌体进行大管棚施工,然后在已施工完毕大管棚上方进行混凝土造壳,在混凝土壳体的掩护下,实施四台阶开挖,并且加强支护,具体措施如下:4.1 对GDK48+893.5~GDK48+898.5段塌方部位用塌方碴料从两侧向中间进行回填,回填至拱顶设计标高后对剩余空洞采用轻质材料进行填塞,以形成内模。
4.2 回填工作完毕之后在靠近塌方段处并排架设三榀I22工字钢作为管棚支承钢架,工字钢钢架之间焊接牢靠。
4.3 拱部90°范围内架设Φ108管棚,管棚间距为30㎝,外插角为15°,长度为6米(伸入塌方部位5米,外露1米),管棚与钢架焊接牢靠。
4.4 管棚施做完毕之后,对塌方部位进行混凝土浇筑,混凝土标号为C35,厚度为1m,在开挖轮廓线以外形成壳体。
4.5 回填混凝土浇筑完毕且终凝之后,对塌方体按照四台阶法进行开挖,第一台阶开挖高度为2m,第二台阶开挖高度为2.5m,第三台阶开挖高度为2.5m,第四台阶开挖高度为2.71m,具体见《塌方体开挖示意图》4.6 塌方体开挖完毕结束后立即进行初期支护,钢架设置为I22工字钢钢架,间距40㎝/榀,上台阶钢架脚部采用40槽钢垫底,钢架各单元连接处采用6m长Φ42钢管锁脚,每处不少于4根,拱脚与槽钢间的空隙采用混凝土楔块顶紧,确保钢架脚部整体稳定,各钢架间采用100*100角钢进行纵向连接,环向间距40cm,钢架脚部均采用22槽钢焊接牢靠,确保钢架脚部整体稳定。
边墙部位喷射C25混凝土并确保钢架后空洞喷填密实,喷射混凝土与φ42锁脚钢管及纵向槽钢形成系统稳定的脚部加固系统。
第一台阶施工完成后,再依次施工第二、第三、第四台阶,左右侧马口交错开挖,循环长度不大于80cm。
4.7 GDK48+898.5~GDK48+950段塌方体处理施作三次大管棚,管棚每环42根,外插角为12°~15°,长度为15米,管棚与钢架焊接牢靠;每环大管棚施工结束后,采用四台阶法对塌方体进行开挖,台阶尺寸与工序5相同;塌方体开挖结束后立即进行初期支护,支护参数与工序6相同;4.8 钢架落底单侧、单榀施作,并与仰拱钢架封闭成环,仰拱与塌方体开挖掌子面距离不大于15m,二次衬砌与塌方体开挖掌子面距离不大于30m;4.9 初期支护后每隔10m布置一检测断面,变形量测在每次开挖结束后进行,测点布置见《观测点示意图》5 结论新响沙湾隧道GDK48+885~GDK48+950塌方段围岩属于中度膨胀,地质条件复杂,且处于富水段,因此,此次塌方较大。
经过我单位人员严密组织以及采取合理的处理方案新响沙湾隧道膨胀土塌方段安全顺利处理完毕。
通过新响沙湾隧道膨胀土段的施工和塌方段处理,有以下几点体会:5.1 膨胀土围岩的“吸水膨胀,失水收缩”特性,特别是在富水洞段,隧道容易发生塌方,因此膨胀土隧道超前地质预报工作必须进行,以便提前预测工作面前方围岩工程地质和水文地质情况。
5.2 膨胀土围岩隧道在开挖过程中或过程后,周边土体容易向洞内膨胀突出,所以膨胀土隧道围岩监控量测尤为重要。
5.3 膨胀土隧道围岩应力释放是导致隧道塌方的主要原因,采取合适的开挖方式最为重要。
塌方处理完毕后,新响沙湾隧道膨胀土围岩洞身开挖方式为三台阶(上台阶预留核心土法)开挖,实践证明此种开挖方式能够较好的控制膨胀土开挖面的应力释放。
5.4 膨胀土围岩隧道在开挖完成之后,围岩变形一般在3~4周内发生,隧道的仰拱和二衬应及早进行封闭。
尤其是仰拱施工,因为仰拱是隧道形成环向受力的关键工序,在施工中应最大程度上的缩短掌子面与仰拱之间的距离,使隧道形成环向受力。
膨胀土围岩地段施工技术膨胀土系指土中粘土矿物成分主要由亲水性矿物组成,同时具有吸水显著膨胀软化和失水收缩硬裂两种特性,且具有湿胀干缩往复变形的高塑性粘性土。
决定膨胀性的亲水矿物主要是蒙脱石粘土矿物。
我国是世界上膨胀土分布面积最广的国家之一。
现已发现有膨胀土发育的地区达20余个省、市、自治区,遍及西南、西北、东北、长江与黄河中下游及东南沿海地区。
其中主要有:云南、贵州、四川、湖北、安徽、广东、广西、陕西、山西、河南、山东和河北等省区分布是十分广泛的。
