基本不等式+一元二次不等式的解法(原创基础题)5
- 格式:docx
- 大小:15.90 KB
- 文档页数:2
一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
一、引言一元二次不等式是高中数学中的重要知识点,也是考试中常见的题型之一。
掌握一元二次不等式的解法及基本不等式的运用,对于提高学生的数学水平和解题能力有着重要的作用。
本文将重点讲解一元二次不等式及基本不等式的常见题型及解题方法,希望能够帮助读者更好地理解和掌握这一知识点。
二、一元二次不等式的基本概念1. 一元二次不等式的定义一元二次不等式是形如ax^2+bx+c>0(或<0、≥0、≤0)的不等式,其中a、b、c为常数,x为未知数,且a≠0。
一元二次不等式的解就是使不等式成立的x的取值范围。
2. 一元二次不等式的常见形式一元二次不等式的常见形式包括ax^2+bx+c>0、ax^2+bx+c≥0、ax^2+bx+c<0和ax^2+bx+c≤0等,需要根据具体情况选择合适的解题方法来解决。
三、一元二次不等式的解法及常见题型1. 一元二次不等式的解法解一元二次不等式的常用方法有:利用一元二次函数的图像法、利用一元二次函数的根式关系法、利用配方法、利用因式分解法等。
需要根据具体不等式的形式和题目的要求选择合适的解题方法。
2. 一元二次不等式的常见题型及讲解(1) 一元二次不等式的根的情况讨论当一元二次不等式的根的情况为实数时,解法与一元二次方程类似,可以利用一元二次函数的图像法或根式关系法求解。
当根的情况为虚数时,需要利用配方法或因式分解法进行求解。
(2) 一元二次不等式的恒成立条件讨论对于一元二次不等式ax^2+bx+c>0(或<0、≥0、≤0),当a>0时,条件为Δ<0;当a<0时,条件为Δ>0。
根据恒成立条件的讨论,可以快速判断一元二次不等式的解的范围。
(3) 一元二次不等式的应用题针对一元二次不等式的应用题,需要根据具体问题建立相应的不等式模型,再利用所学的解题方法进行求解,并得出相应的结论。
四、基本不等式的概念及应用1. 基本不等式的定义基本不等式是指在一定条件下成立的不等式,常见的基本不等式有算术平均-几何平均不等式、柯西-施瓦兹不等式等。
专题05 一元二次不等式与其他常见不等式解法【考点预测】 1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,n m 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法 题型二:含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为( ) A .{2}xx <-∣ B .{1}x x >∣ C .{21}x x -<<∣ D .{2∣<-xx 或1}x > 例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是( )A .m <B .m >C .0m >D .m >m <例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为( )A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集 题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为( )A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x ⎫<⎬D .1|x x ⎧⎫<⎨⎬ 8002222A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m > C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<例9.(2022·全国·高三专题练习)在关于x 的不等式2(1)0x a x a -++<的解集中至多包含2个整数,则a 的取值范围是 A .(3,5)-B .(2,4)-C .[3,5]-D .[2,4]-例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R. (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围【方法技巧与总结】 1.数形结合处理. 2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2-B .1C .2D .8例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB.CD. (多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( ) A .0a >0|6 0201132例16.(2022·全国·高三专题练习)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【方法技巧与总结】1.一定要牢记二次函数的基本性质.2.含参的注意利用根与系数的关系找关系进行代换. 题型四:其他不等式解法例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______. 例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________. 例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________.例21.(2022·上海·高三专题练习)关于x 230≥的解集为_________.例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____. 【方法技巧与总结】1.分式不等式化为二次或高次不等式处理. 2.根式不等式绝对值不等式平方处理. 题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围24321131上为减函数,则实数a 的取值范围为( ) A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫-- ⎪⎝⎭例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( )A .196B .3C .103 D .92例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (Ⅰ) 0a >且21ba-<<-; (Ⅰ)方程()0f x =在(0,1)内有两个实根. 【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】 一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}22x x -≤≤ B .{}42,3x x x -≤≤≠- C .{}34x x ≤≤D .{}34x x -<≤2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3234|0{}2| 1114.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1-B .(-C .()0,1D .(5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的取值范围为( )A .[1,3]-B .75,22⎡⎤-⎢⎥⎣⎦C .[1,-D .[1,7.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞8.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)二、多选题9.(2022·全国·高三专题练习)若不等式2sin sin 20x a x -+≥对任意的0,2x π⎛⎤∈ ⎥⎝⎦恒成立,则实数a 可能是A .1B .2C .3D .410.(2022·江苏·高三专题练习)已知不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,则以下选项正确的有( ) A .0a <B .0c >2011201111222A .当0m ≠时,()0f x <的解集为2mx x m ⎧⎫-<<⎨⎬⎩⎭B .当1m =时,[)12,1,x x ∀∈+∞时,()()()12120x x f x f x -->⎡⎤⎣⎦C .121,,4x x m ⎛⎤∀∈-∞ ⎥⎝⎦且12x x ≠时,()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭D .当0m <时,若120x x <<,则()()2112>x f x x f x12.(2022·重庆巴蜀中学高三阶段练习)已知两个变量x ,y 的关系式(,)(1)f x y x y =-,则以下说法正确的是( )A .(1,3)(3,1)0f f ==B .对任意实数a ,都有1(,)4f a a ≤成立 C .若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立,则实数a 的取值范围是[5,3]- D .若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立,则实数x 的取值范围是(,0)-∞ 三、填空题13.(2022·全国·高三专题练习)不等式210ax x c a++>的解集为{|21}x x -<<,则函数y =递增区间是_______14.(2022·浙江·高三专题练习)若不等式2(3)16x b -<的解集中的整数有且仅有1,2,3,则实数b 的取值范围是___________.15.(2022·全国·高三专题练习)若关于x 的不等式()2220x a x a -++->恰有1个正整数解,则a 的取值范围是___________.16.(2022·全国·高三专题练习)设a ,b ,c R ∈,对任意满足1x 的实数x ,都有21ax bx c ++,则a b c++的最大可能值为__. 四、解答题17.(2022·北京·高三学业考试)已知函数2()1f x x mx =++(m 是常数)的图象过点(1,2). (1)求()f x 的解析式;(2)求不等式()21f x x <+的解集.18.(2022·江西·高三期末(文))已知()|2||1|f x x x =++-. (1)解不等式()8f x x ≤+;(2)若关于x 的不等式2()2f x m m ≥-在R 上恒成立,求实数m 的取值范围.192320010 0 21(3)设1x ,2x 是方程()0f x =123||2x x -<.20.(2022·浙江·高三专题练习)若不等式2(1)460a x x 的解集是{31}x x -<<. (1)解不等式22(2)0x a x a ;(2)b 为何值时,230ax bx ++≥的解集为R .21.(2022·全国·高三专题练习)解关于x 的不等式:()()21100ax a x a +--<<. 22.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++.(1)若()10f -=,试判断函数()f x 零点个数; (2)是否存在,,a b c ∈R ,使()f x 同时满足以下条件: ①对任意,(4)(2)x R f x f x ∈-=-,且()0f x ≥; ②对任意x ∈R ,都有210()(1)2f x x x ≤-≤-.若存在,求出,,a b c 的值,若不存在,请说明理由.专题05 一元二次不等式与其他常见不等式解法【考点预测】 1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,n m 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法 题型二:含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为( ) A .{2}xx <-∣ B .{1}x x >∣ C .{21}x x -<<∣ D .{2∣<-xx 或1}x > 【答案】D 【解析】 【分析】结合一元二次不等式的解法求得正确答案即可. 【详解】由(2)(1)0x x +->解得2x <-,或1x >,所以不等式(2)(1)0x x +->的解集为{2∣<-x x 或1}x >, 故选:D.例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】 【分析】根据指数型函数的定点求解,m n ,代入后再求解一元二次不等式. 【详解】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1) B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C 【解析】 【分析】根据()f x 解析式,可得()f x 的单调性,根据条件,可得x +2<x 2+2x ,根据一元二次不等式的解法,即可得21020 0所以()f x 在R 上递增,不等式()2f x +<()22f x x +,可化为x +2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2, 则原不等式的解集为(﹣∞,﹣2)∪(1,+∞). 