数学建模案例线性代数教学研究
- 格式:docx
- 大小:18.40 KB
- 文档页数:4
数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵数 学 模 型:生态学:海龟种群统计数据该模型在高等数学教学应用的目的:1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。
2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。
培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。
3. 巩固矩阵的概念和计算。
生态学:海龟种群统计数据管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。
一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。
该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。
举例来说,可以用一个四阶段的模型来分析海龟种群的动态。
如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是111i i d i i id i s p s s -⎛⎫-= ⎪-⎝⎭种群可以存活且在次年进入下一阶段的比例是()11i i d i i i d is s q s-=-如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵123412233400000p e e e q p L q p q p ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭那么L 可以用来预测未来几年每阶段的种群数。
上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。
根据前面表格数据,我们模型的莱斯利矩阵是0127790.670.73940000.000600000.810.8077L ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后每阶段的种群数可以如下计算1000127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(这里的计算进行了四舍五入)。
线性代数在数学建模中的应用举例1 基因间“距离”的表示在ABO 血型的人们中,对各种群体的基因的频率进行了研究。
如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。
表1.1基因的相对频率问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。
解 有人提出一种利用向量代数的方法。
首先,我们用单位向量来表示每一个群体。
为此目的,我们取每一种频率的平方根,记ki ki f x =.由于对这四种群体的每一种有141=∑=i ki f ,所以我们得到∑==4121i kix .这意味着下列四个向量的每个都是单位向量.记.44434241,34333231,24232221,141312114321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=x x x x a x x x x a x x x x a x x x x a在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,则由于| a 1|=| a 2|=1,再由内只公式,得21cos a a ⋅=θ而.8307.03464.02943.03216.0,8228.01778.00000.05398.021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a 故 9187.0cos 21=⋅=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2.表1.2基因间的“距离”爱斯基摩人班图人 英国人 朝鲜人 爱斯基摩人 0° 23.2° 16.4° 16.8° 班图人 23.2° 0° 9.8° 20.4° 英国人 16.4° 9.8° 0° 19.6° 朝鲜人16.8°20.4°19.6°0°由表1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大.2 Euler 的四面体问题问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的.解 建立如图2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为.,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→→→OC OB OA ,,组成右手系时,以它们为棱的平行六面体的体积V 6的16.而)(.3332221116c b a c b a c b a OC OB OA V =⋅⨯= 于是得 .6333222111c b a c b a c b a V = 将上式平方,得.362323233232323231313232322222221212131313121212121212133322211133322211122c b a c c b b a a c c b b a a c c b b a a c b a c c b b a a c c b b a a c c b b a a cb ac b a c b a c b a c b a c b a c b a V ++++++++++++++++++=⋅=根据向量的数量积的坐标表示,有.,,,,232323323232222222313131212121212121c b a OC OC c c b b a a OC OB c b a OB OB c c b b a a OC OA c c b b a a OB OA c b a OA OA ++=⋅++=⋅++=⋅++=⋅++=⋅++=⋅ 于是362OC OC OB OC OB OBOB OBOA OB OA OAV ⋅⋅⋅= (2.1)由余弦定理,可行.2cos 222n q p q p OB OA -+=⋅⋅=⋅θ同理.2,2222222l r q OC OB m r p OC OA -+=⋅-+=⋅将以上各式代入(2.1)式,得.222222362222222222222222222222r l r p m r p l r p p n q p m r p n q p pV -+-+-+-+-+-+=(2.2)这就是Euler 的四面体体积公式.例 一块形状为四面体的花岗岩巨石,量得六条棱长分别为l =10m, m =15m, n =12m, p =14m, q =13m, r =11m.则.952222,462222,5.1102222=-+=-+=-+l r p m r p n q p代入(2.1)式,得.75.13698291219546951695.110465.110196236==V 于是.)195(82639.38050223m V ≈≈即花岗岩巨石的体积约为195m 3.古埃及的金字塔形状为四面体,因而可通过测量其六条棱长去计算金字塔的体积.3 动物数量的按年龄段预测问题问题 某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁.动物从第二年龄组起开始繁殖后代,经过长期统计,第二组和第三组的繁殖率分别为4和3.第一年龄和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为12 和14 .假设农场现有三个年龄段的动物各100头,问15年后农场三个年龄段的动物各有多少头?问题分析与建模 因年龄分组为5岁一段,故将时间周期也取为5年.15年后就经过了3个时间周期.设)(k i x 表示第k 个时间周期的第i 组年龄阶段动物的数量(k =1,2,3;i =1,2,3).因为某一时间周期第二年龄组和第三年龄组动物的数量是由上一时间周期上一年龄组存活下来动物的数量,所以有).3,2,1(41,21)1(2)(3)1(1)(2===--k x x x x k k k k又因为某一时间周期,第一年龄组动物的数量是由于一时间周期各年龄组出生的动物的数量,所以有).3,2,1(34)1(3)1(2)(1=+=--k x x x k k k于是我们得到递推关系式:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=----.41,21,34)1(2)(3)1(1213)1(2)(1k k k k k k k x x x x x x x 用矩阵表示).3,2,1(0410021340)1(3)1(2)1(1)(3)(2)(1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---k x x x x x x k k k k k k则).3,2,1()1()(==-k Lx x k k其中.100010001000,04100021340)0(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=x L 则有),3,2,1()(3)(2)(1)(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k x x x x k k k k,250500700010001000100004100021340)0()1(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x,12535002750250500700004100021340)1()2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x .8751375143751253500275004100021340)2()3(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x 结果分析 15年后,农场饲养的动物总数将达到16625头,其中0~5岁的有14375头,占86.47%,6~10岁的有1375头,占8.27%,11~15岁的有875头,占 5.226%.15年间,动物总增长16625-3000=13625头,总增长率为13625/3000=454.16%.