温度和气体动理论
- 格式:pptx
- 大小:1.07 MB
- 文档页数:80
第四章⽓体动理论总结第四章⽓体动理论单个分⼦的运动具有⽆序性布朗运动⼤量分⼦的运动具有规律性伽尔顿板热平衡定律(热⼒学第零定律)实验表明:若 A 与C 热平衡 B 与C 热平衡则 A 与B 热平衡意义:互为热平衡的物体必然存在⼀个相同的特征--- 它们的温度相同定义温度:处于同⼀热平衡态下的热⼒学系统所具有的共同的宏观性质,称为温度。
⼀切处于同⼀热平衡态的系统有相同的温度。
理想⽓体状态⽅程: 形式1:mol M PV =RT =νRTM形式2:222111T V p T V p =形式3: nkT P =n ----分⼦数密度(单位体积中的分⼦数) k = R/NA = 1.38*10 –23 J/K----玻⽿兹曼常数在通常的压强与温度下,各种实际⽓体都服从理想⽓体状态⽅程。
§4-2 ⽓体动理论的压强公式VNV N n ==d d 1)分⼦按位置的分布是均匀的2)分⼦各⽅向运动概率均等、速度各种平均值相等kj i iz iy ix iv v v v ++=分⼦运动速度单个分⼦碰撞器壁的作⽤⼒是不连续的、偶然的、不均匀的。
从总的效果上来看,⼀个持续的平均作⽤⼒。
2213212()323p nmvp n mv n ω===v----摩尔数R--普适⽓体恒量描述⽓体状态三个物理量: P,V T 压强公式122ω=mv理想⽓体的压强公式揭⽰了宏观量与微观量统计平均值之间的关系,说明压强具有统计意义;压强公式指出:有两个途径可以增加压强 1)增加分⼦数密度n 即增加碰壁的个数2)增加分⼦运动的平均平动能即增加每次碰壁的强度思考题:对于⼀定量的⽓体来说,当温度不变时,⽓体的压强随体积的减⼩⽽增⼤(玻意⽿定律);当体积不变时,压强随温度的升⾼⽽增⼤(查理定律)。
从宏观来看,这两种变化同样使压强增⼤,从微观(分⼦运动)来看,它们有什么区别?对⼀定量的⽓体,在温度不变时,体积减⼩使单位体积内的分⼦数增多,则单位时间内与器壁碰撞的分⼦数增多,器壁所受的平均冲⼒增⼤,因⽽压强增⼤。
气体的温度与分子运动气体是物质存在的状态之一,其特点是分子之间的间隔较大,分子运动自由而混乱。
气体的温度与分子运动之间存在着密切的关系,温度的升高会使气体分子的运动速度增加,而温度的降低则会导致气体分子的运动速度减慢。
本文将探讨气体的温度与分子运动之间的关系,并从微观角度解释这一现象。
一、气体的分子运动气体分子是以高速无规则运动的方式存在的。
根据动理论,气体分子不断地做无规则的热运动,具有三种基本运动状态:平动、转动和振动。
其中平动是最主要的运动形式,指的是分子在容器内的直线运动。
分子的平动速度与运动趋势是完全随机的,没有特定的方向。
二、气体温度的概念气体温度是指气体中分子热运动状态的一种表征,它反映了气体分子的平均动能。
温度的高低决定了分子热运动的剧烈程度。
通常,我们使用摄氏度(℃)或开尔文(K)来表示气体的温度。
三、温度与分子平均动能的关系根据气体动理论,气体分子的平均动能与温度成正比。
具体来说,当温度升高时,气体分子的平均动能也会增加;反之,温度降低时,气体分子的平均动能减少。
这是因为温度的增加意味着气体分子获得更多的热能,分子的平均速度也会增加。
在恒定体积下,气体分子的速度增加意味着分子碰撞的频率增加,分子间碰撞的力量也会增强。
同时,分子速度的增加也增加了分子与容器壁之间的碰撞频率和力量,从而增加了气体的压力。
四、温度与分子速度的关系温度与气体分子速度之间存在一定的关系。
根据麦克斯韦-玻尔兹曼分布定律,分子速度与温度之间的关系可以用以下公式表示:v = √(2kT/m)其中,v代表气体分子的速度,k为玻尔兹曼常数,T为温度,m为气体分子的质量。
由于速度与温度成正比,所以当温度升高时,分子速度也会增加。
这与我们前面提到的气体分子的平均动能与温度成正比的结论相一致。
五、温度对气体性质的影响温度的变化对气体性质有着明显的影响。
温度的升高会使气体分子的运动更加剧烈,气体分子之间碰撞的频率和力量增加,导致气体的压力增大。
气体动理论公式总结气体动理论是研究气体分子在微观层面上的运动规律的一门学科。
