热水管网水力计算的基本原理
- 格式:doc
- 大小:966.50 KB
- 文档页数:7
热水管网的水力计算是在完成热水供应系统布置,绘出热水管网系统图及选定加热设备后进行的。
水力计算的目的是:计算第一循环管网(热媒管网)的管径和相应的水头损失;计算第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、管径和水头损失;确定循环方式,选用热水管网所需的各种设备及附件,如循环水泵、疏水器、膨胀设施等。
第一循环管网的水力计算:1.热媒为热水:以热水为热媒时,热媒流量G按公式(8-8)计算。
热媒循环管路中的配、回水管道,其管径应根据热媒流量G、热水管道允许流速,通过查热水管道水力计算表确定,并据此计算出管路的总水头损失Hh。
热水管道的流速,宜按表8-45选用。
当锅炉与水加热器或贮水器连接时,如图8-12所示:热媒管网的热水自然循环压力值Hzr按式(8-35)计算:式中:Hzr—热水自然循环压力,Pa;Δh—锅炉中心与水加热器内盘管中心或贮水器中心垂直高度,m;p1—锅炉出水的密度,kg/m3;p2—水加热器或贮水器的出水密度,kg/m3。
当Hzr>Hh时,可形成自然循环,为保证运行可靠一般要求(8-36):当Hzr不满足上式的要求时,则应采用机械循环方式,依靠循环水泵强制循环。
循环水泵的流量和扬程应比理论计算值略大一些,以确保可靠循环。
2.热媒为高压蒸汽:以高压蒸汽为热媒时,热媒流量G按公式(8-6)或(8-7)确定。
热媒蒸汽管道一般按管道的允许流速和相应的比压降确定管径和水头损失。
高压蒸汽管道的常用流速见表8-13。
确定热媒蒸汽管道管径后,还应合理确定凝水管管径。
第二循环管网的水力计算:1.配水管网的水力计算配水管网水力计算的目的主要是根据各配水管段的设计秒流量和允许流速值来确定配水管网的管径,并计算其水头损失值。
(1)热水配水管网的设计秒流量可按生活给水(冷水系统)设计秒流量公式计算。
(2)卫生器具热水给水额定流量、当量、支管管径和最低工作压力同给水规定。
(3)热水管道的流速,宜按表8-12选用。
第8章建筑内部热水供应系统8.4热水管网的水力计算8.4 热水管网的水力计算8.4热水管网的水力计算热水管网的水力计算是在完成热水供应系统布置,绘出热水管网系统图及选定加热设备后进行的。
水力计算的目的是:计算第一循环管网(热媒管网)的管径和相应的水头损失;计算第二循环管网(配水管网和回水管网)的设计秒流量、循环流量、管径和水头损失;确定循环方式,选用热水管网所需的各种设备及附件,如循环水泵、疏水器、膨胀设施等。
以热水为热媒时,热媒流量G按公式(8-8)计算。
热媒循环管路中的配、回水管道,其管径应根据热媒流量G、热水管道允许流速,通过查热水管道水力计算表确定,并据此计算出管路的总水头损失Hh 。
热水管道的流速,宜按表8-45选用。
8.4.1 第一循环管网的水力计算1.热媒为热水热水管道的流速表8-12当锅炉与水加热器或贮水器连接时,如图8-12所示,热媒管网的热水自然循环压力值H zr 按式(8-35)计算:)(8.921ρρ-∆=h H zr 图8-128.4热水管网的水力计算8.4.1 第一循环管网的水力计算式中H zr —热水自然循环压力,Pa ;Δh —锅炉中心与水加热器内盘管中心或贮水器中心垂直高度,m ;ρ1—锅炉出水的密度,kg/m 3;ρ2—水加热器或贮水器的出水密度,kg/m 3。
当H zr >H h 时,可形成自然循环,为保证运行可靠一般要求(8-36):h H 当H zr 不满足上式的要求时,则应采用机械循环方式,依靠循环水泵强制循环。
循环水泵的流量和扬程应比理论计算值略大一些,以确保可靠循环。
zr H ≥(1.1~1.15)hH2.热媒为高压蒸汽以高压蒸汽为热媒时,热媒流量G按公式(8-6)或(8-7)确定。
热媒蒸汽管道一般按管道的允许流速和相应的比压降确定管径和水头损失。
高压蒸汽管道的常用流速见表8-13。
高压蒸气管道常用流速表8-13 确定热媒蒸汽管道管径后,还应合理确定凝水管管径。
为了向更多的用户供水,在给水工程上往往将许多管路组成管网。
管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。
管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2π==所以管径v Q v Q d /13.1/4==π。