故选:C例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是( )A .m <B .m >C .0m >D .m >m <【答案】B 【解析】 【分析】根据该不等式是否为二次不等式,分情况讨论. 【详解】当0m =时,该不等式为210x -+>,解集为12x <,不成立; 当0m ≠时,由不等式的解集为R ,得()()2Δ2410m m m m >⎧⎪⎨=+-+<⎪⎩,解得m >故选:B.例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为( )A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【答案】D 【解析】 【分析】根据奇偶性定义可知()f x 为偶函数,并根据指数函数和二次函数单调性确定()f x 的单调性,从而将所求不等式转化为124x x +≥-,解不等式可求得结果.【详解】223302332()f x ∴在[)0,∞+上为增函数,则()f x 在(],0-∞上为减函数;由()()124f x f x +≥-可得:124x x +≥-,即()()22124x x +≥-,解得:15x ≤≤,即不等式()()124f x f x +≥-的解集为[]1,5. 故选:D.【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集 题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】 【分析】根据一元二次不等式的解法即可求解. 【详解】解:原不等式可以转化为:()()120x ax --≥,当0a <时,可知2()(1)0x x a --≤,对应的方程的两根为1,2a,根据一元二次不等式的解集的特点,可知不等式的解集为:2[,1]a. 故选:A.例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为( )A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x a ⎫<⎬⎭D .1|x x a ⎧⎫<⎨⎬⎩⎭【答案】A 【解析】 【分析】111010又因为当1a <-时,1a a >,所以不等式1()0x a x a ⎛⎫--> ⎪⎝⎭的解集为:{|x x a <或1x a ⎫>⎬⎭. 故选:A . 【点睛】本题考查含参一元二次不等式的解法,较简单,解答时,注意根的大小关系比较.例8.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()()f x y f x f y -=-,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m < )A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m >C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<【答案】A 【解析】 【分析】先判断函数()f x 单调递减,再利用已知条件和函数的单调性得()()20mx x m --<,解不等式即得解. 【详解】任取12x x <,由已知得()120f x x ->,即()()120f x f x ->,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m ->-,即()22f mx x f ->()22m x m -,所以2222mx x m x m -<-,即()22220mx m x m -++<,即()()20mx x m --<,又因为0m << 所以2m m >,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 【点睛】方法点睛:解抽象函数不等式一般先要判断函数的单调性,再利用单调性化抽象函数不等式为具体的函数不等式解答.9202【解析】 【详解】因为关于x 的不等式2(1)0x a x a -++<可化为(1)()0x x a --<, 当1a >时,不等式的解集为1x a <<, 当1a <时,不等式的解集为1<<a x ,要使得解集中至多包含2个整数,则4a ≤且2a ≥-,所以实数a 的取值范围是[2,4]a ∈-,故选D.点睛:本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等知识点的综合应用,试题比较基础,属于基础题,同时着重考查了分类讨论思想的应用,解答中正确求解不等式的解集是解答的关键.例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围. 【答案】()(),22,∞∞--⋃+ 【解析】 【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案. 【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x aa ==由此可知120,0x x <>, 当0a >时,解集{}{}12||A x x x x x x =<>,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x<,即12a ,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a>,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R. (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得2321012(1)对k 进行分类讨论,结合一元二次不等式的解法求得不等式的解集A . (2)结合(1)的结论进行分类讨论,结合基本不等式求得和正确答案. (1)当k =0时,A ={x |x <4};当k >0且k ≠2时,A ={x |x <4或4x k k>+}; 当k =2时,A ={x |x ≠4};当k <0时,A ={x |4k k+<x <4}. (2)由(1)知:当k ≥0时,集合B 中的元素的个数有无限个;当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集. 因为4k k+=-[(-k )+()4k -]≤-4,当且仅当k =-2时取等号, 所以当k =-2时,集合B 中的元素个数最少,此时A ={x |-4<x <4},故集合B ={-3,-2,-1,0,1,2,3}.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围 【答案】12ln2(,]43-【解析】 【分析】将不等式转化为22ln 2(1)x x m x ->+,构造函数22ln ()=2(1)x xf x x -+,利用导数判断单调性,结合题意即可求解.【详解】关于x 的不等式21ln 02x mx x m ---<化为:22ln 2(1)x x m x ->+,令22ln ()=2(1)x xf x x -+,0x >,则3222222ln ()2(1)x x x x xf x x x +--+'=+.令32()2222ln u x x x x x x =+--+,2()342ln u x x x x '=++在(0,)+∞上单调递增,因此存在0(0,1)x ∈,使得20000()342ln 0u x x x x '=++=,20002ln 34x x x =--, 3232232200000000000000000()2222ln 222(34)22222(1)(1)0u x x x x x x x x x x x x x x x x x =+--+=+--+--=----=-++<,110210011011f (1)14=,f (2)2ln23-=.关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >, 该不等式在(,)a b 中有且只有一个整数解,∴实数m 的取值范围是12ln2(,]43-.【方法技巧与总结】 1.数形结合处理.2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2- B .1 C .2 D .8【答案】C 【解析】 【分析】由一元二次不等式的解与方程根的关系求出系数1a =,确定2b ≥,然后结合基本不等式得最小值. 【详解】2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,则2240ax bx ++=的两根为m ,4m ,∴44m m a ⋅=,∴1a =,42m b m +=-,则424b m m=-+≥-,即2b ≥,44244b b a b b +=+≥,当且仅当4b =时取“=”, 故选:C.例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB.CD. 【答案】D 【解析】124212322430(0)x ax a a -+<<的解集为()12x x ,,则12x x ,是方程22430-+=x ax a 的两个根,故124x x a +=,2123x x a =,故1212143a x x a x x a++=+ 因为0a <,所以有基本不等式得:114433a a a a ⎡⎤⎛⎫+=--+-≤-= ⎪⎢⎥⎝⎭⎣⎦,当且仅当143a a -=-即a =1212a x x x x ++的最大值为 故选:D(多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( ) A .0a >B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-⋃+∞【答案】ABD 【解析】 【分析】根据不等式20ax bx c ++>的解集判断出0a >,结合根与系数关系、一元二次不等式的解法判断BCD 选项的正确性.【详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确; 且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误; 不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确. 故选:ABD .1625101123⎧⎫303 23【分析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭可得参数a 的值,则不等式303x ax -<-也具体化了,按分式不等式解之即可. 【详解】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,,故6a =,则不等式303x ax -<-即3603x x -<-等价于3(2)(3)0x x --<, 不等式3(2)(3)0x x --<的解集为{}23x x <<, 则不等式303x ax -<-的解集为{}23x x <<, 故答案为:{}23x x <<.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【答案】{|23}x x << 【解析】【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答. 【详解】依题意,12-,13-是方程210ax bx --=的两个根,且0a <,于是得11()()23111()()23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<, 所以不等式20x bx a --< 的解集是{|23}x x <<. 故答案为:{|23}x x <<12例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______. 【答案】10,2⎛⎫ ⎪⎝⎭【解析】 【分析】 由12x>可得120x ->,结合分式不等式的解法即可求解.【详解】 由12x >可得120x ->,整理可得:120xx ->,则()210x x -<,解可得:102x <<. 所以不等式是12x >的解集为: 10,2⎛⎫ ⎪⎝⎭. 故答案为:10,2⎛⎫⎪⎝⎭.例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________. 【答案】()1,0- 【解析】【分析】根据分式不等式的解法进行求解. 【详解】1111000101111x x x x x x x ->⇒->⇒>⇒<⇒-<<++++, 故答案为:()1,0-.例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________. 【答案】02xx <- 【解析】 【分析】由题意根据分式不等式的解法,得出结论. 