作业题 第六章 数理统计的基本概念
- 格式:pdf
- 大小:97.46 KB
- 文档页数:2
49第六章 数理统计的基本概念一.填空题1.若n ξξξ,,,21 是取自正态总体),(2σμN 的样本,则∑==ni i n 11ξξ服从分布 )n,(N 2σμ .2.样本),,,(n X X X 21来自总体),(~2σμN X 则~)(221nS n σ- )(1χ2-n ; ~)(nS n X μ- _)(1-n t __。
其中X 为样本均值,∑=--=n i n X X n S 12211)(。
3.设4321X X X X ,,,是来自正态总体).(220N 的简单随机样本,=a X4.1(,y 122229~x x U y y y+++++5. 设~(0,9),X Y N 为X6. 随机变量 令T =, 则2~T F (1,n ) 分布.解:由T =, 得22X T Y n =. 因为随机变量~(0,1)X N , 所以22~(1).X χ再由随机变量X 与Y 相互独立, 根据F 分布的构造, 得22~(1,).X T F n n=507. 设12,,,n X X X 是总体(0,1)N 的样本, 则统计量222111n k k X n X =-∑服从的分布为(1,1)F n - (需写出分布的自由度).解:由~(0,1),1,2,,i X N i n =知222212~(1),~(1)nk k X X n χχ=-∑, 于是22122211(1)1~(1,1)./11nkn k k k Xn X F n X n X ==-=--∑∑8. 总体21234~(1,2),,,,X N X X X X 为总体X 的一个样本,设 从9. 对”)(1) 在 , 则 样 本 对 )(2) 若 0≠-θθ)ˆ(E 则 称 θ为 θ 的 渐 近 无 偏 估 计 量 .( 错 )(3) 设总体X 的期望E(X),方差D(X)均存在,21x x , 是X 的一个样本 ,则统计量213231x x +是 E(X) 的无偏估计量。
6数理统计的基本概念6.1 基本要求1 理解总体、样本(品)、样本容量、简单随机样本的概念。
能在总体分布给定情况下,正确无误地写出样本的联合分布,这是本章的难点。
2*了解样本的频率分布、经验分布函数的定义,了解频率直方图的作法。
3 了解χ2分布、t分布和F分布的概念及性质,了解临界值的概念并会查表计算。
4 理解样本均值、样本方差及样本矩的概念。
了解样本矩的性质,能借助计算器快速完成样本均值、样本方差观察值的计算。
了解正态总体的某些常用抽样分布。
6.2 内容提要6.2.1 总体和样本1 总体和个体研究对象的某项特征指标值的全体称为总体(或母体),组成总体的每个元素称为个体。
总体是一个随机变量,常用X,Y等来表示。
2 样本从总体中随机抽出n个个体称为容量为n的样本,其中每个个体称为样品,它们都是随机变量。
3 简单随机样本设X1,X2,…,X n是来自总体X的容量为n 的样本,如果这n个随机变量X1,X2,…,X n相互独立且每个样品X i与总体X具有相同的分布,则称X1,X2,…,X n为总体X的简单随机样本。
4 样本的联合分布*该部分内容考研不作要求。
149150若总体X 具有分布函数F (x ),则样本(X 1,X 2,…,X n )的联合分布函数为∏==ni i n x F x x x F 121)(),,,(若总体X 为连续型随机变量,其概率密度函数为f (x ),则样本的联合概率密度为∏==ni in x f x x x f 121)(),,,( (6.1)若总体X 为离散型随机变量,其分布律为P {X =a i }=p i (i =1,2,…n),则样本的联合分布为∏======ni i i n n x X P x X x X x X P 12211}{},,,{ (6.2)其中),,,(21n x x x 为),,,(21n X X X 的任一组可能的观察值。
6.2.2 样本分布1 频率分布设样本值(x 1,x 2,…,x n )中不同的数值是x 1*,x 2*,…,x l *,记相应的频数分别为n 1,n 2,…,n l ,其中x 1*< x 2*<…< x l *且n n li i =∑=1。
第六章 数理统计的基本概念§6.1基本概念 §6.2样本数字特征一、填空题1. 若12,,n X X X ,为来自总体X 的容量为n 的样本,则样本均值X = ,样本方差2S = ; 2.设总体(4,40)X N , 1210,,X X X ,是X 的简单随机样本,则X 的概率密度()f x = ; .3.某种灯泡的寿命X 服从参数为(0)λλ>的指数分布,12,,n X X X ,是取自总体X 的简单随机样本,则12(,,)n X X X ,的联合密度函数为 ;4.设总体2(,2)X N μ ,12,,n X X X ,为取自总体的一个样本,X 为样本均值,要使2()0.1E X μ-≤成立,则样本容量n 至少应取多大 ;.5.设n X X X ,,21 ,是来自总体2(,)N μσ的随机样本,,a b 为常数,且0a b <<,则随机区间222211()(),n n i i i i X X b a μμ==⎛⎫-- ⎪⎝⎭∑∑的长度的数学期望为 。