但是,仅依靠这个公式还不能完全解决问题,因为在流量Q 一定的条件下,管径还随着流速v 的变化而变化。
如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。
反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。
图 1管网的形状(a)枝状管网;(b)环状管网因此,在确定管径时,应该作综合评价。
在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。
应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。
但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为:——当直径d =100~400mm ,经济流速v =-1.0ms ; ——当直径d>400mm ,经济流速v=~1.4m/s 。
一、枝状管网枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。
它的特点是管网内任一点只能由一个方向供水。
若在管网内某一点断流,则该点之后的各管段供水就有问题。
因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。
技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。
1.新建给水系统的设计对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。
第二章室外热水供热管网的水力计算室外热水供热管网水力计算的主要任务如下1已知热媒流量和压力损失确定管道直径2已知热媒流量和管道直径计算管道的压力损失进而确定网路循环水泵的流量和扬程3已知管道直径和允许的压力损失校核计算管道中的流量根据室外管网的水力计算结果沿线建筑物的分布情况和地形变化情况可以绘制水压图分析网路的热媒流量和压力分布状况确定管网与用户的连接方式第一节室外热水供热管网水力计算的基本原理室外热水供热管网水力计算的基本原理与室内热水供暖系统的水力计算原理完全相同一沿程压力损失的计算因室外管网流量较大所以计算每米长沿程压力损失比摩阻的式214中的流量用t/h作单位即221式中R每米管长的沿程压力损失Pa/mG管段的热媒流量t/h沿程阻力系数热媒密度kg/m3d管道内径m167通常室外管网内水的流速大于0.5m/s 水的流动状态多处于紊流的粗糙区沿程阻力系数可用公式2lg 214.11+=K d λ计算对于管径等于或大于40mm 的管道也可用下式计算为公式中K 是管道内壁面的绝对粗糙度室外热水网路取K =0.5103m将沿程阻力系数25.011.0=d K λ代入公式221中得222附录28是根据式222编制的室外热水网路水力计算表该表的编制条件为绝对粗糙度K =0.5103m 温度t=100密度p =958.38kg/m 3运动黏滞系数=0.295106m 2/s 如果实际使用条件与制表条件不符应对流速管径比摩阻进行修正1管道的实际绝对粗糙度与制表的绝对粗糙度不符则223式中 R b K b制表中的比摩阻和表中规定的管道绝对粗糙度 R sh K sh热媒的实际比摩阻和管道的实际绝对粗糙度 m绝对粗糙度K 的修正系数见表221表22 1 K 值修正系数m 和β值2如果流体的实际密度与制表的密度不同但质量流量相同则224225168226式中 p b υb R b d b 制表密度和表中查得的流速比摩阻管径p sh υsh R sh d sh热媒的实际密度和实际密度下的流速比摩阻管径 在热水网路的水力计算中由于水的密度随温度变化很小可以不考虑不同密度下的修正计算但对于蒸汽管网和余压凝水管网流体在管中流动密度变化较大时应考虑不同密度下的修正计算二局部压力损失的计算在室外管网的水力计算中经常采用当量长度法进行管网局部压力损失的计算局部阻力的当量长度λξdL d •Σ=将公式25.011.0=d K λ代入上式得227式中 L d管段的局部阻力当量长度mξΣ管段的总局部阻力系数附录29为K =0.5103m 条件下一些局部构件的局部阻力系数和当量长度值 如果使用条件下的绝对粗糙度与制表的绝对粗糙度不符应对当量长度L d 进行修正即228式中 K bL db制表的绝对粗糙度及表中查得的当量长度 K