【详解】一个解集为()0,2的分式不等式可以是02xx <-, 022123【答案】[4,5) 【解析】 【分析】通过2330x x -+>0≥恒成立,将不等式最终转化为405010x x x -≥⎧⎪->⎨⎪+≠⎩,解出即可.【详解】解:对于233x x -+,有23340∆=-⨯<,则2330x x -+>恒成立,0≥恒成立,2323(34)00150x x x x ⎧--≥⎪≥⇔+⎨⎪->⎩又2333(34)(4)(1)11x x x x x x ---+=++, 23(34)0150x x x x ⎧--≥⎪∴+⎨⎪->⎩, 2333(34)(4)(1)x x x x --=-+405010x x x -≥⎧⎪∴->⎨⎪+≠⎩解得不等式的解集为[4,5).故答案为:[4,5). 【点睛】本题考查分式不等式的求解,发现部分因式恒大于零,以及分母不为零是解题的关键,是中档题. 例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____. 【答案】()()3,11,2--.101111011【详解】 若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭则关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x 代入可得,则1111,,132x ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,则()()3,11,2x ∈--⋃. 故解集为:()()3,11,2--.【点睛】本题考查不等式的解法,考查方法的类比,正确理解题意是关键.【方法技巧与总结】1.分式不等式化为二次或高次不等式处理. 2.根式不等式绝对值不等式平方处理. 题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围是( ) A .()0,1 B .()0,∞+C .()1,+∞D .(),0-∞【答案】C 【解析】 【分析】由0a ≠,判别式0∆>及根与系数关系列出不等式组,即可求出实数a 的取值范围. 【详解】因为关于x 的方程2210ax ax -+=有两个不同的正根,所以2044010a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩,解得1a >,故实数a 的取值范围是()1,+∞.故选:C例24.(2022·全国·高三专题练习)已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) 55345135534求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解. 【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】A 【解析】化简函数f (x ),根据f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,f ′(x )≤0恒成立,由此解不等式求出a 的取值范围.【详解】1232122∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A . 【点睛】本题考查三角函数的公式及导数的应用,解题的关键是利用换元将不等式恒成立问题转化为一元二次不等式恒成立问题,属于较难题.例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103 D .92【答案】AC 【解析】 【分析】本题先求导函数并根据题意建立关于m 的方程,再根据根的分布求a 的取值范围,最后判断得到答案即可. 【详解】 解:∵ 322()13f x x x ax =-+-, 22222232223022230且可知1210m m +=>,则1200m m ∆>⎧⎨⋅>⎩,即2242(3)0302a a ⎧-⨯⨯->⎪⎨->⎪⎩, 解得:732a <<,所以a 的取值可能为196,103. 故选:AC. 【点睛】本题考查求导函数,导数的几何意义,根的分布,是中档题.例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+ 【解析】根据一元二次方程根的分布建立不等式组,解之可得答案. 【详解】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (Ⅰ) 0a >且21ba-<<-; (Ⅰ)方程()0f x =在(0,1)内有两个实根. 【答案】(Ⅰ)见解析;(Ⅰ)见解析. 【解析】 【分析】(Ⅰ)先由条件求得,a c 的符号,结合条件可得; (Ⅰ)根据(0),(1)()3bf f f a-的符号可得. 【详解】020 000020故21ba-<<-. (Ⅰ)函数2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--,在21b a -<<-的两边乘以13-,得12333b a <-<.又因为(0)0,(1)0,f f >>而22()0,33b a c acf a a+--=-<又因为2()32f x ax bx c =++在(0,)3ba -上单调递减,在(,1)3b a-上单调递增, 所以方程()0f x =在区间(0,)3ba -与(,1)3b a-内分别各有一实根. 【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】 一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}22x x -≤≤ B .{}42,3x x x -≤≤≠- C .{}34x x ≤≤ D .{}34x x -<≤【答案】D 【解析】 【分析】由一元二次不等式的解法和简单分式不等式的解法求出集合,A B ,然后根据并集的定义即可求解. 【详解】解:因为集合{}{}228024A x x x x x =--≤=-≤≤,()(){}2302032330x x x B x x x x x x ⎧⎫⎧-+≤⎧⎫-⎪⎪=≤==-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎩⎪⎪⎩⎭,所以{}34A B x x ⋃=-<≤, 故选:D.2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件22012,20x x x a ∃∈-+<R ,则要满足440a ∆=->,解得:1a <,因为11a <⇒1a <,但111a a <⇒<故“11a <”是“2,20x x x a ∃∈-+<R ”的必要不充分条件. 故选:B3.(2022·陕西·模拟预测(理))已知集合234|0A x x x ,{}2|B x a x a =<<,若A B =∅,则实数a 的取值范围是( ) A .(],1-∞- B .[)4,+∞ C .()(),12,4-∞-⋃ D .[][)1,24,-⋃+∞【答案】D 【解析】 【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可. 【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅, 所以,当{}2|B x a x a=<<=∅时,2a a≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞,综上,实数a 的取值范围是[][)1,24,-⋃+∞. 故选:D4.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1- B.(-C .()0,1D.(【答案】C 【解析】 【分析】根据函数解析式判断函数关于点(1,0)成中心对称,再由基本初等函数判断函数单调性,转化原不等式后求 22022又()()ln ln 2cos2f x x x x π=---的定义域为(0,2),由πln ,ln(2),cos 2y x y x y x ==--=-在(0,2)上单调递增知, ()()ln ln 2cos2f x x x x π=---在(0,2)上递增,()()20f t f t +<,()20(2)f f t t ∴+-<-,即()2(2)f t f t <-,22t t ∴<-,解得21t -<<,又20202t t <<⎧⎨<<⎩,解得0t << 所以01t <<. 故选:C5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的7522。
第1章 1.1 不等式的基本性质和一元二次不等式的解法【解析】 a >b 并不能保证a ,b 均为正数,从而不能保证A ,B 成立.又a >b ⇒a -b >0,但不能保证a -b >1,从而不能保证C 成立.显然D 成立.事实上,指数函数y =⎝ ⎛⎭⎪⎫12x是减函数,所以a >b ⇔⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12b成立.【答案】 D教材整理2 一元一次不等式的解法 关于x 的不等式ax >b ,(1)当a >0时,该不等式的解集为⎝ ⎛⎭⎪⎫b a ,+∞;(2)当a <0时,该不等式的解集为⎝ ⎛⎭⎪⎫-∞,b a ; (3)当a =0时,若b <0,则该不等式的解集为R ;若b ≥0,则该不等式的解集为∅.不等式组⎩⎨⎧x +9<5x +1,x >m +1的解集是{x |x >2},则m 的取值范围是( )【导学号:38000000】A.m ≤2B.m ≥2C.m ≤1D.m ≥1【解析】 原不等式组可化为⎩⎨⎧x >2,x >m +1.∵解集为{x |x >2},∴m +1≤2,∴m ≤1. 【答案】 C教材整理3 一元二次不等式的解法 形如ax 2+bx +c >0(a >0)的解法: Δ=b 2-4ac Δ>0Δ=0Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0(a >0)的根有两个不等的实根x 1,x 2且x 1<x 2有两个相等的实根x 1,x 2且x 1=x 2无实根ax2+bx+c >0(a >0) 的解集{x|x<x1或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅不等式-x2+5x-6>0的解集是()A.{x|2<x<3}B.{x|x<2或x>3}C.{x|-1<x<6}D.{x|x<-1或x>6}【解析】原不等式可化为x2-5x+6<0,即(x-2)(x-3)<0,所以原不等式的解集为{x|2<x<3}.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]比较大小(1)已知x>3,比较x3+3与3x2+x的大小;(2)若m>0,试比较m m与2m的大小.【精彩点拨】(1)只需考查两者的差同0的大小关系;(2)注意到2m>0,可求商比较大小,但要注意到用函数的性质.【自主解答】(1)x3+3-3x2-x=x2(x-3)-(x-3)=(x-3)(x+1)(x-1).∵x>3,∴(x-3)(x+1)(x-1)>0,∴x3+3>3x2+x.(2)m m2m =⎝ ⎛⎭⎪⎫m 2m, 当m =2时,⎝ ⎛⎭⎪⎫m 2m=1,此时m m =2m ;当0<m <2时,0<m 2<1,⎝ ⎛⎭⎪⎫m 2m<1,∴m m <2m ;当m >2时,m 2>1,⎝ ⎛⎭⎪⎫m 2m>1,∴m m >2m .1.利用作差法比较大小,实际上是把比较两数大小的问题转化为差的符号问题.作差时,只需看差的符号,至于差的值究竟是多少,这里无关紧要.2.在变形中,一般是变形得越彻底越有利于下一步的判断.作差法变形的常用技巧有:因式分解、配方、通分、分母有理化等.3.利用求商比较法比较两个式子的大小时,第(2)步的变形要向着有利于判断商与1的大小关系的方向变形,这是最重要的一步.[再练一题]1.已知A =1x +1y ,B =4x +y,其中x ,y 为正数,试比较A 与B 的大小.【导学号:38000001】【解】 A -B =1x +1y -4x +y=x +y xy -4x +y =(x +y )2-4xy xy (x +y )=(x -y )2xy (x +y ).∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0, ∴A -B ≥0,即A ≥B .利用不等式的性质求范围设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,在求f (-2)的取值范围时有如下解法:由⎩⎨⎧1≤f (-1)≤2,2≤f (1)≤4,得⎩⎪⎨⎪⎧32≤a ≤3,0≤b ≤32.∴3≤f (-2)=4a -2b ≤12.上述解法是否正确?为什么?【精彩点拨】 本题错在多次运用同向不等式相加(单向性)这一性质上,导致f (-2)的范围扩大.因此需要将f (-2)用a -b 与a +b 整体表示.【自主解答】 给出的解法不正确. 设f (-2)=mf (-1)+nf (1), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a -(m -n )b . 