大学高数全册知识点整理
- 格式:docx
- 大小:1.11 MB
- 文档页数:31
大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。
希望这份总结对你的学习有所帮助。
大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1.类型:(1) 数列:* a n f(n);(2) 初等函数:⑶分段函数:*F(x)an 1f(a n)f i (x) x X of2(X ),X X o ; *F(X)⑷复合洽f )函数:y f(u), u (x)⑸隐式(方程): F(x, y) 0X ⑺变限积分函数:F(x) f(x,t)dta(8)级数和函数(数一,三):S(x)a n X n , Xn 02.特征(几何):,0 , 00, 1 1n n 1, a n (a 0) 1, (a n b nf(x) x X a 'x x 0(6)参式(数一,二):x x(t) y y(t)(1)单调性与有界性 (判别);(f(x)单调 X 0, (X (2)奇偶性与周期性 (应用).3.反函数与直接函数 y f(x) xf 2 3 4 1(y) 二.极限性质: 1.类型:* lim a n ;lim f (x)(含 xX);x °)( f (x) f (x 。
))定号)y f 1(x)f (x)洽 x X 0 )1 -(x 0) xlim x xx 01,limx0,n..ln x lim 0,x xlim xln n x 0,x 0 1.等价无穷小:当u (x ) sin u(x): u(x); tan u(x): u(x); cosu(x) : 1 u 2(x);e u(x) 1: u(x); ln(1 u(x)):u(x);(1 u(x))1: u(x);arcsin u (x): u(x);arcta n u(x): u(x)2.泰勒公式: x / (1) e 1 x (2) ln(1 x) (3) sinx (4) COSx 1 2x 2! 1 2 x x 2 1 3x3! 1 2 x2! o(x 2); o(x 2); o(x 4); ⑸(1 x ) 1 45x o(x ); 4!(1) 2 (2、x o(x ). 2!五•常规方法: 前提:(1)准确判断 ,M (其它如:,0,00,1); (2)变量代换(如: t )x1.抓大弃小(一),2.无穷小与有界量乘积 (注:sin 1 x1,x3. 1处理(其它如 :00, 0) 4.左右极限(包括 ):x /⑵e (x);1e x (x0);(3)分段函数:x , [x], max f (x)5. 无穷小等价替换6. 洛必达法则 (因式中的无穷小)(注:非零因子)(1)先”处理”后法则(最后方法);(注意对比:lim 与|im 凶竺)0 x 11 x x 0 1 x1 1 1 1 1(2) 幕指型处理:u(x)心 e v(x)lnu(x)(如:e 亍 e x (e^ ' 1))(3) 含变限积分;(4) 不能用与不便用 泰勒公式(皮亚诺余项):处理和式中的无穷小 极限函数:f (x) lim F (x, n)(分段函数)n非常手段 收敛准则: (1) a nf (n) lim f (x)x(2) 双边夹:* b n a n c n ?, *b n ,c na? (3) 单边挤:a n 1 f (a n ) * a 2a/ * a .M ? * f '(x) 0?7.8. 六. 1.2. 3. 4. 5.七. 1.2.3. 八.导数定义(洛必达?): limf '(X 。
高数知识点总结电子版一、极限与连续1. 函数的极限(1) 函数极限的定义(2) 函数极限的性质(3) 无穷小量与无穷大量(4) 夹逼准则2. 连续与间断(1) 连续的定义(2) 连续函数的性质(3) 间断点的分类(4) 间断函数的构造二、导数与微分1. 导数的定义(1) 导数的几何意义(2) 导数的计算方法(3) 导数的性质(4) 高阶导数2. 微分的定义(1) 微分的几何意义(2) 微分的计算方法(3) 微分的性质(4) 隐函数求导三、微分中值定理与泰勒公式1. 罗尔中值定理(1) 罗尔中值定理的条件(2) 罗尔中值定理的应用2. 拉格朗日中值定理(1) 拉格朗日中值定理的条件(2) 拉格朗日中值定理的应用3. 柯西中值定理(1) 柯西中值定理的条件(2) 柯西中值定理的应用4. 泰勒公式(1) 泰勒公式的表述(2) 泰勒公式的应用四、不定积分与定积分1. 