超宽带天线的研究与设计
- 格式:doc
- 大小:3.00 MB
- 文档页数:5
本科生毕业(论文)设计摘要随着社会的发展,科技的进步,无线电的应用频段也被不断地扩展,进而促进了超宽带电磁学的产生。
在超宽带频段内,时域特性的研究表明,时域电磁波是人类非常重要的资源,作为超宽带无线电系统中不可缺少的一员,超宽带天线的研究也因此变得相当有意义。
超宽带技术具有许多窄带系统无法比拟的优点,例如:高数据速率、低系统成本和抗多径效应等,独具的优点使超宽带系统成为最具竞争力和发展前景的技术之一。
超宽带天线具有相当广泛的应用空间,它可用于GPRS全球定位、资源及环境的探测、卫星通信、雷达等。
除此之外,近年来,对于短距离无线通信的研究颇多,超宽带以其尺寸小、交换数据的速率高等优点,可用于诸多无线设备中,例:USB、数码相机等。
与无线射频技术相结合,取代传统的有线通信。
本文的研究围绕超宽带天线展开,研究的内容首先从介绍超宽带天线的发展现状开始,依次介绍了超宽带天线的基本理论、主要性能参数及研究方法,介绍了超宽带天线的几种实现方法及超宽带天线的分析方法。
最后设计一款平面超宽带缝隙天线,并进行仿真和比较,给出了该天线的相关性能参数,验证其在覆盖3.1 G-11 G的频率范围内,满足超宽带天线的应用要求。
关键字:超宽带天线天线系统超宽带缝隙天线ABSTRACTWith the development of society and the advance in technology, the application of radio frequency bands are also constantly expanded。
It promotes the production of ultra-wideband electromagnetics. In the UWB frequency band,time domain characteristics show that,time-domain electromagnetic wave is a very important resource for human。
超宽带天线的研究与设计中文摘要近几年来,超宽带天线的研究已经成为热潮。
本文的思想也是研究小型化超宽带平板天线,让其在生活中的硬件设计产品中满足超宽带天线的技术需要。
因为超宽带天线在WiMAX和WLAN的窄带系统和装载切口天线设计结构上产生的影响。
实现WiMAX和WLAN频带的双凹槽在超宽带天线结构设计。
在设计过程中主要是使用HFSS软件进行天线结构的仿真优化。
主要利用了HFSS软件仿真和天线结构的优化设计过程。
我们针对其超宽带天线的性能参数,相应的提升平面单极子天线的基础研究。
传统平面单极子天线与狭槽,狭槽装载方法的横截面,提出了几种平面单极子天线从频域和时域研究,从而从单极子天线的相关性能参数出发,研究平面单极子天线在频率范围为3.1GHZ-11GHZ,使超宽带天线能够达到市场对硬件方面的应用需求。
关键词:平面单极子天线;超宽带;HFSS仿真IResearch and design of ultra-wideband antennaAbstractIn recent years, the research of ultra-wideband antenna has become a boom. Thought of this paper is to study ultra-wideband planar antenna miniaturization, let the life in the hardware design of the product satisfy the need of ultra-wideband antenna. Because of ultra-wideband antenna in WLAN and WiMAX narrowband systems and the impact loading of incision on the antenna design. Both WiMAX and WLAN band grooves in the ultra-wideband antenna structure design. In the design process is mainly using HFSS software for simulation of antenna structure optimization. Mainly using HFSS software simulation and optimization of the antenna structure design process. We according to the performance of ultra-wideband antenna