注 要知道很多年以后的情况,可通过研究式)0()1()(x L Lx x k k k ==-中当趋于无穷大时的极限状况得到.关于年龄分布的人口预测模型 我们将人口按相同的年限(比如5年)分成若干年龄组,同时假设各年龄段的田、女人口分布相同,这样就可以通过只考虑女性人口来简化模型.人口发展随时间变化,一个时间周期的幅度使之对应于基本年龄组间距(如先例的5年),令)(k i x 是在时间周期k 时第i 个年龄组的(女性)人口,i =1,2,…,n .用1表示最低年龄组,用n 表示最高年龄组,这意味着不考虑更大年龄组人口的变化.假如排除死亡的情形,则在一个周期内第i 个年龄组的成员将全部转移到i +1个年龄组.但是,实际上必须考虑到死亡率,因此这一转移过程可由一存活系数所衰减. 于是,这一转移过程可由下述议程简单地描述:),1,,2,1()1()(1-==-+n i x b x k ii k i其中i b 是在第i 个年龄组在一个周期的存活率,因子i b 可由统计资料确定.惟一不能由上述议程确定的年龄组是,)(1k x 其中的成员是在后面的周期内出生的,他们是后面的周期内成员的后代,因此这个年龄组的成员取决于后面的周期内各组的出生率及其人数.于是有方程,)1(122)1(11)(1---+++=k n n k k k x a x a x a x (3.1)这里),,2,1(n i a i =是第i 个年龄组的出生率,它是由每时间周期内,第i 个年龄组的每一个成员的女性后代的人数来表示的,通常可由统计资料来确定.于是我们得到了单性别分组的人口模型,用矩阵表示便是,00000000000)1()1(3)1(2)1(11211321)()(3)(2)(1⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------k n k k k n n n k n k k k x x x x b b b a a a a a x x x x 或者简写成.)1()(-=k k Lx x (3.2)矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--000000000001211321n n n b b b a a a a a L称为Leslie 矩阵.由(3.2)式递推可得)0()1()(x L Lx x k k k ==-这就是Leslie 模型.4 企业投入产生分析模型问题 某地区有三个重要产业,一个煤矿、一个发电厂和一条地方铁路.开采一元钱的煤,煤矿要支付0.25元的电费及0.25元的运输费.生产一元钱的电力,发电厂要支付0.65元的煤费,0.05元的电费及0.05元的运输费.创收一元钱的运输费,铁路要支付0.55元的煤费及0.10元的电费.在某一周内,煤矿接到外地金额为50000元的定货,发电厂接到外地金额为25000元的定货,外界对地方铁路没有需求.问三个企业在这一周内总产值多少才能满足自身及外界的需求?数学模型 设x 1为煤矿本周内的总产值,x 2为电厂本周的总产值,x 3为铁路本周内的总产值,则⎪⎩⎪⎨⎧=⨯++-=++-=++⨯-,0)005.025.0(,25000)10.005.025.0(,50000)55.065.00(321332123211x x x x x x x x x x x x (4.1) 即.02500050000005.025.010.005.025.055.065.00321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x x x x 即.025********,005.025.010.005.025.055.065.00,321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Y A x x x X 矩阵A 称为直接消耗矩阵,X 称为产出向量,Y 称为需求向量,则方程组(4.1)为,Y AX X =-即Y X A E =-)(, (4.2)其中矩阵E 为单位矩阵,(E-A )称为列昂杰夫矩阵,列昂杰夫矩阵为非奇异矩阵.投入产出分析表 设,00000,)(3211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--=-x x x A C E A E B D=(1,1,1)C.矩阵B 称为完全消耗矩阵,它与矩阵A 一起在各个部门之间的投入产生中起平衡作用.矩阵C 可以称为投入产出矩阵,它的元素表示煤矿、电厂、铁路之间的投入产出关系.向量D 称为总投入向量,它的元素是矩阵C 的对应列元素之和,分别表示煤矿、电厂、铁路得到的总投入.由矩阵C ,向量Y ,X 和D ,可得投入产出分析表4.1.表4.1 投入产出分析表 单位:元 煤矿电厂铁路外界需求总产出煤矿 11c 12c 13c 1y 1x电厂 21c 22c 23c 2y 2x 铁路 31c32c33c 3y3x总投入1d 2d 3d计算求解 按(4.2)式解方程组可得产出向量X ,于是可计算矩阵C 和向量D ,计算结果如表4.2.表4.2 投入产出计算结果 单位:元 煤矿 电厂 铁路 外界需求 总产出 煤矿 0 36505.96 15581.51 50000 102087.48 电厂 25521.87 2808.15 2833.00 25000 56163.02 铁路 25521.87 2808.15 0 0 28330.02总投入51043.7442122.2718414.525 交通流量的计算模型问题 图5.1给出了某城市部分单行街道的交通流量(每小时过车数).假设:(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于全部流出此节点的流量.试建立数学模型确定该交通网络未知部分的具体流量.建模与计算 由网络流量假设,所给问题满足如下线方程组:234457612157891091083630050020080080010004002006001000x x x x x x x x x x x x x x x x x x x x -+=⎧⎪+=⎪⎪-=⎪+=⎪⎪+=⎪⎨+=⎪⎪=⎪-=⎪⎪=⎪++=⎪⎩ 系数矩阵为11100000000011000000000011000110000000010001000000000001100000000001000000000110000000001010010100A -⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 增广矩阵阶梯形最简形式为1000100000800010010000000010000000200000110000050000000101008000000001100100000000000104000000000001600000000000000000000000B ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦其对应的齐次方程组为1525345687891000000000x x x x x x x x x x x x x +=⎧⎪-=⎪⎪=⎪+=⎪⎨+=⎪⎪+=⎪=⎪⎪=⎩取(x 5,x 8)为自由取值未知量,分别赋两组值为(1,0),(0,1),得齐次方程组基础解系中两个解向量()11,1,0,1,1,0,0,0,0,0,'η=--()20,0,0,0,0,1,1,1,0,0'η=--其对应的非齐次方程组为1525345687891080002005008001000400600x x x x x x x x x x x x x +=⎧⎪-=⎪⎪=⎪+=⎪⎨+=⎪⎪+=⎪=⎪⎪=⎩赋值给自由未知量(x 5,x 8)为(0,0)得非齐次方程组的特解()800,0,200,500,0,800,1000,0,400,600'x *=于是方程组的通解,*2211x k k x ++=ηη其中k 1,k 2为任意常数,x 的每一个分量即为交通网络未知部分的具体流量,它有无穷多解.6 小行星的轨道模型问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1.表6.1 坐标数据由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为012225423221=+++++y a x a y a xy a x a .问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据:(x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5).由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定系数,将五个点的坐标分别代入上面的方程,得2211211314151221222232425222132333343532214244344454221525535455522212221222122212221a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y ⎧++++=-⎪++++=-⎪⎪++++=-⎨⎪++++=-⎪⎪++++=-⎩这是一个包含五个未知数的线性方程组,写成矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11111222222222222222543215525552544244424332333232222222211211121a a a a a y x y y x x y x y y x x y x y y x x y x y y x x y x y y x x 求解这一线性方程组,所得的是一个二次曲线方程.为了知道小行星轨道的一些参数,还必须将二次曲线方程化为椭圆的标准方程形式:12222=+bY a X 由于太阳的位置是小行星轨道的一个焦点,这时可以根据椭圆的长半轴a 和短半轴b 计算出小行星的近日点和远日点距离,以及椭圆周长L .根据二次曲线理论,可得椭圆经过旋转和平移两种变换后的方程如下:[]22120D X Y C λλ++=所以,椭圆长半轴:C D a 1λ=;椭圆短半轴: CDb 2λ=;椭圆半焦矩:22b ac -=.