sh管网的实际绝对粗糙度 L dsh实际粗糙度条件下的当量长度 β绝对粗糙度的修正系数见表221 室外管网的总压力损失P =R L Ld =R L zh Pa 229式中 L zh管段的折算长度m 进行压力损失的估算时局部阻力的当量长度Ld 可按管道实际长度L 的百分数估算即Ld =a j L m 2210169式中 a j局部阻力当量长度百分数﹪见附录30L 管段的实际长度m第二节 室外热水供热管网水力计算方法及例题进行室外热水管网水力计算时需要的已知条件有1网路的平面布置图须注明管道所有的附件补偿器及有关设备 2热源的位置及热媒参数 3用户的热负荷及各管段长度外网水力计算时各管段的计算流量应根据该管段所担负的各热用户的计算流量确定如果热用户只有热水供暖用户流量可按2211式确定为2211式中 G 各管段流量t/hQ各管段的热负荷kWgt ′ht ′外网的供回水温度下面通过室外管网的水力计算例题介绍水力计算的方法和步骤例题9.1某厂区闭式双管热水供热系统网路平面布置如图221所示管网中各管段长度阀门的位置方形补偿器的个数及各个用户的热负荷kW 已标注图中管网设计供水温度=130gt ′回水温度t =70h ′各用户内部已确定压力损失均为50kPa试进行管网水力计算图22 1 室外热水管网解首先确定各管段流量可利用公式2211计算计算结果列于表222中170一主干线的水力计算1确定热水网路的主干线及其平均比摩阻热水网路的水力计算应从主干线开始计算主干线是允许平均比摩阻最小的一条管线一般情况下热水网路各用户要求预留的作用压头基本相等所以热源到最远用户的管线是主干线本设计中各用户内部压力损失均为50kPa 所以从热源A 到最远用户E 的管线是主干线平均比摩阻R pj 的取值大小直接决定着系统中各管段的管径当管网设计温差较小或供热半径较大时R pj 应取较小值这时管网管径较大基建投资和热损失也较大但网路循环水泵的投资和电耗较小应经过技术经济比较经济合理地选定平均比摩阻R pj暖通规范规定热水网路主干线的设计平均比摩阻可取4080Pa/m2根据主干线各管段流量和平均比摩阻查附录28确定各管段管径和实际比摩阻例如管段A B热负荷Q =1500200010002000kW=6500kW流量93.17t/h t/h7013065000.86=−×=G再根据推荐平均比摩阻4080Pa/m 查附录28确定d AB =200mm R AB =40.19Pa/m 其他各管段的计算结果见表222表22 2 室外热水管网管路水力计算表1713根据各管段的管径和局部构件的类型查附录29确定各管段的局部阻力当量长度L d计算各管段的折算长度L zh=ΣL d L sh确定各管段的总压降P=R L zh 例如管段A B d AB=200mm L sh=400m局部阻力当量长度DN=200mm闸阀3.361=3.36m方形补偿器23.45=117m局部阻力当量长度ΣL d=120.36m管段A B的折算长度L zh=ΣL d L sh=520.36m管段A B的总压降P AB=R L zh=20913.27Pa管段B C局部阻力当量长度DN=200mm分流三通3.41=3.4m异径接头0.841=0.84m方形补偿器23.44=93.6m局部阻力当量长度ΣL d=97.84m管段C D局部阻力当量长度DN=150mm分流三通5.61=5.6m异径接头0.561=0.56m方形补偿器15.45=77m局部阻力当量长度ΣL d=83.16m管段D E局部阻力当量长度DN=125mm分流三通4.41=4.4m异径接头0.441=0.44m方形补偿器12.55=62.5m闸阀2.21=2.2m局部阻力当量长度ΣL d=69.54m各管段的计算结果见表22 24计算主干线的总压降主干线A E的总压降P AE=85124.17Pa二支线水力计算首先确定支线资用压力计算其平均比摩阻再根据平均比摩阻查附录28确定管172径实际比摩阻和实际流速在支线水力计算中有两个控制指标即热水流速υ 3.5m/s比摩阻R300Pa/m1对于管径D400mm的管道因其实际比摩阻达不到300Pa/m应控制其流速不大于3.5m/s2对于管径D400mm的管道因其实际流速达不到3.5m/s应控制其平均比摩阻不超过300Pa/m例如管段B F资用压力为P资BF=P BC P CD P DE=10803.1324959.2528448.52Pa=64210.9Pa查附录30可知带方形补偿器的输配干线热水网路中局部损失与沿程损失的估算比值为0.6则管段B