第四章 催化加氢
- 格式:ppt
- 大小:823.00 KB
- 文档页数:57
化学化工中的催化加氢反应在今天的化学化工领域,催化加氢反应是一种非常重要的工业生产技术,尤其是石油化工和化学品生产。
这种反应可以将不饱和化合物或硫化物转化为饱和化合物,从而提高其稳定性和可用性。
本文将介绍催化加氢反应的基本原理、反应类型、工业应用以及目前的发展趋势。
一、催化加氢反应的基本原理催化加氢反应是一种加氢还原的反应,它是指在催化剂存在的情况下,将不饱和化合物或硫化物与氢气作用,将氢原子加入分子中,形成饱和化合物的过程。
该过程将不饱和化合物的双键或三键断裂,产生新的碳氢键。
这种反应需要催化剂的存在,使不饱和化合物或硫化物分子中可反应的化学键与氢原子之间的活化能降低,从而提高反应速率和转化率。
二、催化加氢反应的种类在催化加氢反应中,根据不同的反应物和反应条件,可以分为饱和脂肪酸及其衍生物、芳香烃和杂环化合物等不同类型。
1、饱和脂肪酸及其衍生物的催化加氢反应饱和脂肪酸及其衍生物是一种重要的化学品,其在医药、食品、化妆品等行业中有着广泛的应用,因此饱和脂肪酸及其衍生物的催化加氢反应也是一项极为重要的工业生产技术。
该反应通常采用贵金属催化剂,如铂和钯等。
2、芳香烃的催化加氢反应芳香烃是一种典型的不饱和化合物,其催化加氢反应可以将芳香环上的双键和三键加氢,形成饱和环烷化合物。
这种反应常采用铝烷或钯催化剂,反应条件较为温和,常温下就能使芳香烃发生氢化反应。
3、杂环化合物的催化加氢反应杂环化合物是一种具有广泛用途的化学品,如吲哚、噻嗪等,其催化加氢反应可以使其产生稳定性更强的饱和杂环化合物。
这种反应的催化剂多采用贵金属催化剂,如铂、钯等。
三、催化加氢反应的工业应用催化加氢反应已经广泛应用于石油化工、化学品生产、环保以及新能源等领域,其中最重要的是石油化工中的加氢处理、醇或羧酸的催化加氢和生物质转化等过程。
1、石油化工中的加氢处理加氢处理是石油化工中广泛应用的一种反应,其主要目的是降低原油性质中的硫、氮、氧等有害元素,从而提高油品的质量和价值。
催化加氢方程式石油馏分中的硫化物主要有硫醇、硫醚、二硫化合物及杂环硫化物,在加氢条件下发生氢解反应,生成烃和H2S. 主要反应如下:R SH+H2R H+H2SR S R+2H2H+H2S(R S)2+3H22R H+2H2SS +4H2R C4H9+H2SRS +2H2+H2S石油馏分中的氮化物主要是杂环氮化物和少量的脂肪胺或芳香胺,在加氢条件下反应生成烃和NH3. 主要反应如下:R C H2N H2+H R C H3+N H3N+5H2C5H12+NH3N+7H2C3H7+NH3NH+4H24H10+NH3石油馏分中的含氧化合物主要是环烷酸及少量的酚、脂肪酸、醛、醚及酮,含氧化合物在加氢条件下通过氢解生成烃和H2O. 主要反应如下:OH+H2+H2OCOOH+3H2CH3+2H2O 石油馏分中的金属主要有镍、钒、铁、钙等,主要存在于重质馏分中,尤其是渣油中。
这些金属对石油炼制过程,尤其对各种催化剂参与的反应影响较大,必须除去。
渣油中的金属可分为卟啉化合物(如镍和钒的络合物)和非卟啉化合物(如环烷酸铁、钙、镍)。
以非卟啉化合物存在的金属反应活性高,很容易在H 2/H 2S 存在条件下,转化为金属硫化物沉积在催化剂表面上。
而以卟啉型存在的金属化合物先可逆地生成中间产物,然后中间产物进一步氢解,生成的硫化态镍以固体形式沉积在催化剂上。
加氢脱金属反应如下:22,''H H SR M R MS RH R H --−−−→++烯烃在加氢条件下主要发生加氢饱和及异构化反应。
烯烃饱和是将烯烃通过加氢转化为相应的烷烃;烯烃异构化包括双键位置的变动和烯烃链的空间形态发生变动。
这两类反应都有利于提高产品的质量。
其反应描述如下:R -CH=CH 2 + H 2 → R -CH 2-CH 3R -CH=CH -CH=CH 2 + 2H 2→ R -CH 2-CH 2-CH 2-CH 3nC n H 2n →iC n H 2n (异构化)iC n H 2n + H 2 →iC n H 2n +2值得注意的是,烯烃加氢饱和反应是放热效应,且热效应较大,因此对不饱和烃含量高油品加氢时,要注意控制反应温度,避免反应床层超温。
催化加氢的名词解释催化加氢是一种常见的化学反应,它主要用来将氢气与其他物质发生反应,以产生新的化合物。
所谓催化加氢,就是利用催化剂来提供反应所需的能量,从而降低反应活化能,促使反应更快速地进行。
1. 催化剂的作用催化剂是催化加氢反应中必不可少的组成部分。
它通过吸附和解离氢气分子,使氢气与待加氢物质发生反应。
催化剂的作用类似于“中间人”,在反应过程中起到了调和和促进的作用。