于是⎩⎨⎧m +n =4,m -n =2,解得⎩⎨⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 又1≤f (-1)≤2,2≤f (1)≤4, ∴5≤3f (-1)+f (1)≤10. 因此,f (-2)的取值范围是[5,10].1.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.2.先建立待求范围的整体与已知范围的整体的等量关系,最后通过“不等关系的运算,求得待求的范围”,是避免犯错误的一条途径.[再练一题]2.已知-6<a <8,2<b <3,分别求a -b ,ab 的取值范围. 【解】 ∵-6<a <8,2<b <3. ∴-3<-b <-2,∴-9<a -b <6, 则a -b 的取值范围是(-9,6). 又13<1b <12,(1)当0≤a <8时,0≤ab <4; (2)当-6<a <0时,-3<ab <0. 由(1)(2)得-3<ab <4. 因此ab 的取值范围是(-3,4).一元二次不等式的解法解下列关于x 的一元二次不等式.(1)3x 2+5x -2>0;(2)9x 2-6x +1>0; (3)x 2-4x +5>0.【精彩点拨】 先由不等式确定对应的一元二次方程ax 2+bx +c =0的根,再根据二次函数y =ax 2+bx +c 的图象确定不等式的解集.【自主解答】 (1)方程3x 2+5x -2=0的两根为x 1=-2,x 2=13,函数y =3x 2+5x -2的图象开口向上,与x 轴交于两个点 (-2,0),⎝ ⎛⎭⎪⎫13,0,观察图象可得不等式3x 2+5x -2>0的解集为x ⎪⎪⎪x >13或x <-2.(2)方程9x 2-6x +1=0有两个相等的实数根x 1=x 2=13,二次函数y =9x 2-6x +1的图象开口向上,与x 轴仅有一个交点⎝ ⎛⎭⎪⎫13,0,观察图象可以得到不等式9x 2-6x +1>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠13. (3)方程x 2-4x +5=0可化为(x -2)2+1=0,故方程x 2-4x +5=0没有实数根,函数y =x 2-4x +5的图象开口向上并且与x 轴没有交点,由图象可得,不等式x 2-4x +5>0的解集为R.当a >0时,解形如ax 2+bx +c >0(≥0)或ax 2+bx +c <0(≤0)的一元二次不等式,一般可以分为三步:(1)确定对应的一元二次方程ax 2+bx +c =0的解; (2)画出对应函数y =ax 2+bx +c 的图象;(3) 由图象得出不等式的解集. [再练一题]3.不等式x 2+x -2≤0的解集为________.【解析】 方程x 2+x -2=0的两根为x 1=-2,x 2=1, 函数y =x 2+x -2的图象开口向上, ∴不等式x 2+x -2≤0的解集为[-2,1]. 【答案】 [-2,1]含参数的一元二次不等式的解法解关于x 的不等式:ax 2-(a +1)x +1<0.【精彩点拨】 由于a ∈R ,故分a =0,a >0,a <0讨论. 【自主解答】 若a =0,原不等式可化为-x +1<0,即x >1. 若a <0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,即x <1a 或x >1.若a >0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)<0.(*)其解的情况应由1a 与1的大小关系决定,故 (1)当a =1时,由(*)式可得x ∈∅; (2)当a >1时,由(*)式可得1a <x <1; (3)当0<a <1时,由(*)式可得1<x <1a . 综上所述:当a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <1a 或x >1; 当a =0时,解集为{x |x >1}; 当0<a <1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1<x <1a ; 当a =1时,解集为∅; 当a >1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1a <x <1. 解含参数的一元二次不等式时要注意对参数分类讨论.讨论一般分为三个层次,第一层次是二次项系数为零和不为零;第二层次是有没有实数根的讨论,即判别式Δ>0,Δ=0,Δ<0;第三层次是根的大小的讨论.[再练一题]4.解关于x 的不等式x 2-(a +a 2)x +a 3>0(a ∈R). 【解】 原不等式可化为(x -a )(x -a 2)>0, ∴当a <0时,a <a 2,解集为{x |x <a 或x >a 2}; 当a =0时,a 2=a ,解集为{x |x ≠0}; 当0<a <1时,a 2<a ,解集为{x |x <a 2或x >a }; 当a =1时,a 2=a ,解集为{x |x ≠1}; 当a >1时,a <a 2,解集为{x |x <a 或x >a 2}. 综上所述:当a <0或a >1时,解集为{x |x <a 或x >a 2}; 当0<a <1时,解集为{x |x <a 2或x >a }; 当a =0时,解集为{x |x ≠0}; 当a =1时,解集为{x |x ≠1}.一元二次不等式的应用设a ∈R ,关于x 的一元二次方程7x 2-(a +13)x +a 2-a -2=0有两个实数根x 1,x 2且0<x 1<1<x 2<2,求a 的取值范围.【精彩点拨】 若把方程左边看成二次函数f (x ),则它的图象是开口向上的抛物线,与x 轴相交的条件是f (0)>0,f (1)<0,f (2)>0,所以只需解关于a 的不等式组,即可求出a 的取值范围.【自主解答】 设f (x )=7x 2-(a +13)x +a 2-a -2. ∵x 1,x 2是方程f (x )=0的两个实根,且0<x 1<1,1<x 2<2,∴有⎩⎨⎧f (0)>0,f (1)<0,f (2)>0,即⎩⎨⎧a 2-a -2>0,7-(a +13)+a 2-a -2<0,28-2(a +13)+a 2-a -2>0,∴有⎩⎨⎧ a 2-a -2>0,a 2-2a -8<0,a 2-3a >0,∴有⎩⎨⎧ a <-1或a >2,-2<a <4,a <0或a >3.∴有-2<a <-1或3<a <4.∴a 的取值范围是{a |-2<a <-1或3<a <4}.解关于二次方程根的分布问题,应考虑“三个二次”的关系,分清对应的二次函数的开口方向及根所在区域的范围,画出对应的二次函数的图象,根据图象列出有关的不等式或不等式组进行求解.[再练一题]5.一个服装厂生产风衣,日销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂日产量多大时,日利润不少于1 300元?(2)当日产量为多少时,可获得最大利润,最大利润是多少?【解】 (1)由题意知,日利润y =px -R ,即y =(160-2x )x -(500+30x )=-2x 2+130x -500,由日利润不少于1 300元.得-2x 2+130x -500≥1 300,即x 2-65x +900≤0,解得20≤x ≤45.故当该厂日产量在20~45件时,日利润不少于1 300元.(2)由(1)得,y =-2x 2+130x -500=-2⎝ ⎛⎭⎪⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当日产量为32或33件时,可获得最大利润,最大利润为1 612元.可化为一元二次不等式的分式不等式的解法解不等式:x +1x -2≤2. 【精彩点拨】 把不等式转化为f (x )g (x )≥0求解. 【自主解答】 ∵x +1x -2≤2,∴x +1x -2-2≤0,即-x +5x -2≤0, ∴x -5x -2≥0,∴⎩⎨⎧ (x -5)(x -2)≥0,x -2≠0,∴x <2或x ≥5. 即原不等式的解集为{x |x <2或x ≥5}.解分式不等式总的原则是利用不等式的同解原理将其转化为整式不等式(组)求解.即f (x )g (x )≥0⇒⎩⎨⎧ f (x )·g (x )≥0,g (x )≠0⇒f (x )·g (x )>0或f (x )=0. f (x )g (x )>0⇒⎩⎨⎧ f (x )>0,g (x )>0或⎩⎨⎧f (x )<0,g (x )<0⇒f (x )·g (x )>0. [再练一题]6.不等式x -2x 2-1<0的解集为( ) A.{x |1<x <2}B.{x |x <2且x ≠1}C.{x |-1<x <2且x ≠1}D.{x |x <-1或1<x <2}【解析】 因为不等式x -2x 2-1<0, 等价于(x +1)(x -1)(x -2)<0,所以该不等式的解集是{x |x <-1或1<x <2}.【答案】 D[探究共研型]不等式的性质及恒成立问题探究1 甲同学认为a >b ⇔1a <1b ,乙同学认为a >b >0⇔1a <1b ,丙同学认为a >b ,ab >0⇔1a <1b ,请你思考一下,他们谁说的正确?【提示】 它们的说法都不正确.设f (x )=1x ,则f (a )=1a ,f (b )=1b ,可以利用函数f (x )=1x 的图象比较f (a )与f (b )的大小.探究2 不等式两边同时乘以(或除以)一个数时,要注意什么?【提示】 要先判断这个数是否为零,决定是否可以乘以(或除以)这个数,再判断是正还是负,决定不等号的方向是否改变.探究3 ax 2+bx +c >0对一切x ∈R 都成立的充要条件是什么?【提示】 ⎩⎨⎧ a =b =0,c >0,或⎩⎨⎧a >0,Δ<0. 若不等式x 2+ax +1≥0对一切x ∈R 都成立,求实数a 的取值范围.【精彩点拨】 设f (x )=x 2+ax +1,只要f (x )的图象全部位于x 轴上方,只要顶点在x 轴上或x 轴上方即可.【自主解答】 ∵Δ=a 2-4≤0,∴-2≤a ≤2, ∴实数a 的取值范围是[-2,2].[再练一题]7.把上述例题中“x ∈R ”改为x ∈⎝ ⎛⎦⎥⎤0,12,求a 的取值范围. 【解】 法一:x 2+ax +1≥0,x ∈⎝ ⎛⎦⎥⎤0,12可化为 -a ≤x 2+1x =x +1x ,设f (x )=x +1x ,x ∈⎝ ⎛⎦⎥⎤0,12, ∴-a ≤f (x )min .∵f (x )在⎝ ⎛⎦⎥⎤0,12上是减函数, ∴f (x )min =f ⎝ ⎛⎭⎪⎫12=52,∴-a ≤52,a ≥-52, ∴a 的取值范围是⎝ ⎛⎭⎪⎫-52,+∞.法二:设f (x )=x 2+ax +1,则对称轴为x =-a 2. 当-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上是减函数, 应有f ⎝ ⎛⎭⎪⎫12≥0⇒-52≤a ≤-1; 当-a 2≤0,即a ≥0时,f (x )在⎝ ⎛⎦⎥⎤0,12上是增函数, 应有f (0)=1>0恒成立,故a ≥0;当0<-a 2<12,即-1<a <0时, 应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a 22+1=1-a 24≥0恒成立,故-1<a <0. 综上,有a ≥-52. ∴a 的取值范围是⎣⎢⎡⎭⎪⎫-52,+∞. [构建·体系]不等式的性质与解法—⎪⎪⎪⎪⎪ —不等式的性质—⎪⎪⎪ —两个实数的大小—不等式的基本性质—不等式的解法—⎪⎪⎪ —一元一次不等式的解法—一元二次不等式的解法1.若x ≠2且y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系是( )A.M >NB.M <NC.M =ND.不能确定【解析】 M -N =x 2+y 2-4x +2y -(-5)=(x -2)2+(y +1)2.∵x ≠2且y ≠-1,∴x -2≠0且y +1≠0,∴(x -2)2+(y +1)2>0,故M >N .【答案】 A2.已知函数f (x )=x +x 3,x 1,x 2,x 3∈R ,x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,那么f (x 1)+f (x 2)+f (x 3)的值( )A.一定大于0B.一定小于0C.等于0D.正负都有可能【解析】 x 1+x 2<0⇒x 1<-x 2.又∵f (x )=x +x 3为奇函数,且在R 上递增,∴f (x 1)<f (-x 2)=-f (x 2),即f (x 1)+f (x 2)<0.同理:f (x 2)+f (x 3)<0,f (x 1)+f (x 3)<0.以上三式相加,整理得f (x 1)+f (x 2)+f (x 3)<0.【答案】 B3.已知-π2≤α<β≤π2,则α-β2的范围是________. 【导学号:38000002】【解析】 ∵-π2≤α<β≤π2, ∴-π4≤α2<π4,-π4<β2≤π4, ∴-π4≤-β2<π4, ∴-π2≤α-β2<π2. 又∵α<β,∴α-β2<0,∴-π2≤α-β2<0. 【答案】 ⎣⎢⎡⎭⎪⎫-π2,0 4.关于x 的不等式0≤x 2-x -2≤4的解集为________.【解析】 先解x 2-x -2≥0.∵方程x 2-x -2=0的根为x 1=-1,x 2=2,∴x 2-x -2≥0的解集为{x |x ≤-1或x ≥2}.再解x 2-x -2≤4.∵方程x 2-x -2=4的两根为x 1=-2,x 2=3,∴x 2-x -2≤4的解集为{x |-2≤x ≤3}.∴原不等式的解集为{x |x ≤-1,或x ≥2}∩{x |-2≤x ≤3}={x |-2≤x ≤-1或2≤x ≤3}.【答案】 {x |-2≤x ≤-1或2≤x ≤3}5.已知函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),求实数a 的取值范围. 【解】 y =x 2+4x =(x +2)2-4在[0,+∞)上单调递增;y =-x 2+4x =-(x -2)2+4在(-∞,0)上单调递增.又x 2+4x -(4x -x 2)=2x 2≥0,∴f (x )在(-∞,+∞)上单调递增, ∴f (2-a 2)>f (a )⇒2-a 2>a ⇒a 2+a -2<0⇒-2<a <1.我还有这些不足:(1)(2) 我的课下提升方案:(1)(2)。