F的平均比摩阻为因管径小于400mm符合控制比摩阻不超过300Pa/m的要求根据流量查附录28确定d BF=100mm R=262.83Pa/mυ=1.18m/s管段B F的局部阻力当量长度DN=100mm分流三通3.31=3.3m闸阀1.652=3.3m方形补偿器9.82=19.6m局部阻力当量长度ΣL d=26.2m管段B F的折算长度L zh=L d L sh=26.2200m=226.2m管段B F的总压降P BF=59452.15Pa可用同样方法计算支线C G管段C G的局部阻力当量长度DN=100mm分流三通3.31=3.3m闸阀1.652=3.3m方形补偿器9.82=19.6m局部阻力当量长度ΣL d=26.2m173管段D H的局部阻力当量长度DN=80mm分流三通3.821=3.82m闸阀1.282=2.56m方形补偿器7.92=15.8m局部阻力当量长度ΣL d=22.18m计算结果见表222各用户入口处的剩余压力可安装调压板调节阀门或流量调节器消除174。
热水系统讲配水管网水力计算热水系统的配水管网水力计算是确定管网的水力特性参数,以保证热水在管网中的正常运行和供热效果。
本文将从计算方法、影响因素和实例分析等方面详细介绍热水系统配水管网水力计算。
一、计算方法热水系统的配水管网水力计算可以采用管道流量法或优化法进行。
管道流量法是根据管道的流量、水力特性和水力损失来计算管网的水力参数。
而优化法则是根据设计参数和约束条件来确定最佳的管径和流量分配,以达到最大节能效果。
管道流量法计算步骤如下:1.确定供热点和回水点的温度差,一般取设计温差;2.根据供热点和回水点的流量和设计温差,计算供热点的热负荷;3.根据供热点的热负荷和热水的流动速度,计算供热点和回水点的流量;4.根据管道的长度、直径和水力特性,计算管道的水力损失;5.根据管道的水力损失和流量,计算管道的水力参数,如流速、水头损失和压力损失。
优化法计算步骤如下:1.设定管径的上下限,根据设计条件和约束条件确定管径的范围;2.根据管径的范围,选择合适的流量分配系数,如等比流量分配法或力对比法;3.根据流量分配系数和供热点的热负荷,计算供热点和回水点的流量;4.根据管径和流量,计算管道的水力损失;5.根据管道的水力损失和管径,判断管径是否满足设计要求,如果不满足,则进行下一次优化计算,直到满足设计要求为止。
二、影响因素热水系统配水管网水力计算的结果受到多个因素的影响,包括管径、管道长度、管材、流量和水力特性等。
管径是影响热水系统水力计算的重要因素,过小的管径会导致管网阻力增大,水力损失加大;而过大的管径则会增加成本和能耗。
因此,在计算过程中需要合理选择管径。
管道长度也会影响热水系统水力计算的结果。
长管道会增加水力压力损失,导致供水压力不足;而短管道则会减少水力损失,提高供水压力。
因此,在计算过程中需要准确测量管道长度。
管材的选择也会对热水系统的水力计算产生影响。
不同材质的管道具有不同的摩擦阻力和水力特性,因此需要根据实际情况选择合适的管材。
热水管网水力计算的基本原理
热水管网水力计算的主要任务有:
(1)按已知的热媒流量和压力损失,确定管道的直径;
(2)按已知热媒流量和管道直径,计算管道的压力损失;
(3)按已知管道直径和允许压力损失,计算或校核管道中的热媒流量。
热水管网水力计算的基本原理与室内热水采暖系统管路水力计算的基本原理相同,即使用的基本公式相同。
1.沿程压力损失的计算
因热水管网的水流量较大,所以通常以t/h为单位。
表达每米管长的沿程损失(比摩阻)R、管径d和水流量G的关系式,可改写为:
在设计工作中,为了简化繁琐的计算,将式(9-14)~(9-16)中各变量之间的关系制成水力计算图表供设计计算使用(见附录9-1)。
水力计算图表是在一定的管壁粗糙度和一定的热媒密度下编制而成的,如果使用条件与制表条件不符时,应对流速、管径、比摩阻进行相应的修正。
(1)管道的实际当量绝对粗糙度与制表的绝对粗糙度不符,应对比摩阻进行修正。
在热水管网的水力计算中,由于水的密度随温度变化很小,实际温度与编制图表时的温度值偏差不大时,可以不必考虑密度不同时的修正。
但在蒸汽管网和余压凝结水管网中,流体在管中流动,沿程密度变化很大,需按上述公式进行不同密度的修正计算。
2.局部压力损失的计算
在热水管网水力计算中,对于管网的局部阻力,经常采用当量长度法进行计算,即将管段的局部损失折合成相当的沿程损失。
当量长度可用下式计算:。