第三章__正弦波振荡器
- 格式:pdf
- 大小:418.58 KB
- 文档页数:20
第3章 正弦波振荡器3.1 为什么振荡电路必须满足起振条件、平衡条件和稳定条件?试从振荡的物理过程来说明这三个条件的含义。
答:(1)在刚接通电源时,电路中会存在各种电扰动,这些扰动在接通电源瞬间会引起电路电流的突变(如晶体管b i 或c i 突变),这些突变扰动的电流均具有很宽的频谱,由于集电极LC 并联谐振回路的选频作用,其中只有角频率为谐振角频率o ω的分量才能在谐振回路两端产生较大的电压()o o u j ω。
通过反馈后,加到放大器输入端的反馈电压()f o u j ω与原输入电压()i o u j ω同相,并且有更大的振幅,则经过线性放大和正反馈的不断循环,振荡电压振幅会不断增大。
故要使振荡器在接通电源后振荡幅度能从小到大增长的条件是:()()()()f o o i o i o u j T j u j u j ωωωω=>即: ()1o T j ω> ……起振条件 (2)振荡幅度的增长过程不可能无休止地延续下去。
随着振幅的增大,放大器逐渐由放大区进入饱和区截止区,其增益逐渐下降。
当因放大器增益下降而导致环路增益下降至1时,振幅的增长过程将停止,振荡器达到平衡状态,即进入等幅状态。
振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。
故平衡条件为:()1o T j ω=(3)振荡器在工作过程中,不可避免地要受到各种外界因素变化的影响,如电源电压波动、噪声干扰等。
这些会破坏原来的平衡条件。
如果通过放大和反馈的不断循环,振荡器能产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。
振荡器在其平衡点须具有阻止振幅变化、相位变化的能力,因此:振幅平衡状态的稳定条件是:()0i iAo iU U T U ω=∂<∂;相位平衡状态的稳定条件是:()0oT o ωωϕωω=∂<∂3.2 图题3.2所示的电容反馈振荡电路中,1100pF C =,2300pF C =,50μH L =。
正弦波振荡器原理
正弦波振荡器是一种产生正弦波信号的电路或设备,它的工作原理基于反馈回路和谐振现象。
首先,正弦波振荡器通常由放大器和反馈网络组成。
放大器负责提供信号的放大,而反馈网络则将一部分输出信号返回输入端,从而使电路产生振荡。
具体来说,当正弦波振荡器开始工作时,放大器会放大输入信号。
将一部分放大后的信号通过反馈网络返回到放大器的输入端,与输入信号相叠加。
这就形成了一个反馈回路。
在反馈回路中,存在向前传输的放大路径和反馈传输的路径。
放大路径将输入信号进行放大,而反馈路径则将一部分输出信号返回输入端。
在理想情况下,放大路径和反馈路径的增益相等,从而使得回路保持稳定。
当反馈回路的增益满足特定的条件时,回路会产生谐振现象。
也就是说,输入信号和反馈信号在回路中互相加强,形成一个持续不衰减的振荡。
为了保持回路稳定,正弦波振荡器会引入一些稳定元件,如电容和电感。
这些元件能够提供适当的频率选择和谐振调节,以确保输出信号的频率稳定和准确。
总之,正弦波振荡器通过反馈回路和谐振现象来产生稳定的正弦波信号。
合适的放大器、反馈网络和稳定元件的组合能够实
现不同频率范围内的正弦波振荡器。
这在电子通信、信号处理、声音合成等许多应用领域中都有着广泛的应用。
5.3 LC正弦波振荡器定义:采用LC谐振回路作为选频网络的反馈型振荡电路称为LC振荡器,按其反馈方式,LC振荡器可分为互感耦合式振荡器、电感反馈式振荡器和电容反馈式振荡器三种类型,其中后两种通常称为三点式振荡器。
5.3.1 互感耦合振荡器互感耦合振荡器利用互感耦合实现反馈振荡。