一、膨胀土围岩的特性隧道穿过膨胀土地层,隧道开挖后不久,常常可以见到围岩因开挖而产生变形,或者因浸水而膨胀,或因风化而开裂等现象。
使坑道的顶部及两侧向内挤入,底部鼓起,随着时间的增长导致围岩失稳,支撑、衬砌变形和破坏。
这些现象说明膨胀土围岩性质是极其复杂的。
它与一般土质的围岩性质有着根本的区别。
膨胀土围岩的基本特性,主要有以下三方面:(1)膨胀土围岩大多具有原始地层的超固结特性,使土体中储存有较高的初始应力。
当隧道开挖后,引起围岩应力释放,强度降低,产生卸荷膨胀。
因此,膨胀土围岩常常具有明显的塑性流变特性,开挖后将产生较大的塑性变形。
(2)膨胀土中发育有各种形态的裂隙,形成土体的多裂隙性。
膨胀土围岩实际上是土块与各种裂隙和结构面相互组合形成的膨胀土体。
由于膨胀土体在天然原始状态下具有高强度特性,隧道开挖后洞壁土体失去边界支撑而产生胀缩,同时因风干脱水使原生隐裂隙张弛,使围岩强度急剧衰减。
因此,隧道施工开挖过程中,常有初期围岩变形大,发展速度快等现象。
(3)膨胀土围岩因吸水而膨胀,失水而收缩,土体中干湿循环产生胀缩效应。
一是使土体结构破坏,强度衰减或丧失,围岩压力增大。
二是造成围岩应力变化,无论膨胀压力或收缩压力,都将破坏围岩的稳定性,特别是膨胀压力将对增大围岩压力起叠加作用。
二、膨胀土围岩对隧道施工的危害由于膨胀土围岩的特殊工程地质性质及其围岩压力特性,使膨胀土的隧道围岩具有普遍开裂、内挤、坍塌和膨胀等变形现象。
膨胀土隧道围岩变形常具有速度快、破坏性大、延续时间长和整治较困难等特点。
施工中常见的几种情况,简述如下:(1)围岩裂缝:隧道开挖后,由于开挖面上土体原始应力释放产生胀裂;另外,因为表层土体风干而脱水,产生收缩裂缝。
同时,两种因素都可以使土中原生隐裂隙张开扩大。
沿围岩周边产生裂缝,尤其在拱部围岩容易产生张拉裂缝与上述裂缝贯通,形成局部变形区。
(2)坑道下沉:由于坑道下部膨胀土体的承载力较低,加之上部围岩压力过大,而产生坑道下沉变形。
坑道的下沉,往往造成支撑变形、失效,进而引起土体坍塌等现象。
(3)围岩膨胀突出和坍塌:膨胀土开挖过程中或开挖后,围岩产生膨胀土变形,周边土体向洞内膨胀突出,开挖断面缩小。
在土体丧失支撑或支撑力不够的状态下,由于围岩压力和膨胀压力的综合作用,使土体产生局部破坏,由裂缝发展到出现溜塌,然后逐渐牵引周围土体连续破坏,形成坍塌。
(4)底鼓:隧道底部开挖后,洞底围岩的上部压力解除,又无支护体约束的条件下,由于应力释放,洞底围岩产生卸荷膨胀;加之坑道积水,使洞底围岩产生浸水膨胀。
因而造成洞底围岩鼓出变形。
(5)衬砌变形和破坏:在先拱后墙法施工中,拱部衬砌完成后至开挖马口的这段时间,由于围岩和膨胀压力,常常产生拱脚内移,同时发生不均匀下沉,拱脚支撑受力大,发扭曲、变形或折断。
拱顶受挤压下沉,也有向上凸起。
拱顶外缘经常出现纵向贯通拉裂缝,而拱顶内缘出现挤裂、脱皮、掉块现象。
在拱腰部位出现纵向裂缝,这些裂缝有时可发展到张开、错台。
当采用直墙时,边墙常受膨胀侧压而开裂,甚至张开、错台,少数曲墙也有出现水平裂缝的情况。
当底部未做仰拱或仅做一般铺底时,有时会出现底部鼓起,铺底被破坏。
三、膨胀土围岩的隧道施工要点(一)加强调查、量测围岩的压力和流变在膨胀土地层中开挖隧道,除了认真实施设计文件所提出的技术要求外,在施工过程中应对围岩压力及其流变情况进行充分的调查和量测,分析其变化规律。
对地下水亦应探明分布范围及规律,了解水对施工的影响程度,以便根据围岩动态采取相应的施工措施。
如原设计难以适应围岩动态情况,也可据此作适当修正(二)合理选择施工方法膨胀土隧道围岩压力的施工效应,是导致隧道变形病害的主要原因。
采用合理的施工方法,对隧道的稳定性有着十分重要的作用。
因此,在施工中应以尽量减少对围岩产生扰动和防止水的浸湿为原则,所以宜采用无爆破掘进法。
如采用掘进机、风镐、液压镐等开挖。
在开挖过程中尽可能缩短围岩暴露时间,并及时衬砌,以尽快恢复洞壁因土体开挖而解除的部分围岩应力,减少围岩膨胀变形。
开挖方法宜不分部或少分部,多采用正台阶法、侧壁导坑法和“眼镜法”。