计算求解 首先由五个点的坐标数据形成线性方程组的系数矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=7200.69600.142896.112656.509504.550520.53360.143807.62127.363802.516460.35180.133233.36433.246841.454040.25720.124448.11115.155138.39292.1528.114199.04701.72237.33A使用计算机可求得12345(,,,,)(0.6143,0.3440,0.6942, 1.6351,0.2165)a a a a a =---从而⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=6942.03440.03440.06143.03221a a a a C C C ,3081.0=的特征值120.3080, 1.0005λλ==123235450.61430.3440 1.63510.34400.69420.21651 1.63510.21651a a a D a a a a a ---⎡⎤⎡⎤⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦.8203.1-=D于是,椭圆长半轴a=19.1834,短半轴b=5.9045,半焦距c=18.2521.小行星近日点距和远日点距为039313,37.4355h a c H a c =-==+=最后,椭圆的周长的准确计算要用到椭圆积分,可以考虑用数值积分解决问题,其近似值为84.7887.7 人口迁移的动态分析问题 对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势:每年农村居民的2.5%移居城镇,而城镇居民的1%迁出.现在总人口的60%位于城镇.假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,则一年以后住在城镇人口所占比例是多少两年以后呢十年以后呢最终呢解 设开始时,令乡村人口为,0y 城镇人口为,0z 一年以后有乡村人口,10011000975100y z y =+ 城镇人口 ,10099100025100z z y =+或写成矩阵形式⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡00111009910002510011000975z y z y . 两年以后,有.100991000251001100097510099100025100110009750021122⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y z y . 十年以后,有.100991000251001100097500101010⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y 事实上,它给出了一个差分方程:k k Au u =+1.我们现在来解这个差分方程.首先,1009910002510011000975⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Ak 年之后的分布(将A 对角化):.75757275100200193115210000⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y A z y k k k k 这就是我们所要的解,而且容易看出经过很长一个时期以后这个解会达到一个极限状态.7572)(00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎦⎤⎢⎣⎡∞∞z y z y 总人口仍是00z y +,与开始时一样,但在此极限中人口的75在城镇,而72在乡村.无论初始分布是什么样,这总是成立的.值得注意这个稳定状态正是A 的属于特征值1的特征向量.上述例子有一些很好的性质:人口总数保持不变,而且乡村和城镇的人口数决不能为负.前一性质反映在下面事实中:矩阵每一列加起来为1;每个人都被计算在内,而没有人被重复或丢失.后一性质则反映在下面事实中:矩阵没有负元素;同样地0y 和0z 也是非负的,从而1y 和21,y z 和2z 等等也是这样.8 常染色体遗传模型为了揭示生命的奥秘,遗传学的研究已引起了人们的广泛兴趣.动植物在产生下一代的过程中,总是将自己的特征遗传给下一代,从而完成一种“生命的延续”.在常染色体遗传中,后代从每个亲体的基因对中各继承一个基因,形成自己的基因对.人类眼睛颜色即是通过常染色体控制的,其特征遗传由两个基因A 和a 控制.基因对是AA 和Aa 的人,眼睛是棕色,基因对是aa 的人,眼睛为蓝色.由于AA 和Aa 都表示了同一外部特征,或认为基因A 支配a ,也可认为基因a 对于基因A 来说是隐性的(或称A 为显性基因,a 为隐性基因).下面我们选取一个常染色体遗传——植物后代问题进行讨论.某植物园中植物的基因型为AA ,Aa ,aa .人们计划用AA 型植物与每种基因型植物相结合的方案培育植物后代.经过若干年后,这种植物后代的三种基因型分布将出现什么情形我们假设),2,2,0(,, =n c b a n n n 分别代表第n 代植物中,基因型为AA ,Aa 和aa 的植物占植物总数的百分率,令),,()('=n n n n c b a x为第n 代植物的基因分布, ),,(000)0('=c b a x 表示植物基因型的初始分布,显然,我们有.1000=++c b a (8.1)先考虑第n 代中的AA 型,第1-n 代AA 型与AA 型相结合,后代全部是AA 型;第1-n 代的Aa 型与和与AA 相结合,后代是AA 型的可能性为21;1-n 代的aa 型与AA 型相结合,后代不可能是AA 型。
学术研讨123线性代数数学建模案例教学研究◊宿迁学院文理学院周克元赵士银本文对线性代数融入数学建模进行分析研究,列举相关数学建模案例,使抽象的线性代数具体化、形象化,训练和培养学生数学建模、分析问题、解决问题的能力。
线性代数主要以线性方程组求解为基础,研究线性空间中线性关系和线性映射,具有较强的抽象性,对于普通应用型院校学生来说理解难度比较大。
很多学生认为线性代数没有任何用处,不想学也不愿学,教师往往感觉是在唱独角戏,久而久之,容易造成恶性循环。
造成这样困境的原因是多方面的,数学知识本身严谨性和逻辑性的特点是一个原因,但更重要的原因是长期以来割裂了数学和其他学科的联系,对线性代数进行孤立的教学,使学生很难认识到它的重要应用价值%线性代数难学的主要原因在于线性代数中有许多从天而降许多抽象的概念,抽象的各种概念和知识点有什么意义什么应用基本没有介绍%传统的线性代数教材偏重于理论推导,而轻实践应用,导致教学内容过于抽象,难于理解,且学生感受不到线性代数理论体系存在%学生难以理解学习各种概念的目的意义,学习线性方程组求解、线性空间、线性映射等知识点有什么作用。
目前一个比较好的解决方法是将数学建模融入线性代数中问,线性代数广泛应用在经济、管理、运筹学、社会学、人口学、遗传学、生物学等领域,在教学中补充讲解线性代数知识在生活工程中的各种应用,让学生理解线性代数各个知识的背景来源,理解学习线性代数在生活工程中的巨大应用,激发学生的学习兴趣,培养学生使用线性代数解决实际问题的能力。
本文介绍一些在实际教学过程中使用的一些数学建模案例。
1行列式应用案例各类线性代数教材旳中,对于行列式的介绍主要为,对于二元三元线性方程组,其解用二阶三阶行列式表示更方便,进而给出n阶行列式的概念、行列式性质、求解方法以及Crammer法则,对于行列式其他应用基本没有介绍。
学生在学习过线性代数后面知识后,认为用逆矩阵或初等变换方法求解线性方程组更方便,对于学习行列式有什么作用产生怀疑。
数学建模案例线性代数教学研究线性代数是数学和计算机科学中非常重要的一个分支,提供了解决许多实际问题的工具和技术。
因此,在大学数学课程中,线性代数通常是必修课。
线性代数的许多概念和技术可以应用于各种领域,如工程学、自然科学、计算机科学等等。
本文将探讨数学建模案例如何促进线性代数学习,同时也会介绍研究线性代数教学质量的一些方法和评估指标。
数学建模案例何为?数学建模案例是一个由实际问题或案例引起的数学问题,并且涵盖一个或多个数学分支的解决方法。
为学习者提供了一个更具有挑战性的、真实的、跨学科的环境来学习数学及解决问题的能力。
学习者通过案例解决问题的过程中,可以了解到数学如何应用于现实生活中的问题,并接触到科学或技术领域的各种职业选择。
数学建模案例如何促进线性代数学习?数学建模案例可以促进线性代数学习的方式很多,包括以下几点:1.进一步开发学生的创造力数学建模案例及其解决方法,通常涉及到创造性的思维过程。
而线性代数的一些概念和技术,如矢量、矩阵、线性变换等,在实际问题中,也需要学生进行相应的创造性思考。
通过数学建模,可以给学生提供更多的机会和方式,以便发展他们的创造力。
2.提供具有挑战性的问题在线性代数的学习中,为了帮助学生掌握概念和技术,通常给出相对简单的问题。
但是,在实际应用中,线性代数的问题通常比较困难和具有挑战性。
数学建模可以提供那些更有挑战性的问题,以便帮助学生解决更困难的问题。
3.实现跨学科的教学和研究数学建模案例可以帮助实现跨学科的教学和研究。
随着信息技术的不断发展,现代社会的许多问题涉及到数学、计算机科学、物理学等多个学科的交叉研究。
通过数学建模,可以建立跨学科的合作和交流,使学生更好地了解不同学科领域中的数学运用。
线性代数教学和研究的方法和评估指标在研究或评估线性代数教学质量时,可以使用以下一些方法和评估指标:1.成绩分布和通过率成绩分布和通过率是评估教学质量中最基本的指标。
线性代数学习的目的是要使学生理解和掌握相关的概念和技能。
2)线性代数在数学建模中的应用例举第一篇:2)线性代数在数学建模中的应用例举8015985.docAct3 总复习【Arrangement】1)模拟题2)线性代数在数学建模中的应用例举3)线性代数在考研中的地位和重要性【Content】模拟题一、填空题(每题4分,共20分):1、n阶方阵A的行列式,则行列式。
2、若向量组线性相关,则t=。
3、若可逆方阵A有特征值2,则必有一个特征值为。
4、若n阶方阵A满足,则=。
5、行列式=。
二、(12分)已知 ,解下列方程式8015985.doc三、(14分)设非齐次线性方程组,t取何值时,此方程组无解;t 取何值时,此方程组有解,并在有解时求出该方程组的全部解。
四、(14分)设求:(1)与与的值;(2)满足相似,的可逆阵。
