第十章 数理统计基础
- 格式:ppt
- 大小:1.35 MB
- 文档页数:70
数理统计基础数理统计是统计学中的一个重要分支,它不仅是现代科学研究的必备工具,更是经济、金融、医学、社会科学等领域的重要基础。
本文将从基础概念、数据的搜集与整理、概率分布及其统计推断、参数估计与假设检验等方面,简要介绍数理统计的基本概念和理论。
一、基础概念1.总体和样本总体指我们需要研究的全体对象,样本则是从总体中选出的一部分对象。
为了使样本更具有代表性,我们需要采用随机抽样的方法。
总体和样本的关系是,样本是从总体中抽出的一部分,通过对样本的研究可以得到对总体的推断。
2.统计量和参数统计量是样本数据的函数,参数是总体分布的特征数值。
例如样本均值是样本数据的函数,而总体均值是总体分布的特征数值。
统计量可以用来描述样本的分布情况,帮助我们对总体进行推断。
3.分位数和分位点分位数是在数值序列中把一个样本分割为几个等份的数值,分位点则是将整个样本分成若干等份的点。
例如,中位数是50%分位数,将样本分为两个等份。
分位数和分位点是描述样本分布特征的指标。
二、数据的搜集与整理数据的搜集与整理是数理统计的重要前提。
在数据搜集时,需要注意样本的代表性、随机性和可比性。
在数据整理时,需要进行数据清洗,包括误差校正、缺失数据的填补等。
整理出清晰、准确、有意义的数据,是进行统计分析的基础。
三、概率分布及其统计推断在统计分析中,分布是一个关键概念。
常见的分布有正态分布、泊松分布等。
概率密度函数是描述分布特征的函数,可以用于对总体和样本进行分析和描述。
概率分布的统计推断包括参数估计和假设检验两个重要方面。
1.参数估计参数估计是指根据已知的样本数据,推断总体分布的参数。
这里介绍两种参数估计方法:最大似然估计法:在总体分布已知的情况下,利用样本数据进行最大似然估计。
最大似然估计是一种广泛应用于统计学中的方法,可以得到比较准确的参数估计。
贝叶斯方法:在总体分布未知的情况下,利用概率论的贝叶斯公式计算后验分布并进行参数估计。
贝叶斯方法面对的是更加复杂的情形,但能够在一定程度上处理不确定性。
10 06 数理统计的基本概念知识网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 主要内容一、样本我们把从总体中抽取的部分样品n x x x ,,,21 称为样本。
样本中所含的样品数称为样本容量,一般用n 表示。
在一般情况下,总是把样本看成是n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。
在泛指任一次抽取的结果时,n x x x ,,,21 表示n 个随机变量(样本);在具体的一次抽取之后,n x x x ,,,21 表示n 个具体的数值(样本值)。
我们称之为样本的两重性。
二、.统计量1.定义:称不含未知参数的样本的函数),,,(21n X X X f 为统计量2.常用统计量样本均值 .11∑==ni i x n x 样本方差∑=--=n i i x x n S 122.)(11 样本标准差 .)(1112∑=--=ni i x x n S 样本k 阶原点矩∑===n i k i k k x n A 1.,2,1,1 样本k 阶中心矩∑==-=ni k i k k x x n B 1.,3,2,)(1 μ=)(X E ,n X D 2)(σ=,22)(σ=S E ,221)(σnn B E -=, 其中∑=-=ni i X X n B 122)(1,为二阶中心矩。
三、抽样分布1.常用统计量分布(1)设n X X X ,,,21 是相互独立的随机变量,且均服从与标准正态分布)1,0(N ,则222212nn X X X X ++=,服从自由度为n 的-2χ分布,记为()n 2~χχ. (2)设()()n Y N X 2~,1,0~χ,且X 与Y 相互独立,则.n YXT =服从自由度为n 的-t 分布,记为()n t T ~.(3)设X 与Y 相互独立,分别服从自由度为1n 和2n 的-2χ分布,则1221n n Y X n Y n XF ⋅==。