根据LC谐振回路与三极管不同电极的连接方式分为集电极调谐型、发射极调谐型和基极调谐型。
图5 —17 三种互感耦合振荡电路集电极调谐型电路的高频输出方面比其它两种电路稳定,而且输出幅度大,谐波成分小。
基极调谐型电路的振荡频率可以在较宽的范围内变化,且能保持输出信号振荡幅度平稳。
我们只讨论集电极调谐型电路(用得最多)。
而集电极调谐型又分为共射和共基两种类型,均得到广泛应用。
两者相比,共基调集电路的功率增益较小,输入阻抗较低,所以难于起振,但电路的振荡频率比较高,并且共基电路内部反馈较小,工作比较稳定。
互感耦合电路,变压器同名端的位置必须满足振荡的相位条件,在此基础上适当调节反馈量M总是可以满足振荡的振幅条件。
振荡起振和平衡的相位条件?判断互感耦合振荡器是否可能振荡,通常是以能否满足相位平衡条件,即是否构成正反馈为判断准则。
判断方法采用“瞬时极性法”。
瞬时极性法:首先识别放大器的组态,即共射、共基、共集。
然后根据同名端的设置判断放大器是否满足正反馈。
放大器组态的判别方法:观察放大器中晶体管与输入端和输出回路相连的电极,余下的电极便是参考端。
(后面以实例说明)①输入端接基极端,输出端接集电极,发射极为参考点(接地点),是共射组态。
共射组态为反相放大器,输入、输出信号的瞬时极性相反,如图5 —18(a)所示。
②输入端接发射极,输出端接集电极,基极为参考点(接地点),是共基组态。
共基组态为同相放大器,输入、输出信号的瞬时极性相同,如图5 —18(b)所示。
③共集:输入端接基极端,输出端接发射极,集电极为参考点(接地点),是共集组态。
正弦波振荡器的原理
正弦波振荡器是一种电路,用于产生稳定的正弦波信号。
它由几个基本组件构成,包括放大器、反馈电路和频率控制元件。
首先,放大器是振荡器的核心部分。
它负责放大输入信号的幅度,并提供足够的反馈信号以维持振荡器的振荡。
接下来是反馈电路。
它将一部分输出信号反馈到放大器的输入端,形成正反馈回路。
这样,输出信号经过放大后再次进入放大器,形成持续的振荡。
最后是频率控制元件,通常是由电容或电感构成的电路。
它的作用是控制振荡器的频率。
通过调整电容或电感的值,可以改变振荡器输出信号的频率。
当振荡器开始工作时,初始信号经过放大器放大后进入反馈电路。
由于正反馈的存在,输出信号不断增大,直到达到稳定的振荡状态。
振荡器的稳定性取决于正反馈回路的增益和频率控制元件的精确性。
需要注意的是,正弦波振荡器的工作受到许多因素的影响,例如温度、噪声和元件的非线性等。
因此,设计和优化正弦波振荡器需要考虑这些因素,并采取适当的措施来提高其性能和稳定性。
第三章 正弦波振荡器学习目标在电子线路中,正弦波是一种非常重要的波形,为什么会这么重要呢?原因在于电子线路中几乎所有的交流信号,不管它的形状如何怪异,都是由各种不同频率和不同强度的正弦波信号组成的,所以在电路中,需要正弦波信号的时候是非常多的,我们现在要给大家介绍的正弦波振荡器不仅可以用来做下面介绍的两种小玩意,更是不少电路的重要组成部分,希望读者能通过下面这些制作对正弦波振荡器有一个清楚的了解。
1、重点掌握串联LC 和并联LC 电路的频率特性,以及LC 电路的振荡器的工作原理,了解RC 振荡器的电路构成。
2、通过制作,理解正弦波振荡器的电路特点和调试方法。
第一节 正弦波振荡器的电路组成正弦波是一种与圆周运动关系很紧密的一种波形,这与荡秋千是非常相似的。
如图3-1所示,我们在秋千的漏斗里装上细沙,当这个小秋千在振动的时候拉动下面的纸看到一个正弦波了,而秋千就是一种振荡器,当然,这个正弦波的幅度会越来越小。
在电路中,也有与秋千相类似的振荡器,这就是LC 电路和RC 电路。