五、(14分)求下列矩阵A的特征值和特征向量。
A=六、(14分)设二次型1.写出f的矩阵表达式;2.用配方法求一可逆线性变换,化f为标准形。
七、证明题(本题12分)设向量组相关性。
线性无关,讨论向量组线性线性代数在数学建模中的应用例举1、森林管理森林中的树木每年都要有一批被砍伐出售。
为使这片森林不被耗尽而且每年都有所收获,每当砍伐一棵时,应该就地补种一棵幼苗,使森林树木总量保持不变。
被出售的树木,其价值取决于树木的高度。
最初,森林中树木有着不同的高度。
我们希望找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济效益?2、遗传模型8015985.doc随着人类的进化,人们为了揭示生命的奥妙,越来越注重遗传学的研究,特别是遗传特征的逐代传播,引起人们更多的注意。
无论是人,还是动、植物都会将本身的特征遗传给下一代,这主要是因为后代继承了双亲的基因,形成自己的基因对,基因对确定了后代所表现的特征。
根据亲体基因遗传给后代的方式,建立矩阵模型,利用这些模型可以逐代研究一个总体的基因型的分布。
线性代数在考研中的地位和重要性1、报考工学、经济学、管理学各学科、专业都要考线性代数;2、数学一考试科目试卷结构数学二考试科目数学三考试科目试卷结构数学四考试科目试卷结构高等数学、线性代数、概率论与数理统计1)题分及考试时间:试卷满分为150分,考试时间为180分钟。
线性代数教学改革中融入数学建模思想的探讨
线性代数是大学数学的基础课程,旨在培养学生的数学思维能力和解决实际问题的能力。
传统的线性代数教学往往过于注重理论推导,忽视了数学与现实问题的联系。
为了提高学生的数学建模能力,我们需要在线性代数教学中融入数学建模思想,让学生在理论学习的同时能够应用数学知识解决实际问题。
要在线性代数的教学中引入实际问题。
可以选择一些与线性代数相关的实际问题作为例子,例如线性方程组的应用、向量空间的几何解释等。
通过讲解这些实际问题,并引导学生思考如何用线性代数的知识解决这些问题,可以帮助学生理解线性代数的实际意义,提高他们的数学建模思维能力。
要注重培养学生的问题分析和解决能力。
在教学中可以采用案例分析的方式,让学生通过分析实际问题,提炼出具体的数学模型,并运用线性代数的知识进行求解。
通过这样的实践,学生不仅能够理解数学知识的应用,还能够培养问题解决的能力。
可以引入计算工具和技术,帮助学生更好地应用线性代数进行数学建模。
利用计算机软件进行矩阵计算和仿真分析,可以提高学生的计算能力和实际应用能力。
也可以鼓励学生在平时的学习中使用计算工具进行数据处理和分析,培养他们的计算思维和实际操作能力。
要注重培养学生的团队合作能力。
数学建模往往需要多学科知识的综合运用,涉及到团队合作和交流。
可以在线性代数教学中组织学生进行小组讨论和合作,让学生共同解决复杂的数学建模问题。
通过这样的合作实践,学生可以互相学习和借鉴,提高自己的团队合作能力和沟通能力。
线性代数在数学建模中的应用举例1 基因间“距离”的表示在ABO 血型的人们中,对各种群体的基因的频率进行了研究。
如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。
表1.1基因的相对频率问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。
解 有人提出一种利用向量代数的方法。
首先,我们用单位向量来表示每一个群体。
为此目的,我们取每一种频率的平方根,记ki ki f x =.由于对这四种群体的每一种有141=∑=i ki f ,所以我们得到∑==4121i ki x .这意味着下列四个向量的每个都是单位向量.记.444342414,343332313,242322212,141312111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=x x x x a x x x x a x x x x a x x x x a在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,那么由于| a 1|=| a 2|=1,再由内只公式,得21cos a a ⋅=θ而.8307.03464.02943.03216.0,8228.01778.00000.05398.021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a 故 9187.0cos 21=⋅=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2.表1.2基因间的“距离”由表1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大.2 Euler 的四面体问题问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的.解 建立如图2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为.,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→→→OC OB OA ,,组成右手系时,以它们为棱的平行六面体的体积V 6的16.而)(.3332221116c b a c b a c b a OC OB OA V =⋅⨯= 于是得 .6333222111c b a c b a c b a V = 将上式平方,得.362323233232323231313232322222221212131313121212121212133322211133322211122c b a c c b b a a c c b b a a c c b b a a c b a c c b b a a c c b b a a c c b b a a cb ac b a c b a c b a c b a c b a c b a V ++++++++++++++++++=⋅=根据向量的数量积的坐标表示,有.,,,,232323323232222222313131212121212121c b a OC OC c c b b a a OC OB c b a OB OB c c b b a a OC OA c c b b a a c b a ++=⋅++=⋅++=⋅++=⋅++=⋅++=⋅ 于是362OC OC OB OC OB OBOB OB OA OBOA OA V ⋅⋅⋅= (2.1)由余弦定理,可行.2cos 222n q p q p -+=⋅⋅=⋅θ同理.2,2222222l r q m r p -+=⋅-+=⋅将以上各式代入(2.1)式,得.222222362222222222222222222222r l r p m r p l r p p n q p m r p n q p pV -+-+-+-+-+-+=(2.2)这就是Euler 的四面体体积公式.例 一块形状为四面体的花岗岩巨石,量得六条棱长分别为l =10m, m =15m, n =12m, p =14m, q =13m, r =11m.则.952222,462222,5.1102222=-+=-+=-+l r p m r p n q p代入(2.1)式,得.75.13698291219546951695.110465.110196236==V 于是.)195(82639.38050223m V ≈≈即花岗岩巨石的体积约为195m 3.古埃及的金字塔形状为四面体,因而可通过测量其六条棱长去计算金字塔的体积.3 动物数量的按年龄段预测问题问题 某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁.动物从第二年龄组起开始繁殖后代,经过长期统计,第二组和第三组的繁殖率分别为4和3.第一年龄和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为12 和14.假设农场现有三个年龄段的动物各100头,问15年后农场三个年龄段的动物各有多少头?问题分析与建模 因年龄分组为5岁一段,故将时间周期也取为5年.15年后就经过了3个时间周期.设)(k i x 表示第k 个时间周期的第i 组年龄阶段动物的数量(k =1,2,3;i =1,2,3).因为某一时间周期第二年龄组和第三年龄组动物的数量是由上一时间周期上一年龄组存活下来动物的数量,所以有).3,2,1(41,21)1(2)(3)1(1)(2===--k x x x x k k k k又因为某一时间周期,第一年龄组动物的数量是由于一时间周期各年龄组出生的动物的数量,所以有).3,2,1(34)1(3)1(2)(1=+=--k x x x k k k于是我们得到递推关系式:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=----.41,21,34)1(2)(3)1(1213)1(2)(1k k k k k k k x x x x x x x 用矩阵表示).3,2,1(04100021340)1(3)1(2)1(1)(3)(2)(1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---k x x x x x x k k k k k k则).3,2,1()1()(==-k Lx x k k其中.100010001000,0410*******)0(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=x L 则有),3,2,1()(3)(2)(1)(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k x x x x k k k k,250500700010001000100004100021340)0()1(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x,12535002750250500700004100021340)1()2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x .8751375143751253500275004100021340)2()3(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x 结果分析 15年后,农场饲养的动物总数将达到16625头,其中0~5岁的有14375头,占86.47%,6~10岁的有1375头,占8.27%,11~15岁的有875头,占 5.226%.15年间,动物总增长16625-3000=13625头,总增长率为13625/3000=454.16%.