parameters, the corresponding increase of planar monopole antenna of basic research. Traditional planar monopole antenna and the slot, slot loading method of cross section, and puts forward several planar monopole antenna from frequency domain and time domain research, thus starting from the related performance parameters of monopole antenna, the planar monopole antenna in the frequency range of 3.1 GHZ - 11 GHZ, the ultra-wideband antenna can meet the market demand for hardware applications.Key words: Planar monopole antenna; Ultra-Wideband; HFSS simulation目录I中文摘要 (I)Abstract (I)第1章绪论........................................................................................................... - 1 -1.1 研究背景...................................................................................................... - 1 -1.2 超宽带天线的研究现状.............................................................................. - 2 -1.3 研究趋势...................................................................................................... - 4 -第2章超宽带天线的理论基础........................................................................... - 5 -2.1 超宽带天线的基本理论.............................................................................. - 5 -2.1.1 超宽带天线的结构原理....................................................................... - 5 -2.1.2 超宽带信号的时域辐射....................................................................... - 5 -2.2 超宽带天线的性能参数.............................................................................. - 7 -第3章超宽带天线结构设计与仿真................................................................... - 9 -3.1 超宽带天线结构与尺寸参数...................................................................... - 9 -3.2 超宽带天线性能仿真................................................................................ - 12 -第4章超宽带天线测试与分析......................................................................... - 15 -4.1 S11参数及带宽.......................................................................................... - 15 -4.2 驻波比VSWR ........................................................................................... - 16 -4.3 增益方向图................................................................................................ - 18 -4.4 弯曲特性.................................................................................................... - 20 -第5章总结与展望............................................................................................. - 25 -5.1 总结............................................................................................................ - 25 -5.2 下一步工作计划与展望............................................................................ - 25 -参考文献............................................................................................................... - 27 -II第1章绪论1.1研究背景UWB天线技术,对无线通信的更进一步发展具有变革性的作用。
摘要摘要穿墙雷达系统能对不透明障碍物等复杂环境下的生命迹象进行探测和定位,在城市恐怖袭击绑架和消防救援等活动中具有非常重要的作用和意义。
冲激体制的穿墙雷达是一款具有集穿透性强、抗干扰能力强、隐蔽性能好、距离向分辨率高等优点的探测能力比较优秀的穿墙雷达。
而天线作为穿墙雷达系统中重要的组成部分,天线的好坏直接影响雷达系统的性能,因此设计一款性能较佳的天线是非常重要的,而这也是本设计的目标。
本设计的工作和内容主要包括以下几个部分:首先,简要分析和概述了穿墙雷达系统的背景以及其实际应用意义,调研和分析了国内外研究现状和发展。
研究和分析了1GHz~10GHz频段信号对各种墙体穿透能力,以及结合系统体积、雷达信号波形和冲激体制最终确定以1.5GHz~4.5 GHz频段的高斯脉冲加载3GHz正弦波信号作为穿墙雷达信号。
然后对穿墙雷达信号频段进行分析知其为超宽带信号。
分析出适合此类穿墙雷达的天线主要为宽带微带型天线和超宽带天线。
简单介绍微带天线扩展带宽的方法并介绍和对比几种超宽带天线,最终确定带渐变槽的单极子天线和Vivaldi天线作为该系统的终点研究方向。
因而进行概述Vivaldi天线的原理、发展和馈电结构、为本文的设计作铺垫。
其次,设计了一款适合穿墙雷达的天线带渐变槽的单极子天线,详细阐述了该天线的设计过程并对其进行分析。
该天线有一个优点就是体积小它的体积是后面设计的Vivaldi天线的体积的50%,而且带渐变槽的单极子天线的高频特性非常好达到了11GHz。
并且通过分析其时域特性,表明其具有良好的时域特性。
最后,从Vivaldi天线的结构到设计给出了详细分析和计算。
设计主要包括馈电结构和槽线渐变辐射器的计算和设计。
然后对天线整体性能进行描述并分析其仿真和测试结果。
主要包括频域的回波损耗、辐射方向图以及峰值增益和时域的辐射波形、振铃现象、时域方向图以及保真系数等方面的分析。
通过比较这两款天线性能,最终选择Vivaldi天线作为穿墙雷达系统的收发天线。
超宽带uwb天线原理与设计
超宽带(Ultra-Wideband,UWB)天线是一种能够在非常宽的频率范围内工作的天线。
其频率范围一般被定义为3.1GHz至10.6GHz。
UWB天线的设计非常具有挑战性,因为它需要在宽带范围内满足多种性能指标,如高增益、低阻抗匹配、宽带阻带等。
UWB天线的设计通常分为两类:二极子天线和贴片天线。
二极子天线是一种传统的天线,具有较高的增益和较宽的带宽,因此被广泛用于UWB通信系统。
贴片天线则是一种非常薄小的天线,能够在超薄设备中实现紧凑的设计。
但是贴片天线的增益通常较低,因此需要进行较为复杂的阻抗匹配和辐射模式控制。
在UWB天线设计中,常用的优化方法包括使用差分结构、多重共振器、宽带阻带和宽带阻抗变换器等。
此外, UWB天线的设计也需要考虑与其他系统的兼容性,如GPS系统和无线电频段的卫星通信系统。
总之,UWB天线的设计是一项复杂而又具有挑战性的任务。
它需要考虑多种性能指标,同时还要考虑与其他系统的兼容性。
对于UWB 技术的应用来说,UWB天线的设计和研究具有非常重要的意义。