第2讲 一元二次不等式及其解法 考点一 一元二次不等式的解法【例1】 (2014·大连模拟)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是________.解析 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3),∴a <0.且⎩⎪⎨⎪⎧1-ab a =2,-ba =-3,解得a =-1或13,∴a =-1,b =-3.∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32.答案 ⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞规律方法 解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.【训练1】 (2013·江西卷改编)使不等式x <1x <x 2成立的x 的取值范围是________. 解析 当x >0时,原不等式可化为x 2<1<x 3,解得x ∈∅,当x <0时,原不等式可化为⎩⎨⎧x 2>1,x 3<1,解得x <-1.答案 (-∞,-1)考点二 含参数的一元二次不等式的解法【例2】 (2013·烟台期末)解关于x 的不等式:ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即a >-2,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥2a ,或x ≤-1;当-2<a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1;当a =-2时,不等式的解集为{x |x =-1};当a <-2时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a . 【训练2】 (1)(2013·重庆卷改编)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于________. (2)解关于x 的不等式(1-ax )2<1.(1)解析 法一 ∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2),∴x 1,x 2是方程x 2-2ax -8a 2=0的两根.由根与系数的关系知⎩⎨⎧x 1+x 2=2a ,x 1x 2=-8a 2, ∴x 2-x 1=(x 1+x 2)2-4x 1x 2=(2a )2-4(-8a 2)=15,又∵a >0,∴a =52.法二 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0, ∵a >0,∴不等式x 2-2ax -8a 2<0的解集为(-2a,4a ), 又∵不等式x 2-2ax -8a 2<0的解集为(x 1,x 2), ∴x 1=-2a ,x 2=4a .∵x 2-x 1=15, ∴4a -(-2a )=15,解得a =52. 答案 52(2)解 由(1-ax )2<1,得a 2x 2-2ax <0, 即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a .当a <0时,2a <x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考点三 一元二次不等式恒成立问题【例3】 已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意可得m =0或⎩⎨⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].(2)法一 要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67; 当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0. 综上所述:m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 法二 ∵f (x )<-m +5⇔m (x 2-x +1)<6, ∵x 2-x +1>0,∴m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数.则g (x )在[1,3]上为减函数, ∴[g (x )]min =g (3)=67,∴m <67. 所以m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.【训练3】 (1)若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.(2)(2014·淄博模拟)若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是________.解析 (1)当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R , 只需⎩⎨⎧a >0,Δ=22-4×2a <0,解得a >12.综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.(2)∵x ∈(0,2], ∴a 2-a ≥x x 2+1=1x +1x.要使a 2-a ≥1x +1x 在x ∈(0,2]时恒成立,则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x ≥2,当且仅当x =1时,等号成立,即⎝ ⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.答案 (1)⎝ ⎛⎭⎪⎫12,+∞ (2)⎝⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞1.解不等式的基本思路是等价转化,分式不等式整式化,使要求解的不等式转化为一元一次不等式或一元二次不等式,进而获得解决.2.当判别式Δ<0时,ax 2+bx +c >0(a >0)解集为R ;ax 2+bx +c <0(a >0)解集为∅.二者不要混为一谈.3.含参数的不等式的求解,注意选好分类标准,避免盲目讨论. 4.对于恒成立问题,常用到以下两个结论: (1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .思想方法6——数形结合思想在“三个二次”间关系的应用【典例】 (2012·福建卷)对于实数a 和b ,定义运算“*”;a *b =⎩⎨⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.解析 由定义可知:f (x )=(2x -1)*(x -1)=⎩⎨⎧(2x -1)2-(2x -1)(x -1),x ≤0,(x -1)2-(2x -1)(x -1),x >0,∴f (x )=⎩⎨⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1, ∴0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322,即0<x 2x 3<14. 令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34或1+34(舍去).∴1-34>x 1>0,∴3-14>-x 1>0, ∴0<-x 1x 2x 3<3-116, ∴1-316<x 1x 2x 3<0. 答案 ⎝ ⎛⎭⎪⎫1-316,0【自主体验】1.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎨⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1;②⎩⎨⎧1-x 2>0,x <0⇒-1<x <0. 综上可知:-1<x <2-1.答案 (-1,2-1)2.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出f (x )=⎩⎨⎧2x -1,x >0-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1)基础巩固题组 (建议用时:40分钟)一、填空题1.(2014·长春调研)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q =________.解析 依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(∁R P )∩Q =(2,3]. 答案 (2,3]2.(2014·沈阳质检)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4.答案 (-∞,-4)∪(4,+∞)3.(2013·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为________.解析 f (4)=42=2,不等式即为f (x )<2.当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,f (x )<f (4)的解集为{x |x <4}. 答案 {x |x <4}4.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是________.解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 答案 (2,3)5.(2014·南京二模)在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为________.解析 根据给出的定义得x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)·(x -1)<0,故这个不等式的解集是(-2,1). 答案 (-2,1)6.已知关于x 的不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a =________. 解析 由于不等式ax -1x +1<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,故-12应是ax-1=0的根,∴a =-2. 答案 -27.(2013·重庆卷)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围是________.解析 不等式8x 2-(8sin α)x +cos 2α≥0恒成立,所以Δ≤0,即Δ=(8sin α)2-4×8×cos 2α≤0,整理得2sin 2 α-cos 2α≤0,即4sin 2 α≤1,所以sin 2 α≤14,即-12≤sin α≤12,因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π,即α的取值范围是⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π. 答案 ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤5π6,π 8.(2014·福州期末)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析 原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3. 答案 [-4,3] 二、解答题9.求不等式12x 2-ax >a 2(a ∈R )的解集. 解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4. 10.(2014·长沙质检)已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1; ②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围是[-3,1]. 