注 要知道很多年以后的情况,可通过研究式)0()1()(x L Lx x k k k ==-中当趋于无穷大时的极限状况得到.关于年龄分布的人口预测模型 我们将人口按相同的年限(比如5年)分成若干年龄组,同时假设各年龄段的田、女人口分布相同,这样就可以通过只考虑女性人口来简化模型.人口发展随时间变化,一个时间周期的幅度使之对应于基本年龄组间距(如先例的5年),令)(k i x 是在时间周期k 时第i 个年龄组的(女性)人口,i =1,2,…,n .用1表示最低年龄组,用n 表示最高年龄组,这意味着不考虑更大年龄组人口的变化.假如排除死亡的情形,那么在一个周期内第i 个年龄组的成员将全部转移到i +1个年龄组.但是,实际上必须考虑到死亡率,因此这一转移过程可由一存活系数所衰减. 于是,这一转移过程可由下述议程简单地描述:),1,,2,1()1()(1-==-+n i x b x k ii k i其中i b 是在第i 个年龄组在一个周期的存活率,因子i b 可由统计资料确定.惟一不能由上述议程确定的年龄组是,)(1k x 其中的成员是在后面的周期内出生的,他们是后面的周期内成员的后代,因此这个年龄组的成员取决于后面的周期内各组的出生率及其人数.于是有方程,)1(122)1(11)(1---+++=k n n k k k x a x a x a x (3.1)这里),,2,1(n i a i =是第i 个年龄组的出生率,它是由每时间周期内,第i 个年龄组的每一个成员的女性后代的人数来表示的,通常可由统计资料来确定.于是我们得到了单性别分组的人口模型,用矩阵表示便是,00000000000)1()1(3)1(2)1(11211321)()(3)(2)(1⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------k n k k k n n n k n k k k x x x x b b b a a a a a x x x x或者简写成.)1()(-=k k Lx x (3.2)矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--0000000000001211321n n n b b b a a a a a L称为Leslie 矩阵.由(3.2)式递推可得)0()1()(x L Lx x k k k ==-这就是Leslie 模型.4 企业投入产生分析模型问题 某地区有三个重要产业,一个煤矿、一个发电厂和一条地方铁路.开采一元钱的煤,煤矿要支付0.25元的电费及0.25元的运输费.生产一元钱的电力,发电厂要支付0.65元的煤费,0.05元的电费及0.05元的运输费.创收一元钱的运输费,铁路要支付0.55元的煤费及0.10元的电费.在某一周内,煤矿接到外地金额为50000元的定货,发电厂接到外地金额为25000元的定货,外界对地方铁路没有需求.问三个企业在这一周内总产值多少才能满足自身及外界的需求?数学模型 设x 1为煤矿本周内的总产值,x 2为电厂本周的总产值,x 3为铁路本周内的总产值,则⎪⎩⎪⎨⎧=⨯++-=++-=++⨯-,0)005.025.0(,25000)10.005.025.0(,50000)55.065.00(321332123211x x x x x x x x x x x x (4.1) 即.02500050000005.025.010.005.025.055.065.00321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x x x x 即.025********,005.025.010.005.025.055.065.00,321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Y A x x x X 矩阵A 称为直接消耗矩阵,X 称为产出向量,Y 称为需求向量,则方程组(4.1)为,Y AX X =-即Y X A E =-)(, (4.2)其中矩阵E 为单位矩阵,(E-A )称为列昂杰夫矩阵,列昂杰夫矩阵为非奇异矩阵.投入产出分析表 设,00000,)(3211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--=-x x x A C E A E B D=(1,1,1)C.矩阵B 称为完全消耗矩阵,它与矩阵A 一起在各个部门之间的投入产生中起平衡作用.矩阵C 可以称为投入产出矩阵,它的元素表示煤矿、电厂、铁路之间的投入产出关系.向量D 称为总投入向量,它的元素是矩阵C 的对应列元素之和,分别表示煤矿、电厂、铁路得到的总投入.由矩阵C ,向量Y ,X 和D ,可得投入产出分析表4.1.表4.1 投入产出分析表 单位:元 煤矿电厂铁路外界需求总产出煤矿 11c 12c 13c 1y 1x 电厂 21c22c23c 2y2x铁路 31c 32c 33c3y 3x 总投入1d2d3d计算求解 按(4.2)式解方程组可得产出向量X ,于是可计算矩阵C 和向量D ,计算结果如表4.2.表4.2 投入产出计算结果 单位:元煤矿 电厂 铁路 外界需求 总产出 煤矿 0 36505.96 15581.51 50000 102087.48 电厂 25521.87 2808.15 2833.0025000 56163.02 铁路 25521.87 2808.15 0 0 28330.02总投入51043.7442122.2718414.525 交通流量的计算模型问题 图5.1给出了某城市部分单行街道的交通流量(每小时过车数).假设:(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于全部流出此节点的流量.试建立数学模型确定该交通网络未知部分的具体流量.建模与计算 由网络流量假设,所给问题满足如下线方程组:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=++==-==+=+=+=-=+=+-.1000,600,200,400,1000,800,800,200,500,3006381091098751216754432x x x x x x x x x x x x x x x x x x x x 系数矩阵为.0010101100000000011000000000100000000001100000000000100010000000011000110000000000110000000001110⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=A 增广矩阵阶梯形最简形式为.0000000000000000000006001000000000400010000000010000011000000800001010000050000000110002000000000100000000100108000000010001⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=B 其对应的齐次方程组为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+=+=+==-=+.0,0,0,0,0,0,0,010987865435251x x x x x x x x x x x x x 取(x 5,x 8)为自由取值未知量,分别赋两组值为(1,0),(0,1),得齐次方程组基础解系中两个解向量(),',0,0,0,0,0,1,1,0,1,11--=η (),'0,0,1,1,1,0,0,0,0,02--=η其对应的非齐次方程组为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+=+=+==-=+.600,400,1000,800,500,200,0,80010987865435251x x x x x x x x x x x x x 赋值给自由未知量(x 5,x 8)为(0,0)得非齐次方程组的特解()'.600,400,0,1000,800,0,500,200,0,800=*x于是方程组的通解,*2211x k k x ++=ηη其中k 1,k 2为任意常数,x 的每一个分量即为交通网络未知部分的具体流量,它有无穷多解.6 小行星的轨道模型问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1.表6.1 坐标数据由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为012225423221=+++++y a x a y a xy a x a .问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据:(x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定系数,将五个点的坐标分别代入上面的方程,得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++++-=++++-=++++-=++++-=++++.1222122212221222122255542535522514544243442241353423333223125242232222211514213112211y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11111222222222222222543215525552544244424332333232222222211211121a a a a a y x y y x x y x y y x x y x y y x x y x y y x x y x y y x x 求解这一线性方程组,所得的是一个二次曲线方程.为了知道小行星轨道的一些参数,还必须将二次曲线方程化为椭圆的标准方程形式:12222=+bY a X 由于太阳的位置是小行星轨道的一个焦点,这时可以根据椭圆的长半轴a 和短半轴b 计算出小行星的近日点和远日点距离,以及椭圆周长L .根据二次曲线理论,可得椭圆经过旋转和平移两种变换后的方程如下:[].02221=++C DY X λλ 所以,椭圆长半轴:C D a 1λ=;椭圆短半轴: CDb 2λ=;椭圆半焦矩:22b ac -=.