催化剂本身在反应中不参与化学变化,因此可以循环使用。
2. 催化加氢的应用领域催化加氢广泛应用于化学工业、能源领域以及环境保护等领域。
在化学工业中,催化加氢被用于合成有机化合物,如合成润滑油、合成塑料原料等。
催化加氢还被广泛应用于石油加工过程中,用于清洁燃料的生产以及炼油过程中的脱硫、脱氮等环保操作。
3. 催化剂的分类催化加氢使用的催化剂种类繁多。
根据催化剂的物理形态可以分为固体催化剂、液体催化剂和气相催化剂。
固体催化剂是最常见的类型,常见的固体催化剂包括贵金属催化剂(如铂、钯、铑等)、非贵金属催化剂(如氧化锆、氧化镍等)以及贵金属的载体(如活性炭、硅胶等)。
4. 催化剂的选择在选择合适的催化剂时,需要考虑多种因素。
首先是反应条件,包括反应温度、压力和反应物的种类等。
此外,也需要考虑催化剂的活性、稳定性和选择性等特性。
例如,在合成润滑油中,通常选择铂类催化剂,因为铂对氢气的吸附能力更好,可以提高反应物的转化率。
5. 催化加氢的反应机理催化加氢的反应机理是一个复杂的过程。
在催化剂的作用下,氢气分子首先被催化剂吸附,并从中断裂成氢原子。
然后,这些氢原子与待加氢物质中的某些化学键发生反应,从而产生新的化合物。
催化加氢是一种重要的化学反应,通过降低反应活化能,能够使化学反应更加高效和经济。
它在现代化学工业中扮演了关键的角色,能够推动化学科学的发展,并为人类社会的可持续发展做出贡献。
催化加氢一、意义1、具有绿色化的化学反应,原子经济性。
催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。
绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。
2、产品收率高、质量好普通的加氢反应副反应很少,因此产品的质量很高。
3、反应条件温和;4、设备通用性二、催化加氢的内容1、加氢催化剂Ni系催化剂z骨架Ni(1) 应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。
具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。
(2) 具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。
(3) 合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3,Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3> Ni2Al3>NiAl> NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。
(4) 多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。
(5) 使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。
催化加氢原理催化加氢是一种常用的化学反应方法,通过引入催化剂来加速加氢反应的进行。
催化剂通常是一种金属或金属合金,例如铂、钯、镍等。
催化剂提供了一个表面,通过这个表面,反应物能够与催化剂发生相互作用,进而促使反应进行。
催化加氢原理基于活性金属表面上的吸附现象。
催化剂表面具有特殊的物理化学性质,能够吸附氢气和反应物分子。
两者在催化剂表面发生相互作用后,发生化学反应,产生需要的产物。
催化剂表面的金属原子提供了氢气分子进入反应物分子中的位置,促进了加氢反应的进行。
催化剂的选择对催化加氢反应起着重要作用。
选择合适的催化剂可以提高反应的速率和选择性。
不同的催化剂对于不同的加氢反应具有不同的催化活性和选择性。
催化剂的性能受到诸多因素影响,如催化剂的晶体结构、金属负载量、活性金属的物种等。
催化剂的活性金属与反应物之间发生的物理化学作用被称为表面吸附。
表面吸附可分为物理吸附和化学吸附两种。
物理吸附是一种临时性吸附,以范德华力为主。
化学吸附是一种较为牢固的吸附,涉及化学键的形成和断裂。
在催化加氢反应中,化学吸附是主要的吸附方式。
在催化加氢反应中,一般需要提供适当的反应条件,以促进催化剂的活性。
反应条件可以包括适当的温度、压力和氢气流量。
这些条件是为了保证催化剂表面的吸附位点能够与氢气和反应物分子进行充分的反应。
总之,催化加氢是一种通过引入催化剂来加速加氢反应的方法。
催化剂通过提供特殊的吸附表面,促使反应物与催化剂表面发生物理化学作用,进而实现加氢反应。
催化剂的选择和适当的反应条件对于催化加氢反应具有重要的影响。