石油化学之催化加氢
- 格式:ppt
- 大小:2.01 MB
- 文档页数:181
化学化工中的催化加氢反应在今天的化学化工领域,催化加氢反应是一种非常重要的工业生产技术,尤其是石油化工和化学品生产。
这种反应可以将不饱和化合物或硫化物转化为饱和化合物,从而提高其稳定性和可用性。
本文将介绍催化加氢反应的基本原理、反应类型、工业应用以及目前的发展趋势。
一、催化加氢反应的基本原理催化加氢反应是一种加氢还原的反应,它是指在催化剂存在的情况下,将不饱和化合物或硫化物与氢气作用,将氢原子加入分子中,形成饱和化合物的过程。
该过程将不饱和化合物的双键或三键断裂,产生新的碳氢键。
这种反应需要催化剂的存在,使不饱和化合物或硫化物分子中可反应的化学键与氢原子之间的活化能降低,从而提高反应速率和转化率。
二、催化加氢反应的种类在催化加氢反应中,根据不同的反应物和反应条件,可以分为饱和脂肪酸及其衍生物、芳香烃和杂环化合物等不同类型。
1、饱和脂肪酸及其衍生物的催化加氢反应饱和脂肪酸及其衍生物是一种重要的化学品,其在医药、食品、化妆品等行业中有着广泛的应用,因此饱和脂肪酸及其衍生物的催化加氢反应也是一项极为重要的工业生产技术。
该反应通常采用贵金属催化剂,如铂和钯等。
2、芳香烃的催化加氢反应芳香烃是一种典型的不饱和化合物,其催化加氢反应可以将芳香环上的双键和三键加氢,形成饱和环烷化合物。
这种反应常采用铝烷或钯催化剂,反应条件较为温和,常温下就能使芳香烃发生氢化反应。
3、杂环化合物的催化加氢反应杂环化合物是一种具有广泛用途的化学品,如吲哚、噻嗪等,其催化加氢反应可以使其产生稳定性更强的饱和杂环化合物。
这种反应的催化剂多采用贵金属催化剂,如铂、钯等。
三、催化加氢反应的工业应用催化加氢反应已经广泛应用于石油化工、化学品生产、环保以及新能源等领域,其中最重要的是石油化工中的加氢处理、醇或羧酸的催化加氢和生物质转化等过程。
1、石油化工中的加氢处理加氢处理是石油化工中广泛应用的一种反应,其主要目的是降低原油性质中的硫、氮、氧等有害元素,从而提高油品的质量和价值。
催化加氢技术及催化剂作者: buffaloli (站内联系TA)发布: 2009-03-03一、意义1.具有绿色化的化学反应,原子经济性。
催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。
绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。
2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。
3.反应条件温和;4.设备通用性二、催化加氢的内容1.加氢催化剂Ni 系催化剂骨架Ni(1)应用最广泛的一类Ni 系加氢催化剂,也称Renay-Ni ,顾名思义,即为Renay 发明。
具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。
(2)具体的制备方法:将Ni 和Al, Mg, Si, Zn 等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。
(3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2 等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAI3 > Ni2AI3 > NiAl > NiAI2 ,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni 催化剂的活性。