法二 令g (x )=x 2-2ax +2-a ,由已知, 得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎨⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1.所求a 的取值范围是[-3,1].能力提升题组 (建议用时:25分钟)一、填空题1.(2013·新课标全国Ⅱ卷改编)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是________.解析 不等式2x(x -a )<1可变形为x -a <⎝ ⎛⎭⎪⎫12x,在同一平面直角坐标系内作出直线y =x -a 与y =⎝ ⎛⎭⎪⎫12x 的图象,由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a <1,所以a >-1. 答案 (-1,+∞)2.(2013·西安二模)在R 上定义运算:⎣⎢⎡⎦⎥⎤ab cd =ad -bc .若不等式⎣⎢⎡⎦⎥⎤x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,-12≤a ≤32.答案 323.(2014·铜陵一模)已知二次函数f (x )的二次项系数为a ,且不等式f (x )>0的解集为(1,2),若f (x )的最大值小于1,则a 的取值范围是________.解析 由题意知a <0,可设f (x )=a (x -1)(x -2)=ax 2-3ax +2a ,∴f (x )max =f ⎝ ⎛⎭⎪⎫32=-a 4<1,∴a >-4,故-4<a <0.答案 (-4,0)二、解答题4.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围.解 (1)∵f (x )+2x >0的解集为(1,3),f (x )+2x =a (x -1)(x -3),且a <0,因而f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .①由方程f (x )+6a =0,得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①,得f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧ -a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f(x)的最大值为正数时,实数a的取值范围是(-∞,-2-3)∪(-2+3,0).。
基本不等式基础练习题1.若两个正实数x,y满足=1,则x+2y的最小值是.2.已知x>0,y>0,且,则2x+3y的最小值为.3.设a>0,b>0.若是2a与2b的等比中项,则的最小值为.4.若两正数a,c满足a+2c+2ac=8,则ac的最大值为.5.已知x>2,则+x的最小值为.6.已知x∈(0,3),则函数y=+的最小值为.7.已知实数x,y满足x2+y2+xy=1,则x+2y的最大值为.8.已知x,y∈R+,且xy2=8,则4x+y的最小值为.9.若实数x,y满足xy=1,则x2+2y2的最小值为.10.若正数x,y满足2x+y﹣3=0,则的最小值为.11.已知f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是.12.已知a,b都是正实数,函数y=2ae x+b的图象过点(0,1),则的最小值是.13.已知正数x,y满足x+2y=2,则的最小值为.14.已知a>b>0,ab=1,则的最小值为.15.设x、y均为正实数,且,则xy的最小值为.16.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是.17.已知x,y∈R*且+=1,则xy的最小值是.18.已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.19.已知log2x+log2y=1,则x+y的最小值为.20.已知正实数x,y满足(x﹣1)(y+1)=16,则x+y的最小值为.21.已知x,y∈R,且x+2y=1,则2x+4y的最小值是.22.己知x>0,y>0,且x+y++=5,则x+y的最大值是.23.若正数x,y满足x+3y=5xy,则x+y的最小值为.24.已知a,b,c,d∈R,且a2+b2=2,c2+d2=2,则ac+bd的最大值为.25.已知x>0,y>0,且x+2y=xy,则log4(x+2y)的最小值是.26.在等比数列{an }中,若S7=14,正数a,b满足a+b=a4,则ab的最大值为.27.已知函数f(x)=2x﹣1+1过定点A,且点A在直线l:mx+ny=1(m>0,n>0)上,则的最小值是.28.实数x、y满足x2+y2=4,则x+y﹣xy的最大值为.a b参考答案与试题解析一.填空题(共30小题)1.(2015•资阳模拟)若两个正实数x,y满足=1,则x+2y的最小值是8.考点:基本不等式.专题:不等式的解法及应用.分析:根据=1可得x+2y=(x+2y)(),然后展开,利用基本不等式可求出最值,注意等号成立的条件.解答:解:∵两个正实数x,y满足=1,∴x+2y=(x+2y)()=4+≥4+2=8,当且仅当时取等号即x=4,y=2,故x+2y的最小值是8.故答案为:8.点评:本题主要考查了基本不等式的应用,解题的关键是“1”的活用,同时考查了运算求解的能力,属于基础题.2.(2013•东莞二模)已知x>0,y>0,且,则2x+3y的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:把代入可得,2x+3y=(2x+3y)()=+29,由基本不等式可得答案.解答:解:由题意可得2x+3y=(2x+3y)()=+29≥2+29=29+6当且仅当,即x=,y=时取等号,故2x+3y的最小值为:故答案为:点评:本题考查基本不等式的应用,把代入原式构造可利用基本不等式的情形是解决问题的关键,属基础题.3.(2015•中山市二模)设a>0,b>0.若是2a与2b的等比中项,则的最小值为4.考点:基本不等式.专题:不等式的解法及应用.分析:利用等比中项的性质、“乘1法”与基本不等式的性质即可得出.解答:解:由题意知,∴的最小值为4.故答案为:4.点评:本题考查了等比中项的性质、“乘1法”与基本不等式的性质,属于基础题.4.(2015•德阳模拟)若两正数a,c满足a+2c+2ac=8,则ac的最大值为2.考点:基本不等式.专题:不等式的解法及应用.分析:两正数a,c满足a+2c+2ac=8,利用基本不等式的性质可得,化为,解出即可.解答:解:∵两正数a,c满足a+2c+2ac=8,∴,化为,∴≤0,解得,∴ac≤2,当且仅当a=2c=2取等号.∴ac的最大值为2.故答案为:2.点评:本题考查了基本不等式的性质、一元二次不等式的解法,属于基础题.5.(2015•恩施州一模)已知x>2,则+x的最小值为4.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质即可得出.解答:解:∵x>2,∴+x=+(x﹣2)+2≥=4,当且仅当x=3时取等号.故答案为:4.点评:本题考查了基本不等式的性质,属于基础题.6.(2015•金家庄区模拟)已知x∈(0,3),则函数y=+的最小值为3.考点:基本不等式.专题:函数的性质及应用.分析:利用,当且仅当时取等号,x,y,m,n都为正数.解答:解:∵x∈(0,3),∴函数y=+≥=3,当且仅当,即x=1时取等号.点评:本题考查了变形利用基本不等式的性质,属于基础题.7.(2015•杭州一模)已知实数x,y满足x2+y2+xy=1,则x+2y的最大值为2.考点:基本不等式.专题:不等式的解法及应用.分析:x+2y=m,则x=m﹣2y代入x2+y2+xy=1,可得3y2﹣3my+m2﹣1=0,利用△≥0,解出即可.解答:解:设x+2y=m,则x=m﹣2y代入x2+y2+xy=1,可得3y2﹣3my+m2﹣1=0,∴△=9m2﹣12(m2﹣1)≥0,解得﹣2≤m≤2,∴x+2y的最大值为2.故答案为:2.点评:本题考查了一元二次方程的实数根与判别式的关系、一元二次不等式的解法,属于基础题.8.(2015•衡阳模拟)已知x,y∈R+,且xy2=8,则4x+y的最小值为6.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式的性质即可得出.解答:解:∵xy2=8,∴x=,∵x,y∈R+,∴4x+y=+≥3=6,当且仅当x=,y=4时取等号.∴4x+y的最小值为6.故答案为:6.点评:本题考查了基本不等式的性质,属于基础题.9.(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为2.考点:基本不等式.专题:不等式的解法及应用.分析:由已知可得y=,代入要求的式子,由基本不等式可得.解答:解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2点评:本题考查基本不等式,属基础题.10.(2014•德州一模)若正数x,y满足2x+y﹣3=0,则的最小值为3.分析:由题意可知2x+y=3,所以想到把要求最小值的式子分子分母同时乘以3,把分子的3同时换成2x+y,展开后利用基本不等式可求最小值.解答:解:由2x+y﹣3=0,得2x+y=3,又∵x,y为正数,所以=.当且仅当x=y时取等号,因为2x+y﹣3=0,所以此时x=y=1.所以的最小值为3.故答案为3.点评:本题考查了基本不等式的应用,训练了学生灵活变形和处理问题的能力,解答此题的关键是对已知条件的灵活运用,属中档题.11.(2014•阳泉二模)已知f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是7.考点:基本不等式;对数的运算性质.专题:计算题.分析:由题意得m>2,n>1,(m﹣2)(n﹣1)=4,再由基本不等式得=2≤=,变形可得m+n的最小值.解答:解:∵f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,m>2,n>1,∴log2(m﹣2)+log2(2n﹣2)=3,log2(m﹣2)2(n﹣1)=3,(m﹣2)2(n﹣1)=8,(m﹣2)(n﹣1)=4,∴=2≤=(当且仅当m﹣2=n﹣1=2时,取等号),∴m+n﹣3≥4,m+n≥7.故答案为:7.点评:本题考查对数的运算性质,基本不等式的应用.考查计算能力.12.(2014•日照一模)已知a,b都是正实数,函数y=2ae x+b的图象过点(0,1),则的最小值是.考点:基本不等式.专题:不等式的解法及应用.分析:把点(0,1)代入函数关系式即可得出a,b的关系,再利用基本不等式的性质即可得出.解答:解:∵函数y=2ae x+b的图象过点(0,1),∴1=2a+b,∵a>0,b>0.∴==3+=,当且仅当,b=时取等号.故答案为.点评:熟练掌握基本不等式的性质是解题的关键.13.(2014•镇江一模)已知正数x,y满足x+2y=2,则的最小值为9.分析:利用“乘1法”和基本不等式即可得出.解答:解:∵正数x,y满足x+2y=2,∴===9,当且仅当x=4y=时取等号.∴的最小值为9.故答案为:9.点评:本题考查了“乘1法”和基本不等式的性质,属于基础题.14.(2014•温州三模)已知a>b>0,ab=1,则的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:本题是基本不等式问题,可以利用a>b>0得到a﹣b>0(正数),再利用条件ab为定值将a2+b2转化为(a﹣b)2与ab,化简后,运用基本不等式解决问题.解答:解:∵a>b>0,ab=1∴a﹣b>0∴=当且仅当a﹣b=时取等号故答案为点评:本题主要考查了基本不等式的应用和转化化归的数学思想,注意不等式成立的条件(一正二定三相等)15.(2014•江西一模)设x、y均为正实数,且,则xy的最小值为16.考点:基本不等式.专题:不等式的解法及应用.分析:将等式左边通分,化简等式后,使用基本不等式,化为关于的一元二次不等式,解出的范围.解答:解:∵x、y均为正实数,且,进一步化简得xy﹣x﹣y﹣8=0.x+y=xy﹣8≥2,令t=,t2﹣2t﹣8≥0,∴t≤﹣2(舍去),或t≥4,即≥4,化简可得xy≥16,∴xy的最小值为16.点评:本题考查基本不等式的应用,体现转化的数学思想,属于基础题.16.(2014•浙江模拟)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是4.考点:基本不等式;简单线性规划的应用.专题:计算题.分析:首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4(当且仅当x=2y时取等号)则x+2y的最小值是 4故答案为:4.点评:此题主要考查基本不等式的用法,对于不等式a+b≥2在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.17.(2014•宿州三模)已知x,y∈R*且+=1,则xy的最小值是8.考点:基本不等式.专题:不等式的解法及应用.