计算求解 首先由五个点的坐标数据形成线性方程组的系数矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=7200.69600.142896.112656.509504.550520.53360.143807.62127.363802.516460.35180.133233.36433.246841.454040.25720.124448.11115.155138.39292.1528.114199.04701.72237.33A使用计算机可求得).2165.0,6351.1,6942.0,3440.0,6143.0(),,,,(54321---=a a a a a从而⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=6942.03440.03440.06143.03221a a a a CC C ,3081.0=的特征值.0005.1,3080.021==λλ .12165.06351.12165.06942.03440.06351.13440.06143.0154532321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a a a a a a a a D .8203.1-=D于是,椭圆长半轴1834.19=a ,短半轴9045.5=b ,半焦距2521.18=c .小行星近日点距和远日点距为.4355.37,039313=+==-=c a H c a h最后,椭圆的周长的准确计算要用到椭圆积分,可以考虑用数值积分解决问题,其近似 值为84.7887.7 人口迁移的动态分析问题 对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势:每年农村居民的2.5%移居城镇,而城镇居民的1%迁出.现在总人口的60%位于城镇.假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,那么一年以后住在城镇人口所占比例是多少?两年以后呢?十年以后呢?最终呢?解 设开始时,令乡村人口为,0y 城镇人口为,0z 一年以后有乡村人口,10011000975100y z y =+ 城镇人口,10099100025100z z y =+ 或写成矩阵形式⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡00111009910002510011000975z y z y . 两年以后,有.100991000251001100097510099100025100110009750021122⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y z y . 十年以后,有.100991000251001100097500101010⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y 事实上,它给出了一个差分方程:k k Au u =+1.我们现在来解这个差分方程.首先,1009910002510011000975⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Ak 年之后的分布(将A 对角化):.75757275100200193115210000⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y A z y k k k k 这就是我们所要的解,而且容易看出经过很长一个时期以后这个解会达到一个极限状态.7572)(00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎦⎤⎢⎣⎡∞∞z y z y 总人口仍是00z y +,与开始时一样,但在此极限中人口的75在城镇,而72在乡村.无论初始分布是什么样,这总是成立的.值得注意这个稳定状态正是A 的属于特征值1的特征向量.上述例子有一些很好的性质:人口总数保持不变,而且乡村和城镇的人口数决不能为负.前一性质反映在下面事实中:矩阵每一列加起来为1;每个人都被计算在内,而没有人被重复或丢失.后一性质则反映在下面事实中:矩阵没有负元素;同样地0y 和0z 也是非负的,从而1y 和21,y z 和2z 等等也是这样.8 常染色体遗传模型为了揭示生命的奥秘,遗传学的研究已引起了人们的广泛兴趣.动植物在产生下一代的过程中,总是将自己的特征遗传给下一代,从而完成一种“生命的延续”.在常染色体遗传中,后代从每个亲体的基因对中各继承一个基因,形成自己的基因对.人类眼睛颜色即是通过常染色体控制的,其特征遗传由两个基因A 和a 控制.基因对是AA 和Aa 的人,眼睛是棕色,基因对是aa 的人,眼睛为蓝色.由于AA 和Aa 都表示了同一外部特征,或认为基因A 支配a ,也可认为基因a 对于基因A 来说是隐性的(或称A 为显性基因,a 为隐性基因).下面我们选取一个常染色体遗传——植物后代问题进行讨论.某植物园中植物的基因型为AA ,Aa ,aa .人们计划用AA 型植物与每种基因型植物相结合的方案培育植物后代.经过若干年后,这种植物后代的三种基因型分布将出现什么情形?我们假设),2,2,0(,, =n c b a n n n 分别代表第n 代植物中,基因型为AA ,Aa 和aa 的植物占植物总数的百分率,令),,()('=n n n n c b a x 为第n 代植物的基因分布,),,(000)0('=c b a x 表示植物基因型的初始分布,显然,我们有.1000=++c b a (8.1)先考虑第n 代中的AA 型,第1-n 代AA 型与AA 型相结合,后代全部是AA 型;第1-n 代的Aa 型与和与AA 相结合,后代是AA 型的可能性为21;1-n 代的aa 型与AA 型相结合,后代不可能是AA 型。
[摘要]线性代数的学习有其重要目的,通过数学思想方法的应用,使其作用得到充分发挥,对相关实际问题进行有效处理。
分析线性代数教学中存在的问题以及数学建模思想融入线性代数教学的作用,并提出数学建模思想融入线性代数教学的对策。
[关键词]数学;建模思想;线性代数教学[中图分类号]G712[文献标志码]A[文章编号]2096-0603(2019)01-0072-02数学建模思想融入线性代数教学的探索①姜丽颖,张国林(沈阳城市建设学院,辽宁沈阳110167)在全部高等院校中,理工类与经管类都开设了线性代数这门公共必修基础课,其抽象性以及实用性十分鲜明,为学生后续专业课学习奠定坚实基础。
不过,线性代数教学的劣势也较为突出,如计算复杂度大以及知识乏味等,针对此,将数学建模思想融入线性代数教学势在必行。
一、线性代数教学中存在的问题(一)教材层次浅薄,尚未及时更新教材内容长期以来,在开展线性代数教学过程中,仍旧应用传统教材,其所重视的是理论体系的严谨性及完整性,未紧密贴合定义与案例背景等,进而对教学内容产生极为负面的影响,导致其太过抽象,使学生产生畏惧情绪,无法保证学习效率与质量,且教材层次浅薄,虽然部分教材可以贴合相应案例,不过仍旧无法在第一时间更新教材内容,致使学生解决实际问题的能力得不到有效培养与提高,无法为教学质量提供重要保障。
(二)尚未有机结合教学内容与专业知识在高等院校中,正在对线性代数这门基础课进行专业整合,并且对其学时进行压缩,总共大约有三十个学时,主要内容有矩阵及其运算以及向量组线性相关性等。
可以从中发现,严重缺少学时,导致教师在开展课堂教学时争分夺秒,太过重视理论知识,并未与实际生活相结合,缺乏实践,对其他课程与所属专业的衔接非常不利,导致学生经常有疑问,这门课程的作用到底是什么?自己在学习过程中可以提高哪些能力?(三)学生数学实践能力较差在初中与高中阶段,学生所接受的是应试教育,该教育体制有着根深蒂固的影响,在此条件下,学生教学实践能力得不到有效培养与提高,仅仅为解题而解题。
山东农业工程学院学报2020年第37卷第12期基于数学建模案例的线性代数教学探讨康卫,周红志(阜阳师范大学信息工程学院,安徽阜阳236041)摘要:本文通过分析线性代数课程的特;和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识;%具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。
关键词:线性代数;数学建模;教学方法中图分类号:G642文献标识码:A文章编号:2095-7327(2020)-12-0038-03Study of Linear Algebra Teaching Based on Mathematical Modeling CasesKANG Wei,ZHOU Hongzhi(School of Information Engineering,Fuyang Normal University,Fuyang Anhui236041)Abstract:By analyzing the characteristics of the linear algebra course and the problems in the current teaching phenomena,this paper combines several typical cases and conducts a comprehensive research on the concepts and operations of the matrix in linear algebra,the application of eigenvalues and eigenvectors and others from the idea of mathematical modeling.It further elaborates on the importance of integrating mathematical modeling ideas into the teaching process of linear algebra,which could cultivate students's ability to solve practical problems by applying the idea of mathematical modeling.Keywords:l inear algebra;mathematics models;teaching devices线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升%因此,线性代数这门课程学习效果的学生〔能的和课程的展至关重要%是,前线性代数的学然存在一些问题,具体表为:第一,线性代数的学重于理〔学,学生的学习%线性代数的:多,理性,,理,更学生学习线性代数的,学生的学习%第二,学生的基础,课程数,学收稿日期:2020'06'30作者简介:康卫(1985—),男,安徽利辛人,阜阳师范大学教,,方向:应用数学、数学建模。