(4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co 等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。
(5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni 本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。
石油加氢知识点总结一、石油加氢的基本原理石油加氢是指将含硫、含氮、含氧和不饱和化合物等物质经水合处理,在一定条件下通过催化剂引入氢气,使其中的不饱和化合物饱和,硫、氮、氧等杂质进行加氢脱除,从而获得高品质的石油产品的一种技术。
石油加氢的基本原理包括以下几个方面:1. 饱和不饱和烃类:石油中存在大量的不饱和烃类化合物,这些化合物在加氢的条件下能够转化为饱和烃类,增加产品的脱硫、脱氮和脱氧能力;2. 脱硫:石油中含有大量的硫化合物,这些化合物在加氢条件下能够被氢气还原成硫化氢并被吸附在催化剂表面,从而实现脱硫;3. 脱氮:石油中还含有一定量的含氮化合物,这些化合物在加氢条件下能被氢气还原成氨和吸附在催化剂表面,实现脱氮;4. 脱氧:石油中还含有一定量的含氧化合物,这些化合物在加氢条件下能被氢气还原成水和二氧化碳,实现脱氧。
二、石油加氢的工艺流程石油加氢工艺主要包括前处理和主处理两个部分,其中前处理是指石油经过脱硫、脱氮、脱氧等处理后的预处理工艺,主处理是指石油在加氢反应器中进行加氢反应的过程。
1. 前处理:前处理主要包括脱硫、脱氮和脱氧三个步骤。
其中脱硫是通过加氢反应将硫化合物还原为硫化氢,脱氮是通过加氢反应将含氮化合物还原为氨,脱氧是通过加氢反应将含氧化合物还原为水和二氧化碳。
2. 主处理:主处理是指石油在加氢反应器中进行加氢反应的过程。
在加氢反应器中,石油与加氢气通过催化剂的作用进行反应,实现脱硫、脱氮、脱氧等目的,得到高品质的石油产品。
三、石油加氢的催化剂石油加氢的催化剂主要包括氧化铝负载的钼、镍或铜催化剂、氧化铝负载的钼-镍催化剂和硅铝酸盐分子筛催化剂等。
这些催化剂在加氢反应过程中起着至关重要的作用,能够促进反应的进行,提高反应的效率和选择性。
1. 硫化钼催化剂:硫化钼催化剂是一种常用的石油加氢催化剂,它具有较高的活性和选择性,能够有效催化石油中的硫化合物和含氮化合物的加氢反应。
2. 硫化镍催化剂:硫化镍催化剂是另一种常用的石油加氢催化剂,它具有良好的热稳定性和机械强度,能够有效催化石油中的硫化合物和含氮化合物的加氢反应。
催化加氢工艺流程
《催化加氢工艺流程》
催化加氢工艺是一种常见的化工生产工艺,它通过催化剂的作用将烃类化合物加氢反应,生成含氢化合物。
这种工艺流程在石油加工、化学品生产以及环保领域都有广泛的应用。
在催化加氢工艺流程中,首先是将待加氢的原料送入反应器内。
原料可以是石油、天然气或者其他氢化合物。
接着,在反应器中添加合适的催化剂,催化剂的选择直接影响了反应的效率和产物的选择。
常见的催化剂有铂、钯、镍等。
在反应过程中,原料与催化剂发生反应,氢气与原料中的不饱和化合物发生加氢反应,生成饱和化合物。
这一过程通常在高温高压下进行,以促进反应的进行。
反应器内的温度和压力控制是很关键的,对于不同的反应物和催化剂组合有不同的最佳条件。
在反应结束后,需要对反应产物进行分离和提纯。
通过蒸馏、结晶、萃取等方法,可以得到目标化合物,并将未反应的原料和副产物进行提取和回收利用。
这一过程需要高效的分离设备和技术,以保证产品的纯度和产率。
催化加氢工艺流程在化工生产中有着重要的应用价值,它可以将原料转化为更有价值的产品,同时也可以减少环境污染,提高资源利用率。
随着工艺技术的不断发展和催化剂的研发改良,催化加氢工艺将会在未来有更广泛的应用前景。
一、概念题1. 催化加氢:催化加氢是在氢气存在下对石油馏分进行催化加工过程的通称。