分析:由x,y∈R*且+=1,可得(y>2),代入并利用基本不等式即可得出.解答:解:∵x,y∈R*且+=1,∴(y>2)∴xy=y==+4=8,当且仅当y=4(x=2)时取等号.∴xy的最小值是8.故答案为:8.点评:本题考查了基本不等式的性质,属于基础题.18.(2014•苏州一模)已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式即可得出.解答:解:∵正实数x,y满足xy+2x+y=4,∴(0<x<2).∴x+y=x+==(x+1)+﹣3﹣3=﹣3,当且仅当x=时取等号.∴x+y的最小值为.故答案为:.点评:本题考查了基本不等式的性质,属于基础题.19.(2014•宝山区二模)已知log2x+log2y=1,则x+y的最小值为2.考点:基本不等式;对数的运算性质.专题:函数的性质及应用.分析:由log2x+log2y=1,得出xy=2,且x>0,y>0;由基本不等式求出x+y的最小值.解答:解:∵log2x+log2y=1,∴log2(xy)=1,∴xy=2,其中x>0,y>0;点评:本题考查了对数的运算性质以及基本不等式的应用问题,解题时应注意基本不等式的应用条件是什么,是基础题.20.(2014•淮安模拟)已知正实数x,y满足(x﹣1)(y+1)=16,则x+y的最小值为8.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式即可得出.解答:解:∵正实数x,y满足(x﹣1)(y+1)=16,∴,∴x+y==8,当且仅当y=3,(x=5)时取等号.∴x+y的最小值为8.故答案为:8.点评:本题考查了变形利用基本不等式的性质,属于基础题.21.(2014•重庆三模)已知x,y∈R,且x+2y=1,则2x+4y的最小值是.考点:基本不等式.专题:计算题.分析:首先判断2x>0,4y>0,然后知2x+4y≥2 =,即得答案.解答:解:由2x>0,4y>0,∴2x+4y≥2 =.所以2x+4y的最小值为故答案为:.点评:本题考查均值不等式的性质和应用,解题时要注意公式的正确应用.22.(2014•淄博三模)己知x>0,y>0,且x+y++=5,则x+y的最大值是4.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式转化为一元二次不等式,解出即可.解答:解:∵x>0,y>0,且x+y++=5,∴=(x+y)+,令x+y=t>0,上述不等式可化为t2﹣5t+4≤0,解得1≤t≤4,当且仅当x=y=2时取等号.因此t即x+y的最大值为4.故答案为:4.点评:本题考查了基本不等式的性质、一元二次不等式的解法、转化法,属于中档题.专题:常规题型;函数的性质及应用.分析:将x+3y=5xy转化为=1,再由x+y=(x+y),展开后利用基本不等式可求出x+y的最小值.解答:解:∵正数x,y满足x+3y=5xy,∴.∴x+y=(x+y)≥.当且仅当,即时取等号,此时结合x+3y=5xy,得∴x+y≥,可知x+y的最小值为.故答案为.点评:本题为2012年浙江文科试题第(9)题的一个变式.容易做错,应注意等号成立的条件;“1”的替换是一个常用的技巧,应学会灵活运用.24.(2014•咸阳二模)已知a,b,c,d∈R,且a2+b2=2,c2+d2=2,则ac+bd的最大值为2.考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式即可得出.解答:解:==2,当且仅当a=c=b=d=1时取等号,∴ac+bd的最大值为2.故答案为:2.点评:本题考查了基本不等式的性质,属于基础题.25.(2014•荆州模拟)已知x>0,y>0,且x+2y=xy,则log4(x+2y)的最小值是.考点:基本不等式.专题:不等式的解法及应用.分析:根据基本不等式求出xy≥8,然后利用对数的基本运算和对数的换底公式进行计算即可.解答:解:∵x>0,y>0,且x+2y=xy,∴x+2y=xy,平方得(xy)2≥8xy,解得xy≥8,∴log4(x+2y)=log4(xy),故答案为:点评:本题主要考查基本不等式的应用以及对数的基本计算,考查学生的计算能力.考点:基本不等式.专题:不等式的解法及应用.分析:利用等比数列的通项公式和基本不等式即可得出.解答:解:设等比数列{a n}的首项为a1,公比为q.∵S7=14=+=a4≥a4×(2+2+2+1),∴a4≤2.∵正数a,b满足a+b=a4,∴2≥a4=a+b,解得ab≤1,当且仅当a=b=1时取等号.此时ab的最大值为1.故答案为:1.点评:本题考查了等比数列的通项公式和基本不等式,属于中档题.27.(2014•淮南二模)已知函数f(x)=2x﹣1+1过定点A,且点A在直线l:mx+ny=1(m>0,n>0)上,则的最小值是4.考点:基本不等式.专题:不等式的解法及应用.分析:利用20=1可得函数f(x)=2x﹣1+1过定点A(1,2),由于点A在直线l:mx+ny=1(m>0,n>0)上,可得m+2n=1.再利用“乘1法”和基本不等式的性质即可得出.解答:解:∵f(1)=20+1=2,∴函数f(x)=2x﹣1+1过定点A(1,2),由点A在直线l:mx+ny=1(m>0,n>0)上,∴m+2n=1.∴=(m+2n)=2+=4,当且仅当m=2n=取等号,∴的最小值是4.故答案为:4.点评:本题考查了指数的运性质和基本不等式的性质,属于中档题.28.(2014•宁波模拟)实数x、y满足x2+y2=4,则x+y﹣xy的最大值为.考点:基本不等式.专题:三角函数的图像与性质.分析:由实数x、y满足x2+y2=4,利用三角函数代换x=2cosθ,y=2sinθ.令t=sinθ+cosθ=(θ∈[0,2π)),,可得2sinθcosθ=t2﹣1.x+y﹣xy=2cosθ+2sinθ﹣4sinθcosθ=,再利用二次函数的单调性即可得出.解答:解:∵实数x、y满足x2+y2=4,∴可设x=2cosθ,y=2sinθ.则t2=1+2sinθcosθ,可得2sinθcosθ=t2﹣1.∴x+y﹣xy=2cosθ+2sinθ﹣4sinθcosθ=2t﹣2(t2﹣1)=,当且仅当时,x+y﹣xy取得最大值为.故答案为:.点评:本题考查了圆的参数方程、三角函数代换、三角函数基本关系式、二次函数的单调性等基础知识与基本技能方法,考查了转化方法和计算能力,属于中档题.29.(2014•济南二模)已知直线ax+by=1经过点(1,2),则2a+4b的取值范围是.考点:基本不等式.专题:不等式的解法及应用.分析:由于直线ax+by=1经过点(1,2),可得a+2b=1.再利用基本不等式和指数的运算性质即可得出.解答:解:∵直线ax+by=1经过点(1,2),∴a+2b=1.∴2a+4b≥==2.当且仅当2a=4b,a+2b=1,即a=,b=时取等号.∴2a+4b的取值范围是.故答案为:.点评:本题考查了基本不等式和指数的运算性质,属于中档题.30.(2013•石景山区二模)已知正数a,b,c满足a+b=ab,a+b+c=abc,则c的取值范围是.考点:基本不等式.专题:不等式的解法及应用.分析:由正数a,b,c满足a+b=ab,利用基本不等式即可得出ab≥4.由a+b+c=abc,变形为即可得出.解答:解:∵正数a,b,c满足a+b=ab,∴,化为,∴,∴ab≥4,当且仅当a=b=2时取等号,∴ab∈[4,+∞).∵a+b+c=abc,∴ab+c=abc,∴c==.∵ab≥4,∴,∴.∴c的取值范围是.故答案为.点评:恰当变形利用基本不等式的性质和不等式的基本性质是解题的关键.。
一元二次不等式基础题50道加解析
摘要:
一、一元二次不等式的基本概念
二、一元二次不等式的解法
三、一元二次不等式的应用
四、50 道基础题及解析
正文:
一、一元二次不等式的基本概念
一元二次不等式是指形如ax^2 + bx + c > 0 (a < 0) 或ax^2 + bx + c < 0 (a > 0) 的不等式,其中a、b、c 为常数,且a 不等于0。
一元二次不等式是初中数学、高中数学以及大学数学中的基本内容,对于培养学生的逻辑思维和解决实际问题具有重要的意义。
二、一元二次不等式的解法
解一元二次不等式的基本方法是先求出对应方程的根,然后根据根与系数的关系判断不等式的解集。
具体分为以下几个步骤:
1.确定a 的正负性
2.求出方程的根
3.判断不等式的解集
三、一元二次不等式的应用
一元二次不等式在实际生活和科学研究中有广泛的应用,例如求解几何问题、物理问题、经济问题等。
掌握一元二次不等式的解法,有助于提高解决实
际问题的能力。
四、50 道基础题及解析
(此处省略50 道题目及解析)
以上就是关于一元二次不等式基础题50 道加解析的内容,希望对大家有所帮助。
一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ;(2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.一元二次不等式的解集判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( ) (5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√(教材习题改编)不等式2x 2-x -3>0的解集为( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <32B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <1D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <-32解析:选B.2x 2-x -3>0⇒(x +1)(2x -3)>0, 解得x >32或x <-1.所以不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C .⎝ ⎛⎭⎪⎫13,12D .⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析:选A.由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________. 解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)(教材习题改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则实数m 的取值范围是________.解析:由题意知:Δ=(m +1)2+4m >0.即m 2+6m +1>0,解得:m >-3+22或m <-3-2 2.答案:(-∞,-3-22)∪(-3+22,+∞)一元二次不等式的解法 (高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.主要命题角度有:(1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式; (3)已知一元二次不等式的解集求参数.角度一 解不含参数的一元二次不等式解下列不等式: (1)-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3. 【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1. 故原不等式的解集为{x |x >1}.角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ). 【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0}; ③当a <0时,-a 4>a3, 解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a3,或x >-a 4.综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba ,-12×⎝ ⎛⎭⎪⎫-13=-1a,解得⎩⎪⎨⎪⎧a =-6,b =5. 即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系.③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.1.若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( )A .{x |0<x <1}B .{x |0≤x <1}C .{x |0<x ≤1}D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1},B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0, 即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]3.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b ; (2)解不等式x -cax -b>0(c 为常数). 解:(1)由题知1,b 为方程ax 2-3x +2=0的两根, 即⎩⎪⎨⎪⎧b =2a ,1+b =3a .