融入数学建模思想的线性代数案例教学研究作者:刘敬刚郭燕来源:《赤峰学院学报·自然科学版》2020年第01期摘要:针对线性代数课程传统教学方法中存在的不足,提出将数学建模思想融入线性代数案例教学过程的新思路.通过具体例子表明,在案例教学中贯穿数学建模思想,可以使抽象的线性代数理论、方法变得具体、形象、直观,加深学生对所学内容的理解,同时培养学生分析问题和解决问题的能力,提高学生的综合素质和创新能力,激发学生的学习兴趣,保证教学质量.关键词:数学建模;线性代数;教学方法;案例教学中图分类号:G642.0; 文献标识码:A; 文章编号:1673-260X(2020)01-0015-031 前言线性代数作为理工科大学生的一门必修数学基础课,它在数学、物理、工程技术等方面具有广泛应用[1].随着计算机技术的日益普及和广泛应用,现代工程问题的解决最终都转化为线性代数方程组的求解问题,因此线性代数的理论和方法在大学生走上工作岗位后,有着十分广泛的应用.线性代数的核心内容是以矩阵为工具研究向量、向量空间、线性变换和线性方程组,这些内容比较抽象且理论性强,对于刚跨进大学校门的学生而言学习难度较大[2].同时由于线性代数课程设立之初,以介绍理论为主,教学实践中偏重自身理论体系的完备,强调定义、定理、性质等理论内容,而对线性代数的方法和具体应用不够重视,很少涉及具体应用实例,增加了大学生理解线性代数理论方法的难度.随着广大教育工作者通过线性代数课程的教学研究和教学改革,人们逐步认识到线性代数理论方法和实际应用相结合的重要性,但是在课堂教学中普遍存在以教师为主导的案例讲解仅仅说明线性代数有用,并没有让抽象的理论内容变得直观[3-5].当前“新工科”理念要求,课堂教学既能发挥教师的主导作用,又能充分体现学生的主体地位,实现课堂教学的“去中心化”[6].针对这种现状,本文提出将数学建模思想融入线性代数应用案例教学过程中,通过“教师引导、学生主导”重现问题分析、问题简化、建立模型、求解模型、结果解释和验证整个过程,让学生看到线性代数理论方法“有用”,同时培养学生应用所学知识分析、解决问题的能力,也为理解线性代数的抽象概念和方法提供有效途径.2 数学建模思想融入案例教学的方法面向实际问题,融合数学建模思想,依据线性代数有关理论建立数学模型,并应用线性代数方法进行求解,使原本抽象的理论、方法变得生动有趣,可以有效激发学生的求知欲,提高学习的积极性和学习效率.众所周知,数学建模的基本步骤为:分析问题、模型假设、符号说明、建立模型、求解模型、结果分析、模型检验等,下面以饮料配制问题为例介绍数学建模思想融入线性代数案例教学的设计方法.例:饮料配制问题某饮料厂用原料A、B、C、D,按不同配比制成五种饮料(编号为1-5),具体原料配比见表1.某日,饮料厂第4号和第5号饮料售罄.问题:能否用其他饮料配制出这两种脱销的饮料?若可以,应该如何配制?对于这样一个实际问题,一定会引起同学们的兴趣,可以极大地调动同学们对问题的探知欲望.依托数学建模思想,将数学建模基本步骤和线性代数理论方法有机结合在一起,具体分为七个步骤实现对问题的有效解决.为了叙述方便,首先考虑4号饮料的配制问题,5号饮料类似进行讨论.1.问题分析要配制出4号饮料,只需要讨论1、2、3号饮料,能否按某种比例混合后,满足4号饮料对四种原料的配比要求.2.数据处理并提出具体问题根据表1的数据,首先求出五种饮料在配比表中的列和,如表2所示.从而可以提出如下具体问题:假设要配制133单位的4号饮料,能否由1、2、3号饮料混合达到4号饮料的配比要求,如果能求出混合比例.3.模型假设假设原料可分.4.符号说明规定五种饮料在表2中的原料配比列和所示容量为一份饮料.设配制1份即133单位的4号饮料,需要饮料1、2、3分别为x1份、x2份、x3份.5.模型建立由已知信息建立如下数学模型x1+3x3=87x1+25x2=604x1+12x2+2x3=34x1+25x2+x3=31; (1)从而将4号饮料能否配制的问题,转化为非齐次线性方程组(1)是否有解的问题.6.模型求解由线性代数关于线性方程组解的存在性判定有关方法和结论,首先利用矩阵的初等行变换将线性方程组的增广矩阵化为行階梯形矩阵,因为R(A)=R(A,b)=3,所以有唯一解,即4号饮料可以由1、2、3号饮料配制且配制方法唯一.进一步,用初等行变换将增广矩阵化为行最简形,解得x1=5,x2=1,x3=1.7.结果解释要配制133单位的4号饮料,分别需要1、2、3号饮料5份、1份、1份,即5份13单位的1号饮料、1份62单位的2号饮料、1份6单位的3号饮料混合可得133单位的4号饮料.8.应用综上,可知配制1单位的4号饮料,1、2、3号饮料分别需要,从而得1、2、3号饮料的混合比例为65:62:6.以上过程针对4号饮料的配制问题,在数学建模思想指导下完成了对问题的求解.同理,假设要配制出一份即69单位的5号饮料,需要饮料1、2、3分别为y1份、y2份、y3份,建立如下数学模型x1+3y3=37y1+25y2=254y1+12y2+2y3=14y1+25y2+y3=27; (4)用矩阵初等行变换化增广矩阵为行阶梯形,可得因为R(A)<R(A,b),所以无解,即5号饮料不能由1、2、3号饮料配制出.饮料配制问题的求解过程中,教师用数学建模思想方法引导学生,应用线性方程组有关理论和方法分析问题、解决问题,突出了学生的主体地位.整个过程类似中学解应用题,大学一年级同学接受起来比较容易,但是其中蕴含着丰富的数学建模思想,具体有以下几个方面:1.对问题进行分析,由已知数据信息求表1中原料配比的列和,丰富完善数据信息;2.对问题进行必要的合理假设,即假设配料可分,该假设既符合实际又方便求解;3.为了建模直观、方便起见,假设需要配制的饮料总量为1份,即表2所示饮料在原料配比表中的列和,从而得到简化的具体问题;4.数学模型就是由赋予特定含义的数学符号,给出的数学表达式.5.结果解释中,准确解释了的求解结果的具体含义,并且为了配制方便,将配比转化为在同一度量单位下饮料的混合比例.依托数学建模思想方法,搭建了连接线性代数和实际问题的桥梁,将学和用自然结合、相辅相成,学为用作必要准备,用体现学的价值,充分调动了学生学习线性代数的积极性和主动性,提高了对线性代数理论方法的学习热情.3 教学案例赋予抽象概念直观解释线性代数中的向量、向量的线性表示、向量组的线性相关性和向量空间等概念比较抽象,当向量维数较高时没有相应的几何解释,给学习和理解有关定义、结论和方法造成了很大困扰.注意到饮料配制问题中五种饮料的配比都是有序数组,因此可以用向量来表示,记为由(6)式可以看出,4号饮料能否由1、2、3号饮料配制的问题,就转化为向量?琢4能否由向量组?琢1,?琢2,?琢3线性表示的问题.换言之,就是?琢4是否属于?琢1,?琢2,?琢3生成的向量空间又由于R(?琢1,?琢2,?琢3)=R(A)=3,所以向量组?琢1,?琢2,?琢3线性无关,是向量空间L(?琢1,?琢2,?琢3)的一组基.由问题(1)的求解结果可知?琢4可由向量组?琢1,?琢2,?琢3线性表,即?琢4∈L(?琢1,?琢2,?琢3),或者说?琢1,?琢2,?琢3,?琢4线性相关.同理分析可得,?琢5不能由向量组?琢1,?琢2,?琢3线性表,即?琢5?埸L(?琢1,?琢2,?琢3),或者说?琢1,?琢2,?琢3,?琢5线性无关.总之,通过将饮料配制问题的数学模型写成向量形式,赋予向量、线性表示、线性相关性和向量空间等抽象概念具体的实际含义,对于抽象内容的学习和理解提供了帮助.4 结论在线性代数课程教学中开展融入数学建模思想的案例教学,有利于将线性代数理论方法和实际应用有机结合起来,有利于将线性代数知识的“学”和“用”有机结合起来,有利于将专业基础知识教育和学生综合素质、创新实践能力培养有机结合起来.通过案例教学,使线性代数理论方法在数学建模思想方法指导下成为解决实际问题的有效工具,不仅加强了学生对线性代数知识点的理解和掌握,更教给学生一种解决实际问题的方法,使学生养成良好的分析问题、解决问题习惯,掌握开启成功大门的钥匙.参考文献:〔1〕朱琳,蔣启芬.国外线性代数的教学研究述评[J].数学教育学报,2018,27(01):79-84.〔2〕文军,屈龙江,易东云.线性代数课程教学案例建设研究[J].大学数学,2016,32(06):46-52.〔3〕付传秀,周建新.线性代数教学改革中融入数学建模思想的探讨[J].教育教学论坛,2019(21):110-111.〔4〕李清华.数学建模思想有效融入线性代数教学的探析[J].教育现代化,2018,5(39):77-79.〔5〕段勇,黄廷祝.将数学建模思想融入线性代数课程教学[J].中国大学教学,2009(03):43-44.〔6〕谢加良,朱荣坤,宾红华.新工科理念下线性代数课程教学设计探索[J].长春师范大学学报,2018, 37(04):131-133+138.。