2. 加氢处理:指在加氢反应过程中,只有 < 10%勺原料油分子变小的加氢技术。
3. 加氢裂化:指在加氢反应过程中,原料油分子中有10%以上变小的加氢技术。
4. 加氢脱硫(HDS)反应:石油馏分中的含硫化合物在催化剂和氢气的作用下,进行氢解反应,转化为不含硫的相应烃类和H2S。
5. 加氢脱氮(HDN)反应:石油馏分中的含氮化合物在催化剂和氢气的作用下,进行氢解反应,转化为不含氮的相应烃类和NH3。
6. 加氢脱氧(HDO)反应:含氧化合物通过氢解反应生成相应的烃类及水。
7. 空速:指单位时间里通过单位催化剂的原料油的量,有两种表达形式,一种为体积空速(LHSV ),另一种为重量空速(WHSV)。
8. 氢油比:单位时间里进入反应器的气体流量与原料油量的比值。
9. 石脑油加氢精制:指对高硫原油的直馏石脑油和二次热加工石脑油(如焦化石脑油)进行加氢精制,脱除其中硫、氮等杂质及烯烃饱和,从而获得乙烯裂解原料。
10. 润滑油催化脱蜡技术:在氢气和择形分子筛的存在下,将高凝点的正构烷烃选择性地裂化成气体和较小的烃分子,从而降低润滑油凝点的过程。
11. 润滑油异构脱蜡技术:指在专用分子筛催化剂的作用下,将高倾点的正构烷烃经异构化反应生成低倾点的支链烷轻。
12. 氢脆:由于氢残留在钢中所引起的脆化现象。
13. 高温氢腐蚀:在高温高压条件下扩散侵入钢中的氢与不稳定的碳化物发生化学反应,生成甲烷气泡(它包含甲烷的成核过程和成长),即Fe3C+2H2—CH4+3Fe,并在晶间空穴和非金属夹杂部位聚集,弓I起钢的强度、延性和韧性下降与劣化,同时发生晶间断裂。
14. 设备漏损量:即管道或高压设备法兰连接处及循环氢压缩机运动部位等处的漏损。
15. 溶解损失量:指在高压下溶于生成油中的气体在生成油减压时这部分气体排出时而造成的损失。
二、简答题1. 加氢精制的目的和优点。
催化加氢原理加氢反应器是一种加氢精制反应器,通常用来从汽油中除去重质馏分,使油品具有更高的辛烷值,即增加抗爆性,改善发动机燃烧性能。
加氢精制反应器的特点是反应过程均匀性高,工艺条件稳定,操作简单易控制,无需搅拌和传热设备,因此加氢精制反应器已经广泛应用于石油化工生产中。
如果是均相反应,例如合成氨的合成,就是气固相催化反应。
如果是非均相反应,例如合成气的甲烷化反应,就是液液相催化反应。
而加氢精制反应器,由于在工艺设计上考虑了两种情况,所以可以同时满足这两种反应模式。
在反应器中的气相或液相上进行各种化学反应都属于均相反应。
在均相反应中反应物不断地在反应器中转移,反应混合物的温度和浓度都是恒定的。
但是均相反应又有其不足之处:在非均相反应中,虽然反应物在反应器中不断地转移,但是反应速率和温度、压力等外界条件是随时间变化的。
因此,它与均相反应相比反应速率较慢、温度较低、压力较高。
当然还有另外一种形式的非均相反应,即多相反应,即反应过程中反应物分别在反应器的几个部位同时发生反应,例如在沸腾床反应器中发生的反应。
反应器内压力较低,适用于低压反应。
反应过程中,原料气不参与反应,只起到分离作用,因此压力不高。
但是由于反应速率不快,因此对反应器有严格的要求,不仅材质必须耐高压,而且反应器的容积也不能太大。
催化加氢反应器其实在设计催化加氢反应器时,大家都知道应该采用合理的设计方案,合理的设计方案可以避免催化剂过早失活,也可以避免活性较高的脱氢催化剂氧化分解;也可以保证较高的净化效率。
但是有很多工厂为了降低能耗,所以会把反应器设计得非常大。
大家想一想,既然采用非均相催化反应,那么我们采用的催化剂的粒径应该是非常小的,大概只有纳米级甚至亚微米级。
大家可能感觉这样的催化剂怎么可能存在呢?其实现在科技水平越来越先进,人类利用光电子技术将催化剂颗粒做得极小,并将表面包覆,从而达到提升催化活性的目的。