- 1 -。
超宽带MIMO天线与电磁偶极子天线研究一、本文概述随着无线通信技术的快速发展,MIMO(多输入多输出)天线和电磁偶极子天线在无线通信系统中扮演着越来越重要的角色。
特别是在超宽带(UWB)通信系统中,这些天线的设计和优化成为了研究的热点。
本文旨在深入研究超宽带MIMO天线与电磁偶极子天线的相关理论、设计方法和性能分析,为无线通信系统的优化和发展提供理论支持和实践指导。
本文首先介绍了超宽带MIMO天线和电磁偶极子天线的基本原理和特性,包括天线的辐射特性、增益、方向性、带宽等关键参数。
接着,文章对超宽带MIMO天线的设计和优化进行了详细的分析,包括天线阵列的布局、馈电网络的设计、阻抗匹配等方面。
同时,本文还探讨了电磁偶极子天线的设计方法,包括天线结构的选择、材料的选择、频率调谐等。
在性能分析方面,本文采用了多种仿真软件对超宽带MIMO天线和电磁偶极子天线的性能进行了仿真分析,包括天线的回波损耗、增益、方向图等关键指标。
通过对比不同设计方案和参数调整,文章深入探讨了天线性能优化的方法和策略。
本文总结了超宽带MIMO天线和电磁偶极子天线的研究现状和发展趋势,并对未来研究方向进行了展望。
本文的研究成果不仅为无线通信系统的优化和发展提供了理论支持和实践指导,同时也为相关领域的研究人员和技术人员提供了有益的参考和借鉴。
二、超宽带MIMO天线技术随着无线通信技术的飞速发展,超宽带(Ultra-Wideband, UWB)技术以其高数据传输速率、低能耗和抗干扰能力强等特点,在短距离无线通信中得到了广泛应用。
多输入多输出(Multiple-Input Multiple-Output, MIMO)技术作为一种有效的空间复用和分集技术,可以显著提高无线通信系统的频谱效率和可靠性。
因此,将UWB技术与MIMO技术相结合,形成超宽带MIMO天线,成为了当前天线技术研究的热点之一。
超宽带MIMO天线的设计关键在于如何在保证天线宽带性能的同时,实现多天线之间的低耦合、高隔离度以及良好的方向性。
超宽带天线研究报告一、背景1.1 超宽带(UWB——Ultra Wide Band)介绍超宽带技术[1-3]的最初形式为脉冲无线通信,起源于20世纪40年代,从其出现到20世纪90年代之前,UWB技术主要作为军事技术在雷达和低截获率、低侦侧率等通信设备中使用。
近年来,随着微电子器件的技术和工艺的提高,UWB 技术开始应用于民用领域。
超宽带通信是一种不用载波,而通过对具有很陡上升和下降时间的脉冲进行调制(通常,脉冲宽度在0.20-1.5ns之间)的一种通信,也称为脉冲无线电(Impulse Radio).时域(Time Domain)或无载波(Carrier Free)通信。
它具有GHz量级的带宽,并因其发射能量相当小,因此可能在不占用现在已经拥挤不堪频率资源的情况下带来一种全新的语音及数据通信方式。
超宽带要求相对带宽[4]比高出20%或者绝对带宽大于0.5GHz,其传输速率可超过100Mbps,具有这样特性的系统称为UWB系统。
图1.1 超宽带频谱图UWB由于占有带宽达到数GHz,即使传送路径特性良好也会产生失真,但其具有以下的优点,使得UWB仍然倍受重视[2]。
1、抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。
接收时将信号能量还原出来,在解扩过程中产生扩频增益,因此,在同等码速条件下,UWB具有更强的抗干扰性。
2、传输速率高:UWB的数据速率可以达到几十Mbps到几百Mbps.3、带宽极宽:UWB使用的带宽在1GHz以上。
超宽带系统容量大,并目可以和目前的窄带通信系统同时工作而互不干扰。
4、消耗电能小:通常情况下,尤线通信系统在通信时需要联系发剔载波,因此,要消耗一定电能。
而UWB不使用载波,只是发出瞬时脉冲电波,则只在需要时才发送脉冲电波,所以消耗电能小。
5、保密性好:UWB保密性能表现在两方面:一方面是采用跳时扩频,接收机只有己知发送端扩频码时才能解出发射数据:另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。
超宽带天线研究报告一、背景1.1 超宽带(UWB——Ultra Wide Band)介绍超宽带技术[1-3]的最初形式为脉冲无线通信,起源于20世纪40年代,从其出现到20世纪90年代之前,UWB技术主要作为军事技术在雷达和低截获率、低侦侧率等通信设备中使用。
近年来,随着微电子器件的技术和工艺的提高,UWB 技术开始应用于民用领域。
超宽带通信是一种不用载波,而通过对具有很陡上升和下降时间的脉冲进行调制(通常,脉冲宽度在0.20-1.5ns之间)的一种通信,也称为脉冲无线电(Impulse Radio).时域(Time Domain)或无载波(Carrier Free)通信。