请读者注意了,这样的电路要振荡,不是让电路板随着通电而上下抖动(那样会将电路板损坏),而是在电感和电容内有一个大小和方向不断来回变化的电压或电流,这就是振荡——即是电流和电压的振荡。
为什么用一个电感和一个电容就会产生电流或电压的振荡呢?原因在于电容有电压不能突变的特性,而电感则有电流不能突变的特性。
如图3-2所示的电路,假如在电容上已经充有电,也就是说电容上存储有电压,于是电容上的电压就会形成—个流过电感的电流,但由于有碍于电感的脾气,这个电流不能突然产生,它只能逐渐地增大,并且随着这个过程的进行.电容上的电压会越来越低,当这个电压用完的时候,就不能再对电感进行放电了,于是电感上的电流不再增大了,但这个电流也不会因为电容上没电了就消失,这同样是电感的脾气所致。
图3-1 用一个沙漏斗的振荡来画出一个正弦波电感上的电流要逐渐减少,但这个逐渐减少的电流又会对电容形成充电,当这个电流减少为零时,电容上的电压也增加到了—个足够的值,于是电容又会对电感放电,于是周而复始,形成了电容对电感放电后,电感又对电容放电(皇帝轮流做,奴隶换着当),于是振荡图3-2 LC 电路中电压和电流的变化就形成了。
思考题与习题3.3 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么? 解:不正确。
因为满足起振条件和平衡条件后,振荡由小到大并达到平衡。
但当外界因素(温度、电源电压等)变化时,平衡条件受到破坏。
若不满足稳定条件,振荡起就不会回到平衡状态,最终导致停振。
3.4 分析图3.2.1(a)电路振荡频率不稳定的具体原因?解:电路振荡频率不稳定的具体原因是晶体管的极间电容与输入、输出阻抗的影响,电路的工作状态以及负载的变化,再加上互感耦合元件分布电容的存在,以及选频回路接在基极回路中,不利于及时滤除晶体管集电极输出的谐波电流成分,使电路的电磁干扰大,造成频率不稳定。
3.7 什么是振荡器的起振条件、平衡条件和稳定条件?各有什么物理意义?振荡器输出信号的振幅和频率分别是由什么条件决定的? 解:(1) 起振条件: 振幅起振条件 01A F >相位起振条件 2A F n ϕϕπ+=(n=0,1,…)(2)平衡条件:振幅平衡条件AF=1相位平衡条件 2A F n ϕϕπ+=(n=0,1,…)(3) 平衡的稳定条件:振幅平衡的稳定条件0AU ∂<∂ 相位平衡的稳定条件0Zϕω∂<∂振幅起振条件01A F >是表明振荡是增幅振荡,振幅由小增大,振荡能够建立起来。
振幅平衡条件AF=1是表明振荡是等幅振荡,振幅保持不变,处于平衡状态。
相位起振条件和相位平衡条件都是2A F n ϕϕπ+=(n=0,1,…),它表明反馈是正反馈,是构成反馈型振荡器的必要条件。
振幅平衡的稳定条件A ∂/0U ∂<0表示放大器的电压增益随振幅增大而减小,它能保证电路参数发生变化引起A 、F 变化时,电路能在新的条件下建立新的平衡,即振幅产生变化来保证AF=1。
相位平衡的稳定条件Z ϕ∂/ω∂<0表示振荡回路的相移Z ϕ随频率增大而减小是负斜率。
它能保证在振荡电路的参数发生变化时,能自动通过频率的变化来调整A F ϕϕ+=YF Z ϕϕ+=0,保证振荡电路处于正反馈。
正弦波振荡器工作原理
正弦波振荡器是一种能够产生连续的正弦波信号的电路或装置。
其工作原理主要涉及负反馈和多级放大。
首先,正弦波振荡器需要一个放大器来提供正反馈。
放大器输入一个小的信号,经过放大后得到一个较大的信号,然后再经过反馈回到放大器的输入端。
这个反馈信号会与输入信号相加,形成一个增强的信号。
其次,放大器需要一个频率选择网络。
频率选择网络可以选择特定频率范围内的信号进行放大,而抑制其他频率的信号。
这个频率选择网络由电容和电感组成,被称为谐振电路。