数学建模案例分析--线性代数建模案例(20例)数学建模案例分析--线性代数建模案例(20例)线性代数建模案例汇编目录案例一. 交通网络流量分析问题 0案例二. 配方问题 (3)案例三. 投入产出问题 (4)案例四. 平板的稳态温度分布问题 (6)案例五. CT图像的代数重建问题 (9)案例六. 平衡结构的梁受力计算 (11)案例七. 化学方程式配平问题 (14)案例八. 互付工资问题 (15)案例十. 电路设计问题 (18)案例十一. 平面图形的几何变换 (20)案例十二. 太空探测器轨道数据问题 (21)案例十三. 应用矩阵编制Hill密码 (22)(屏幕制造商需要调整矩阵元素一适应其RGB屏幕.) 求将电视台发送的数据转换成电视机屏幕所要求数据的方程. (26)案例十五. 人员流动问题 (26)案例十六. 金融公司支付基金的流动 (28)案例十七. 选举问题 (30)案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计?(3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2 ①400 + x 1 = x 4 + 300②x 2 + x 3 = 100 + 200③x 4 = x 3 + 300 ④【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=??-=-??+=??-+=?其增广矩阵(A , b ) =1100500100110001103000011300?? ?-- ? ? ?-?→初等行变换10011000101600001130000000--?? ? ?-- ? ??由此可得 142434100600300x x x x x x -=-??+=??-=-?即142434100600300x x x x x x =-??=-+??=-?.为了唯一确定未知流量, 只要增添x 4统计的值即可.当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-??=-+??=-?可得213141500200100x x x x x x =-+??=-??=+?, 123242500300600x x x x x x =-+??=-+??=-+?, 132343200300300x x x x x x =+??=-+??=+?, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模.【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克).【模型建立】根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=??+=?+=?+=?【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125?? ? ? ? →初等行变换101012000000?? ? ? ? ???, 可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成.【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ?+=++=++=++=+?? (*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型.这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求?【模型假设】假设不考虑价格变动等其他因素.。
数学建模案例线性代数教学研究论文类别:教育学论文 - 高等教育论文写作时间:2021/1/12 15:43:55论文作者:康卫论文版本:简体版摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。
具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。
关键词:线性代数;数学建模;教学方法线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。
因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。
但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。
线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。
第二,学生的基础较差,课程数较少,导致学生的学习困难。
学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。
第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。
众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。
基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。
与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。
数学建模案例线性代数教学研究
摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。
具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。
关键词:线性代数;数学建模;教学方法
线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。
因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。
但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。
线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。
第二,学生的基础较差,课程数较少,导致学生的学习困难。
学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。
第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。
众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。
基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。
与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。
1 数学建模案例在线性代数中的应用
线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。
如果在教学过程中我们融入
相关的实际问题的案例,往往使学生更容易理解,印象更为深刻,起到事半功倍的效果。
接下面我们引入两个具体案例来诠释线性代数中的矩阵的概念和矩阵乘法运算、特征值与特征向量的应用等知识点。
例1[4]:某航空公司在四个城市之间的航行图如图1 所示,根据图1 ,回答一下问题?(1 )能否将图1 用数学式子表达?(2 )图1 种的A城市和C城市如何实现通航?(3 )从城市B出发经3 次航行再回到B城市的路线有几条?解:乍一看,这一个与数学无关的问题,然而,如果我们利用数学建模的思想能把这个问题(1)转化为线性代数中矩阵的概念来表达,进而利用矩阵的乘法运算来解决这个问题(2)和问题(3)。
这样的案例的引入应该可以引起学生的兴趣,也可以让学生明白数学线性代数有用武之地。
下面我们经过合理的假设把此问题转化为线性代数中矩阵的相关问题来求解。
(1 )设aij=0 表示城市i到城市j之间没有航线,aij=1 表示城市i到城市j之间有航线,ABCD用数字1234 来表示,则图1 的航线运行图可以用下面的邻接矩阵表示由于c22=2 ,所以从B城市经两次中转再回到B城市的路线有两条,即:B→D→A→B,B→D→C→B.例2[5]:城乡人口流动的调查案例,在某城市,每年有比例为p的农村居民迁往城镇,有比例为q 的城镇人口迁回农村,假定该国人口总数不变,人口迁移规律不变,回答以下问题:(1 )k年以后此城市的人口分布情况;(2 )该城市的农村人口和城市人口是否可以趋于稳定状态?通过分析我们利用数学建模的思想能把这个问题(1)转化为线性代数中矩阵的相关知识来表达,然后利用特征值和特征向量的应用来解决问题(2)。
接下来,我们经过合理的简化假设把此问题转化为数学问题。
解:(1 )设开始时刻农村人口为x0 ,城镇人口为y0 ,第k年农村人口为xk,城镇人口为yk,根据题意可知,一年后农村人口和城镇人口为得到矩阵B的特征值为λ1 =1 ,λ2 =μ其中μ=1 -p-q。
然后计算矩阵B的特征向量,当λ1 =1 时,解方程(B+E)x=0 ,得到对应的特征向量ξ1 =(q,p)T;当λ2 =μ时,解方程(B-μE)x=0 ,得到对应的特征向量ξ2 =(-1 ,1 )T。
2 数学建模案例选择的特点
学生对于线性代数的学习的总体印象应该是抽象难懂,在教学过程中我们设计合理的数学建模案例,可以起到提高学生学习线性代数的兴趣和积极性。
然而,选择数学建模案例的效果上往往差别非常大,因此在引入数学建模案例时我们要注意以下的几个方面[5,7]:其一,在引入案例过程中我们要给学生
适当的时间和空间,布置一些思考题,让学生自由挥发,这样可能会收到更好的效果。
其二,案例的选择越简单、越贴近生活、越有利于理解越好。
一方面如果能够选择身边的案例,学生往往能够感觉更贴切,更加真实,这样可能起到出奇制胜的效果。
另一方面在案例的挑选中如果能够让学生参与其中,这样可以活跃课堂气氛,增加学生的兴趣和积极性,培养学生的发散思维和联系实际的意识。
其三,新案例和旧案例要做到很好的结合,在教学过程中能够造出新案例固然好,这样可以增加课程的新鲜感。
如果没有新的案例,充分利用好旧的案例也能达到理想的效果。
除此之外,数学建模案例教学虽然可以提高教学的质量,但是精雕细琢的备课和讲授仍然必不可少,如何选择案例、如何组织语言、如何讲解案例,使教学效果最大化应是每一位老师追求的目标。
3 小结
基于上面两个具体案例的分析,我们知道了数学建模案例选择的一些注意事项,我们也看到了在线性代数的教学过程中融入建模的案例可以给学生带来直观上的感受,增强学生自主学习、主动思考的意识。
在线性代数教学过程中适当时候引入数学建模案例,可以达到事半功倍的效果。
当前,数学建模竞赛如火如荼,引入数学建模案例的线性代数教学改革对当前应用型人才的培养具有积极的促进作用,有效增强了学生利用数学知识解决实际问题的能力。
参考文献
[1]姜启源,谢金星,叶俊.数学模型(第四版)[M].北京:高等教育出版社,2010.
[2]李尚志.线性代数精彩应用案例(之一)[J].大学数学,2006(3):1-8.
[3]文军,屈龙江,易东云.线性代数课程教学案例建设研究[J].大学数学(高教版),2016 (6 ):46-52.
[4]郑玉军,汤琼.基于案例与问题驱动的线性代数教学[J].湖南科技学院学报,2019(5):5-6.
[5]朱玲.以数学建模为平台的线性代数案例教学研究[J].产业与科技论坛,2019(11):133-134.
[6]刘春林,李宝娣.线性代数与案例教学的体会与思考[J].湖南理工学院学报(自然科学版),2016(2):84-88.
[7]赵春芳.基于实际应用的线性代数教学理论研究[J].山东农业工程学院学报,2019(2):140-141.。