所以a =1,b =2.(2)不等式等价于(x -c )(x -2)>0,当c >2时,解集为{x |x >c 或x <2};当c <2时,解集为{x |x >2或x <c };当c =2时,解集为{x |x ≠2}.一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.主要命题角度有:(1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围; (3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围.角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.【解析】 当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R ,只需⎩⎪⎨⎪⎧a >0,Δ=22-4×2a <0,解得a >12. 综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 【答案】 ⎝ ⎛⎭⎪⎫12,+∞角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是( )A .⎝⎛⎦⎥⎤-∞,1-32B .⎣⎢⎡⎭⎪⎫1+32,+∞C .⎝ ⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞D .⎣⎢⎡⎦⎥⎤1-32,1+32【解析】 因为x ∈(0,2], 所以a 2-a ≥xx 2+1=1x +1x .要使a 2-a ≥1x +1x在x ∈(0,2]时恒成立, 则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x≥2,当且仅当x =1时等号成立,即⎝⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.【答案】 C角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为________.【解析】 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4), 则由f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,联立方程解得x <1或x >3.【答案】 {x |x <1或x >3}(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)三个“二次”间的转化二次函数、二次方程与二次不等式统称三个“二次”,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题.(2019·温州八校联考)已知函数f (x )=mx 2-mx -1. (1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解:(1)当m =0时,f (x )=-1<0恒成立,当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0].(2)不等式f (x )<5-m ,即(x 2-x +1)m <6, 因为x 2-x +1>0,所以m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数,则g (x )在[1,3]上为减函数,所以g (x )min =g (3)=67,所以m <67.所以m 的取值范围是⎝⎛⎭⎪⎫-∞,67.一元二次不等式的应用某汽车厂上年度生产汽车的投入成本为1012销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?【解】 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000(1+0.6x )(0<x <1), 整理得y =-6 000x 2+2 000x +20 000(0<x <1). (2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧y -(12-10)×10 000>0,0<x <1,即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13,所以投入成本增加的比例应在⎝ ⎛⎭⎪⎫0,13范围内.解不等式应用题的步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系; (2)将文字语言转化为符号语言,用不等式(组)表示不等关系; (3)解不等式(组),得到数学结论,要注意数学模型中元素的实际意义;(4)回归实际问题,将数学结论还原为实际问题的结果.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价, 所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.解分式不等式的关键是先将给定不等式移项,通分,整理成一边为商式,另一边为0的形式,再通过等价转化化成整式不等式(组)的形式进行求解.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.易错防范(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别. (3)不同参数范围的解集切莫取并集,应分类表述. [基础达标]1.设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D.A =[-1,2],B =(1,+∞),A ∩B =(1,2].2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -b a 的值为( )A .56 B .16 C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a=1-b a =1-16=56.3.(2019·浙江省名校协作体高三联考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:选A.法一:当x ≤0时,x +2≥x 2, 所以-1≤x ≤0;①当x >0时,-x +2≥x 2,所以0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.法二:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].4.(2019·宁波效实中学模拟)不等式x 2+2x <a b +16ba对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)解析:选C.不等式x 2+2x <a b+16b a对任意a ,b ∈(0,+∞)恒成立,等价于x 2+2x <⎝ ⎛⎭⎪⎫a b +16b a min,由于a b +16b a ≥2a b ·16b a=8(当且仅当a =4b 时等号成立),所以x 2+2x <8,解得-4<x <2.5.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]解析:选D.原不等式可化为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5].6.(2019·台州联考)在R 上定义运算:=ad -bc .若不等式对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C .13D .32解析:选D.原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32,故选D.7.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}8.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)9.已知函数f (x )=x 2+2x +1,如果使f (x )≤kx 对任意实数x ∈(1,m ]都成立的m 的最大值是5,则实数k =________.解析:设g (x )=f (x )-kx =x 2+(2-k )x +1,由题意知g (x )≤0对任意实数x ∈(1,m ]都成立的m 的最大值是5,所以x =5是方程g (x )=0的一个根,将x =5代入g (x )=0,可以解得k =365(经检验满足题意).答案:36510.已知f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,3x -2,x >0,若|f (x )|≥ax 在x ∈[-1,1]上恒成立,则实数a 的取值范围是____________.解析:当x =0时,|f (x )|≥ax 恒成立,a ∈R ;当0<x ≤1时,|f (x )|≥ax 转化为a ≤|f (x )|x =|3x -2|x =|3-2x |.因为|3-2x|的最小值为0,所以a ≤0;当-1≤x <0时,|f (x )|≥ax 转化为a ≥|f (x )|x =-|x 2-2x |=-|x -2x |.因为-|x -2x|的最大值为-1,所以a ≥-1,综上可得a ∈[-1,0].答案:[-1,0]11.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.12.已知不等式ax 2+bx +c >0的解集为(1,t ),记函数f (x )=ax 2+(a -b )x -c . (1)求证:函数y =f (x )必有两个不同的零点;(2)若函数y =f (x )的两个零点分别为m ,n 求|m -n |的取值范围.解:(1)证明:由题意知a +b +c =0,且-b2a >1.所以a <0且ca>1,所以ac >0. 对于函数f (x )=ax 2+(a -b )x -c 有Δ=(a -b )2+4ac >0.所以函数y =f (x )必有两个不同零点.(2)|m -n |2=(m +n )2-4mn =(b -a )2+4ac a 2=(-2a -c )2+4ac a2=⎝ ⎛⎭⎪⎫c a 2+8⎝ ⎛⎭⎪⎫c a +4. 由不等式ax 2+bx +c >0的解集为(1,t )可知,方程ax 2+bx +c =0的两个解分别为1和t (t >1),由根与系数的关系知c a=t ,所以|m -n |2=t 2+8t +4,t ∈(1,+∞). 所以|m -n |>13,所以|m -n |的取值范围为(13,+∞). [能力提升]1.(2019·金华市东阳二中高三调研)若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A .⎝ ⎛⎭⎪⎫-235,+∞ B .⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞)D .(-∞,-1)解析:选A.由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝ ⎛⎭⎪⎫-235,+∞. 2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a=2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.3.(2019·杭州模拟)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析:原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.答案:[-4,3]4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]5.(2019·杭州高级中学质检)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), 因为a >0,且0<x <m <n <1a,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .6.(2019·丽水市高考数学模拟)已知函数f (x )=|x +a |x 2+1(a ∈R ).(1)当a =1时,解不等式f (x )>1;(2)对任意的b ∈(0,1),当x ∈(1,2)时,f (x )>bx恒成立,求a 的取值范围.解:(1)f (x )=|x +1|x 2+1>1⇔x 2+1<|x +1|⇔⎩⎪⎨⎪⎧x +1≥0x 2+1<x +1或⎩⎪⎨⎪⎧x +1<0x 2+1<-(x +1)⇔0<x <1.故不等式的解集为{x |0<x <1}.(2)f (x )=|x +a |x 2+1>b x ⇔|x +a |>b (x +1x )⇔x +a >b (x +1x )或x +a <-b (x +1x )⇔a >(b -1)x+b x 或a <-[(b +1)x +b x]对任意x ∈(1,2)恒成立.所以a ≥2b -1或a ≤-(52b +2)对任意b ∈(0,1)恒成立.所以a ≥1或a ≤-92.。