谐振电路能够产生一个特定的频率,使其成为正弦波振荡器的频率。
最后,通过不断调整放大器增益和频率选择网络的参数,正弦波振荡器能够在稳定的条件下产生连续的正弦波信号。
当输入的幅度大于输出信号的放大倍数时,放大器会把它抑制回到指定的幅度,使信号保持稳定。
总结起来,正弦波振荡器的工作原理是通过负反馈和多级放大实现连续的正弦波信号输出。
频率选择网络能够选择特定频率范围内的信号进行放大,而抑制其他频率的信号。
不断调整放大器增益和频率选择网络的参数,可以使正弦波振荡器产生稳定的正弦波信号。
实验三正弦波振荡器一、正反馈LC振荡器1)电感三端式振荡器通过示波器观察其输出波形,并说明该电路的不足3.1 电感三端式振荡器不足:振荡器的输出功率很低,输出信号是非常微小的值,未达到振幅起振条件。
2)电容三端式振荡器(a)(b)3.2 电容三端式振荡器(1)分别画出(a)(b)的交流等效图,计算其反馈系数(2)通过示波器观察输出波形,与电感三端式振荡器比较(2)答:下图为电路(a)的输出波形:下图为电路(b)的输出波形:比较:电容三点式反馈电压中高次谐波分量很小,因而输出波形好,接近正弦波,电感三点式反馈电压中高次谐波分量较多,输出波形差。
3)克拉泼振荡器3.3 克拉泼振荡器(1)通过示波器观察输出,输出波形如下图所示:(2)在该电路的基础上,将其修改为西勒振荡器,并通过示波器观察波形在电感旁并联一个可变电阻器即改为西勒振荡器,输出波形如下如所示:二、晶体振荡器(a)(b)3.4 晶体振荡器(1)(a)(b)分别是什么形式的振荡器?答:A是并联型皮尔斯晶体振荡器,B是串联型晶体振荡器(2)通过示波器观察波形,电路的振荡频率是多少?答:电路波形如下图所示,由图可得T=2.339ms,则f=1/T=427.5Hz问题:(1)振荡器的电路特点?电路组成?答:并联型晶体振荡器中晶体起等效电感的作用,它和其他电抗元件组成决定频率的并联谐振回路与晶体管相连,工作原理和三点式振荡器相同,只是把其中一个电感元件换成晶体。
串联型晶体振荡器中晶体以低阻抗接入电路,晶体相当于高选择性的短路线,通常将石英晶体接在正反馈支路中,利用其串联谐振时等效为短路元件的特性,电路反馈作用最强,满足起振条件。
(2)并联型和串联型晶体振荡器中的晶体分别起什么作用?并联型晶体振荡器中晶体起等效电感的作用,串联型晶体振荡器中晶体以低阻抗接入电路,晶体相当于高选择性的短路线。
正弦波振荡器工作原理
正弦波振荡器是一种电路,用于产生稳定的正弦波信号。
其工作原理基于反馈系统和激励信号的相互作用。
最简单的正弦波振荡器是RC相移网络,也称为Wien桥振荡器。
它的电路结构包括一个放大器和一个RC网络,其中RC 网络由几个电阻和电容组成。
放大器的增益会放大输入信号,并通过RC网络将信号返回到输入端,形成一个反馈回路。
当开始时,放大器获得一个微小的激励信号,此时输出信号也很小。
然后,该信号通过RC网络反馈到放大器的输入端,经过放大后再返回到RC网络。
在多次反馈的过程中,信号逐渐增强,直到放大器的输出达到最大值。
然而,由于RC网络引入了相移,所以输出信号可能会与输入信号不完全同相。
为了抵消相移并使反馈信号与激励信号保持同相,需要在RC网络中添加一个相移网络,通常是由一个电容和一个电阻组成。
相移网络可以在一定频率范围内引入额外的相移,使反馈信号与激励信号达到同相。
通过不断调整放大器的增益和RC网络的参数,可以使输出信号的幅度和相位保持稳定,并在特定频率范围内产生一个稳定的正弦波信号。
总的来说,正弦波振荡器的工作原理是利用反馈系统和相位补偿来产生和稳定正弦波信号。
不同类型的正弦波振荡器可能采用不同的电路结构和参数设置,但其基本原理都是相似的。