它主要研究气体分子的速度、能量、碰撞等方面的性质。
气体动理论公式是描述气体分子运动规律的数学表达式,可以用来计算气体分子的平均速度、平均能量等参数。
下面将总结一些常见的气体动理论公式。
1. 理想气体状态方程理想气体状态方程描述了理想气体在一定温度、压力和体积下的状态关系。
它的数学表达式为:PV = nRT其中,P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2. 平均动能公式平均动能公式描述了气体分子的平均动能与温度之间的关系。
它的数学表达式为:K = (3/2)kT其中,K为气体分子的平均动能,k为玻尔兹曼常数,T为气体的温度。
3. 动量-速度关系动量-速度关系描述了气体分子的动量与速度之间的关系。
它的数学表达式为:p = mv其中,p为气体分子的动量,m为气体分子的质量,v为气体分子的速度。
4. 均方根速度公式均方根速度公式描述了气体分子的速度分布规律。
它的数学表达式为:v = √(3kT/m)其中,v为气体分子的均方根速度,k为玻尔兹曼常数,T为气体的温度,m为气体分子的质量。
5. 平均自由程公式平均自由程公式描述了气体分子在运动过程中与其他分子或壁面碰撞的平均距离。
它的数学表达式为:λ = (1/√2πd^2n)其中,λ为气体分子的平均自由程,d为气体分子的直径,n 为气体分子的密度。
6. 分子碰撞频率公式分子碰撞频率公式描述了气体分子碰撞的频率与气体分子数密度之间的关系。
它的数学表达式为:Z = 4πn(d^2)v其中,Z为气体分子的碰撞频率,n为气体分子的数密度,d 为气体分子的直径,v为气体分子的速度。
以上是一些常见的气体动理论公式总结,它们可以用来描述气体分子的运动规律和性质。
利用这些公式,我们可以进行气体的热力学计算和分析,深入理解气体的特性和行为。
同时,这些公式也为相关实验提供了理论基础,促进了气体动理论的发展。
(2)M m 一 N A 32 10”6.02 1023-5.31 10 kg 四、理想气体分子平均平动动能与温度的关系 (可以用一个公式加以概括)1 ~ 3;k = mv kT 2 2 1 -2 3所以:-mv 2 = 3 kT2 2 这就是理想气体分子的平均平动动能与温度的关系,是气体动理论的另一个基本公式。
它表明分子的平均平动动能与气体的温度成正比。
气体的温度越高,分子的平均平动动能越 大;分子的平均平动动能越大, 分子热运动的程度越剧烈。
因此,温度是表征大量分子热运 动剧烈程度的宏观物理量,是大量分子热运动的集体表现。
对个别分子,说它有多少温度, 是没有意义的。
从这个式子中我们可以看出2.温度的统计意义该公式把宏观量温度和微观量的统计平均值(分子的平均平动动能)联系起来,从而揭示了温度的微观本质。
关于温度的几点说明 ,1 — 3^ _ 1 — 一一 亠1•由一mv kT 得T =0, ; = — mv 0 ,气体分子的热运动将停止。
然而事实上是绝2 2 2对零度是不可到达的(热力学第三定律),因而分子的运动是用不停息的。
2.气体分子的平均平动动能是非常小的。
T =300K, .;. =10 ② JT =108K,I =10 45J 5例1. 一容器内贮有氧气,压强为 P=1.013 X 10 Pa ,温度t=27 C ,求(1 )单位体积内的分 子数;(2)氧分子的质量;(3)分子的平均平动动能。
解:(1 )有 P=nkT2.45 10 m kT 1.38 10寰 27 273 1.简单推导:理想气体的物态方程: PV RT NmN A E RT而 p ,n ^m/丄 mV 2 3 12 丿 3V 12 丿 n=N/V 为单位体积内的分子数,即分子数密度,k =RN A =1.38 X 10-23J K-1称为玻尔斯曼常量。
关键:1) 把m 与M 用单个分子的 质量表示; 2) 引入分子数密度; 3) 引入Boltzmann 常量1.013 1053 3 23 21(3)「尹 r 1.38 10一(27 273) =6.21 1°一J例2.利用理想气体的温度公式说明Dalton分压定律。