它具有GHz量级的带宽,并因其发射能量相当小,因此可能在不占用现在已经拥挤不堪频率资源的情况下带来一种全新的语音及数据通信方式。
超宽带要求相对带宽[4]比高出20%或者绝对带宽大于0.5GHz,其传输速率可超过100Mbps,具有这样特性的系统称为UWB系统。
图1.1 超宽带频谱图UWB由于占有带宽达到数GHz,即使传送路径特性良好也会产生失真,但其具有以下的优点,使得UWB仍然倍受重视[2]。
1、抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。
接收时将信号能量还原出来,在解扩过程中产生扩频增益,因此,在同等码速条件下,UWB具有更强的抗干扰性。
2、传输速率高:UWB的数据速率可以达到几十Mbps到几百Mbps.3、带宽极宽:UWB使用的带宽在1GHz以上。
超宽带系统容量大,并目可以和目前的窄带通信系统同时工作而互不干扰。
4、消耗电能小:通常情况下,尤线通信系统在通信时需要联系发剔载波,因此,要消耗一定电能。
而UWB不使用载波,只是发出瞬时脉冲电波,则只在需要时才发送脉冲电波,所以消耗电能小。
5、保密性好:UWB保密性能表现在两方面:一方面是采用跳时扩频,接收机只有己知发送端扩频码时才能解出发射数据:另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。
超宽带天线的研究与设计
近年来随着军用和民用通信技术的发展,超宽带天线不断的向小型化和宽频化方向发展。
由于超宽带系统频带与其他系统频带重叠而相互干扰,设计具有带阻特性的超宽带天线成为目前研究的热点。
印刷单极子天线由于其结构简单,易于加工,带宽较宽等特点受到人们的广泛关注。
本文的主要内容主要包括以下几个方面:1.首先介绍了超宽带平面单极子天线的基本结构,并对其基本工作原理进行了讨论,然后针对上述基本结构的不足,提出了在辐射贴片上采用圆角和阶梯化处理,形成了两款改进型的微带馈电的平面单极子天线,仿真结果表明两款微带馈电的单极子天线达到了接近19:1的阻抗带宽。
开槽式天线则利用上述两种改进措施,获得了超过了20:1阻抗带宽。
然后提出了一种开孔式的平面单极子天线,在整个频段内可实现近似的全向辐射。
最后以第一款改进型平面单极子天线的辐射贴片为原型,形成了CPW馈电的超宽带共形天线,仿真结果表明其阻抗带宽接近20:1。
2.针对天线小型化设计提出了半CPW馈电的单极子天线,并对结构进行改进,使天线最低工作频率进一步降低,尺寸减少了将近40%,仿真的阻抗带宽范围达到1.99~40GHz。
3.为了避免与无线局域网系统频带重叠而相互干扰,在设计的单极子天线中加入了C形缝隙,并对C形缝隙的尺寸及位置都作了相应的研究,并在特定的频段达到了陷波的特性。
【关键词相关文档搜索】:电路与系统; 超宽带天线; 印刷天线; 小型化; 阻带抑制
【作者相关信息搜索】:南京理工大学;电路与系统;沙侃;王华;。
共面波导馈电的超宽带天线研究随着无线通信技术的快速发展,超宽带天线已经成为一种重要的通信手段。
而共面波导馈电技术作为一种先进的无线传输技术,其在超宽带天线中的应用也日益受到。
本文将围绕共面波导馈电的超宽带天线进行研究,首先介绍共面波导馈电技术的原理和优势,然后对共面波导馈电的超宽带天线进行论述,最后分析共面波导馈电在超宽带天线中的应用场景,并总结其未来发展的趋势和挑战。
共面波导馈电技术是一种先进的无线传输技术,其基本原理是将信号从电路板的一面传输到另一面,从而避免了对电路板穿孔的需求。
与传统的传输线相比,共面波导馈电技术具有更高的数据传输率和更远的传输距离。
由于其结构紧凑,重量轻,易于集成等特点,共面波导馈电技术广泛应用于各种无线通信系统中,包括超宽带天线。
共面波导馈电的超宽带天线是一种新兴的无线通信技术,其具有较高的数据传输率和较远的传输距离,能够满足当下移动通信的需求。
超宽带天线的基本原理是利用超宽带信号的特点,实现高速数据传输。
而共面波导馈电技术的应用则可以提高天线的辐射效率,从而在相同的功率下实现更远的传输距离或更高速的数据传输。
共面波导馈电的超宽带天线还具有结构简单、易于集成等特点,具有广泛的应用前景。
共面波导馈电技术在超宽带天线中的应用场景主要包括移动通信、无线数据传输、定位服务等。
在移动通信领域,共面波导馈电技术可以提高手机的信号接收能力和数据传输速度,从而为用户带来更好的使用体验。
在无线数据传输领域,共面波导馈电的超宽带天线可以实现高速数据传输,广泛应用于各种无线设备中。
在定位服务领域,共面波导馈电的超宽带天线可以实现高精度定位,为智能家居、智能交通等领域提供了新的解决方案。
虽然共面波导馈电的超宽带天线具有广泛的应用前景,但也面临着一些挑战。
超宽带天线的辐射效率较低,需要进一步提高。
超宽带信号的衰减较大,需要采取有效的信号增强措施。
超宽带天线的方向性较差,需要研究更为精确的定向天线技术。