.二、选择题1. 设(1,4)X N ,12,,n X X X ,为X 的样本,则(C )(A )1~(01)2X N -,; (B )1~(01)4X N -,; (C~(01)N ,; (D~(01)N ,. 2.设12,,n X X X ,是总体X 的样本,则有(D )(A )()X E X =; (B )()X E X ≈; (C )1()X E X n=; (D )以上三种都不对. 3.设总体(2,9)X N , 1210,,X X X ,是X 的样本,则(B )(A )(20,90)X N ; (B )(2,0.9)X N ; (C )(2,9)X N; (D )(20,9)X N .4.设总体2(,)X N μσ , 其中μ已知, 1234,,X X X X ,是X 的样本,则不是统计量的是(C ) (A )145X X +; (B )41i i X μ=-∑; (C )1X σ-; (D )421i i X =∑.5.设随机变量X 服从正态分布(0,1)N ,对给定的(01)αα<<,数a u 满足{}a P X u α>=,若{||}P X x α<=,则x 等于(C )(A )2a u ; (B )12a u-;(C )12a u -; (D )1a u -.6.设12,,n X X X ,是来自正态总体2(,)N μσ的简单随机样本,X 与2S 分别是样本均值与样本方差,则(C )(A )2222()E X S μσ-=-; (B )2222()D X S μσ+=+; (C )22()E X S μσ-=-; (D )22()D X S μσ+=+.三、 计算题5. 设1234,,,X X X X 是取自正态总体2(,)N μσ中的一个大小为4的样本,其中μ已知,但2σ未知,指出下面随机变量中哪些是统计量? (1)1234X X X X +++;(2)42211()ii Xμσ=-∑; (3)12max{,}X X ;(4)4X μ+; (5)141()2X X +; (6X . 其中4114i i X X ==∑.6. 12,,n X X X ,是取自正态总体2(,)N μσ中的一个样本,12, m U X X X =+++12 m m n V X X X ++=+++ ( )n m >.求,U V 的联合密度函数。
第六章数理统计的基本概念三、典型题解例1 下面是某城市公共图书馆在一年中通过随机抽样调查的道德60天的读者借书数,数据已经从小到大排列,数据如下213 230 239 289 291 301 308 310 311 312 318 318 337 343 344 348 349 351 360 362 368 372 374 379 383 385 390 393 396 399 400 404 406 425 429 430 436 438 440 441 444 446 450 453 456 458 471 473 475 483 484 495 498 498 521 524 549 556 568 580 (1)构造该批数据的频率分布表(分成8组);(2)画出频率直方图。
解 (1)数据中的最小值是213,最大值是584。
这60个数据就散布在闭区间[213,584]中。
取一个略大一点的区间(200,600],它的端点都是整数。
我们将(200,600]八等分,排在下表的第一列。
计算数据落入各段的个数i n ,填入第二列。
计算出数据落入各段的频率ii n f n=,依次填入第三列。
最后将各列之和填入最后一行,得到如下的频率分布表。
借出书数发生次数i n 发生频率i i nf n= (200,250] 3 5% (250,300] 2 3.3% (300,350] 12 20% (350,400] 14 23.3% (400,450] 12 20% (450,500] 11 18.3 (500,550] 3 5% (550,600] 3 5% 总数6099.9%(1) 直方图如下例2 从正态分布N (μ,2σ)抽取容量为16的样本,S 2为样本方差。
这里μ和2σ均为未知,求(1)22(2.040)S P σ≤;(2)D(S 2).解 (1)222(161)~(15),S χσ-由于U=所以222215 (2.040)(15 2.040)(30.06) =1- (30.06)() 10.010.99S S P P P U P U σσ≤=≤⨯=≤>≈-=查表(2)224442222152()=D(U)=215=. 15151515S D S D σσσσσ⎛⎫=⋅⨯⨯ ⎪⎝⎭例3 设总体X~B(1,p),X 1,X 2,…,X n 为来自X 的简单随机样本, (1)求(X 1,X 2,…,X n )的分布律; (2)求1nii X=∑的分布律;(3)求22(),(),()()E X D X E S X S X 其中和分别为总体的样本均值和样本方差 解 (1)(X 1,X 2,…,X n )的分布律为11111(,,)()(1)(0,1,1,2,,)nniii i nx n x n n i i i i P X x X x P X x pp x i n ==-=∑∑=====-==∏(1) X 1,X 2,…,X n 独立同分布,且X 1~B(1,p),所以1~(,)nii XB n p =∑,其分布律为1()(1)(0,1,2,,);nk kn k i n i P X k C p p k n -===-=∑(2) 因为E(X)=p,D(X)=p(1-p),所以111111()()n n ni i i i i E X E X E X p p n n n ===⎛⎫==== ⎪⎝⎭∑∑∑22111111(1)()()(1)n n n i i i i i p p D X D X D X p p n n n n ===⎛⎫-===-=⎪⎝⎭∑∑∑(){}222211222211()()111()()()(())11(1)[(1)][](1)1n n i i i i E S E X X E X nX n n n D X E X n D X E X n p p n p p p n p p p n n ==⎛⎫⎡⎤=-=- ⎪⎢⎥--⎝⎭⎣⎦⎡⎤⎡⎤=+-+⎣⎦⎣⎦--⎧⎫=-+-+=-⎨⎬-⎩⎭∑∑例4 设总体X 服从N (μ,σ2),X 1,X 2,…,X n 为来自X 的简单随机样本,X 是样本均值,记222212112222341111(), (),111(), ()1n n i i i i n ni i i i S X X S X X n n S X S X n n μμ=====-=--=-=--∑∑∑∑ 则服从自由度为n -1的t 分布的随机变量是【 】 A.X t S μ-=B .X t S μ-= C .X t S μ-= D .X t S μ-= 解(~(1)X t n -,经过形式变换它正是B 。
10 06 数理统计的基本概念知识网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 主要内容一、样本我们把从总体中抽取的部分样品n x x x ,,,21 称为样本。
样本中所含的样品数称为样本容量,一般用n 表示。
在一般情况下,总是把样本看成是n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。
在泛指任一次抽取的结果时,n x x x ,,,21 表示n 个随机变量(样本);在具体的一次抽取之后,n x x x ,,,21 表示n 个具体的数值(样本值)。
我们称之为样本的两重性。
二、.统计量1.定义:称不含未知参数的样本的函数),,,(21n X X X f 为统计量2.常用统计量样本均值 .11∑==ni i x n x 样本方差∑=--=n i i x x n S 122.)(11 样本标准差 .)(1112∑=--=ni i x x n S 样本k 阶原点矩∑===n i k i k k x n A 1.,2,1,1 样本k 阶中心矩∑==-=ni k i k k x x n B 1.,3,2,)(1 μ=)(X E ,n X D 2)(σ=,22)(σ=S E ,221)(σnn B E -=, 其中∑=-=ni i X X n B 122)(1,为二阶中心矩。
三、抽样分布1.常用统计量分布(1)设n X X X ,,,21 是相互独立的随机变量,且均服从与标准正态分布)1,0(N ,则222212nn X X X X ++=,服从自由度为n 的-2χ分布,记为()n 2~χχ. (2)设()()n Y N X 2~,1,0~χ,且X 与Y 相互独立,则.n YXT =服从自由度为n 的-t 分布,记为()n t T ~.(3)设X 与Y 相互独立,分别服从自由度为1n 和2n 的-2χ分布,则1221n n Y X n Y n XF ⋅==。
第六章 数理统计的基本概念1.设样本均值为X ,则由题意,有6,4.1(~2n N X ,或)1,0(~/64.1N nX −,于是由1)3(2/64.34.5/64.3/64.34.1}4.54.1{95.0−Φ=⎭⎬⎫⎩⎨⎧−<−<−=<<≤nn n X nP X P⇒ 975.03(≥Φn ⇒ 96.13≥n⇒5744.34≥n 故样本容量至少应取35. 2.由题意可知)1,0(~/2.0N na X n −,又122/2.01.0/2.0}1.0|{|95.0−⎟⎟⎠⎞⎜⎜⎝⎛Φ=⎭⎫⎩⎨⎧<−=<−≤n n n a X P a X P n n 故有 975.0)2(≥Φn ⇒ 96.12≥n⇒ 3664.15≥n 因此至少应等于16.n 3. 由正态分布的性质及样本的独立性知,212X X −和4343X X −均服从正态分布,由于,0)2(21=−X X E 20)(4)()2(2121=+=−X D X D X X D以及,0)43(43=−X X E 100)(16)(9)43(4343=+=−X D X D X X D所以,有)20,0(~221N X X −⇒)1,0(~20221N X X −)100,0(~4343N X X − ⇒)1,0(~104343N X X −于是由分布的定义知,当2χ,201=a 1001=b 时,有 ()())2(~10432024322243221243221χ⎟⎠⎞⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=−+−=X X X X X X b X X a X 4. 由正态分布的性质及样本的独立性知, ⇒ )9,0(~2921N X X X +++")1,0(~)(91921N X X X +++" 又)1,0(~3N Y i, 9,,2,1"=i 所以 )9(~)(913332292221292221χY Y Y Y Y Y +++=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛""由于两个总体是X 和Y 相互独立的,所以其相应的样本也是相互独立的,故)9(9121X X X +++"与)(21Y 912922Y Y +++"也相互独立,于是由t 分布的定义知,)9(~9/)(91)(91292191292191t Y Y X X YY X X U +++=++++=""""5.由题意知,)1,0(~2N X i,,故有 15,,2,1"=i )10(~22)(4122102121021χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X U "" )5(~22)(412215211215211χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X V ""利用样本的独立性以及F 分布的定义,有)5,10(~5/10/)(221521121021F V U X X X X Y =++++="" 6.解法1 考虑n n n n X X X X X X 22211,,,+++++",将其视为取自正态总体的简单随机样本,则其样本均值为 )2,2(2σμN X X n X X n ni i n i i n i 21)(1211==+∑∑==+样本方差为 Y n 11−由于2211σ=⎟⎠⎞⎜⎝⎛−Y n E ,所以 22)1(2)2)(1()(σσ−=−=n n Y E 解法2 记,11∑==′n i i X n X ,11∑=+=′ni i n X n X 显然有X X X ′′+′=2,因此[]⎭⎬⎫⎩⎨⎧′′−+′−=⎥⎦⎤⎢⎣⎡−+=∑∑=+=+n i i n i n i i n i X X X X E X X X E Y E 1212)()()2()( []⎭⎬⎫⎩⎨⎧′′−+′′−′−+′−=∑=++n i i n i n i i X X X X X X X X E 122)())((2)(222)1(2)1(0)1(σσσ−=−++−=n n n 7.记(未知),易见2)(σ=X D )()(21Y E Y E =, ,6/)(21σ=Y D 3/)(22σ=Y D 由于相互独立,故有21,Y Y ,0)(21=−Y Y E 236)(22221σσσ=+=−Y Y D从而 )1,0(~2/21N Y Y U σ−=,又 )2(~22222χσχS =由于与相互独立,与独立,由定理 6.3.2,与独立,所以1Y 2Y 1Y 2S 2Y 2S 21Y Y −与独立,于是由t 分布的定义,知 2S )2(~2/)(2221t USY Y Z χ=−=8.由)1(~)1(222−−n S n χσ,其中由题意知,25=n , ,于是1002=σ}12)125({)1(50)1(}50{22222>−=⎭⎬⎫⎩⎨⎧−>−=>χσσP n S n P S P975.0}12)24({2≥>=χP 上式中的不等式是查表得到的,所以所求的概率至少为0.9759. 本题要用到这样一个结论,即Γ分布),(βαΓ关于第一个参数具有可加性,即若),(~1βαΓU ,),(~2βαΓV ,且U 与V 相互独立,则),(~21βαα+Γ+V U ,其中),(βαΓ的概率密度为: ⎪⎩⎪⎨⎧=)(x f αβ>其它0,x βΓ−)(1/1e x α−0x α可利用卷积公式证明.回到本题,当λβα11=,=,分布就是参数为Γλ的指数分布,所以样本的独立性及Γ分布的可加性,有 )1,(~21λn X +X X n Γ++"即的概率密度为 ∑=ni i X 1⎪⎩⎪⎨⎧>−=−−其它00,)!1()(1x e x n x g x n nλλ 因此∑==ni i X n X 11的概率密度为 ⎪⎩⎪⎨⎧≤>−==−−0,00,)!1()()()(1y y e y n n ny ng y h ny n n λλ 10. (1) 根据正态分布的性质,与21X X +21X X −服从二维正态分布,所以要证明它们相互独立,只需它们不相关,由于0)()()])([(22212121=−=−+X E X E X X X X E 0)()(2121=−+X X E X X E 所以 0),(2121=−+X X X X Cov 即与相互独立21X X +21X X −(2) 由于0=μ,所以)2,0(~221σN X X +⇒)1,0(~221N X X σ+ ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛+X X⇒)2,0(~221σN X X −)1,0(~221N X X σ− ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛−X X由上面证明的独立性,再由F 分布的定义知)1,1(~2/2/)()(21221221221F X X X X X X X X F ⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=−+=σσ 所以 25.0}83.5{}4{4)()(221221=<<<=⎭⎬⎫⎩⎨⎧<−+F P F P X X X X P。