不定积分(1) 不定积分的概念(2) 不定积分的计算方法(3) 不定积分的性质(4) 不定积分的换元法2. 定积分(1) 定积分的概念(2) 定积分的计算方法(3) 定积分的性质(4) 定积分的应用五、微分方程1. 微分方程的基本概念(1) 微分方程的定义(2) 微分方程的类型(3) 微分方程的解的存在唯一性定理2. 一阶常微分方程(1) 可分离变量的微分方程(2) 齐次微分方程(3) 一阶线性微分方程3. 高阶常微分方程(1) 高阶线性微分方程(2) 常系数齐次线性微分方程六、多元函数微分学1. 多元函数的极限(1) 多元函数极限的定义(2) 多元函数极限的性质(3) 重要极限的计算2. 偏导数(1) 偏导数的定义(2) 偏导数的计算方法(3) 高阶偏导数3. 方向导数(1) 方向导数的定义(2) 方向导数的计算方法(3) 梯度4. 多元函数的微分(1) 多元函数的全微分(2) 多元函数的微分近似七、多元函数积分学1. 二重积分(1) 二重积分的定义(2) 二重积分的计算方法(3) 二重积分的性质(4) 二重积分的应用2. 三重积分(1) 三重积分的定义(2) 三重积分的计算方法(3) 三重积分的性质(4) 三重积分的应用3. 曲线积分与曲面积分(1) 曲线积分的定义(2) 曲线积分的计算方法(3) 曲面积分的定义(4) 曲面积分的计算方法八、向量分析1. 向量及其运算(1) 向量的基本概念(2) 向量的线性运算(3) 向量的数量积与叉积2. 曲线与曲面的方程(1) 曲线的参数方程(2) 曲线的一般方程(3) 曲面的参数方程(4) 曲面的一般方程3. 向量场与散度(1) 向量场的定义与性质(2) 散度的概念与计算(3) 散度的物理意义4. 向量场与旋度(1) 旋度的概念与计算(2) 旋度的物理意义(3) 欧拉公式以上就是高等数学的知识点总结,希望对你的学习有所帮助。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
大一高数笔记全部知识点第一章数列与极限1.1 数列1.1.1 数列的概念1.1.2 等差数列1.1.3 等比数列1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在的条件1.2.3 极限的性质1.3 极限运算法则1.3.1 无穷小量与无穷大量1.3.2 极限的四则运算第二章函数与连续2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的性质2.2 基本初等函数2.2.1 幂函数与指数函数2.2.2 对数函数与指数对数函数2.3 函数的极限与连续性2.3.1 函数的极限2.3.2 函数的连续性第三章导数与微分3.1 导数的概念与计算方法3.1.1 导数的定义3.1.2 常用函数的导数计算3.2 微分的概念与性质3.2.1 微分的定义3.2.2 微分的性质3.3 高阶导数与导数的应用3.3.1 高阶导数的定义3.3.2 导数的应用:切线与法线第四章积分与不定积分4.1 不定积分的概念与性质4.1.1 不定积分的定义4.1.2 不定积分的性质4.2 定积分的概念与性质4.2.1 定积分的定义4.2.2 定积分的性质4.3 积分的运算法则与应用4.3.1 积分的基本运算法则4.3.2 积分的应用:面积与曲线长度第五章多元函数与偏导数5.1 多元函数的概念与性质5.1.1 多元函数的定义5.1.2 多元函数的性质5.2 偏导数的概念与计算方法5.2.1 偏导数的定义5.2.2 常用函数的偏导数计算5.3 高阶偏导数与微分的应用5.3.1 高阶偏导数的定义5.3.2 微分的应用:切平面与法线以上是大一高数课程中的全部知识点。
通过学习这些知识,我们可以建立起数学的基础框架,为以后的学习打下坚实的基础。
每个知识点都有其重要性和实用性,在理解和掌握的过程中,我们要注重理论联系实际,通过例题和应用题的练习来提高解题能力。
希望同学们能够认真学习,并在课后进行适当的巩固和扩展。
加油!。
(完整版)高等数学基础知识点归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A??。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
大一高数知识点有哪些大一高数(即《高等数学》)是大学数学的一门基础课程,涵盖了一系列的知识点。
以下是大一高数课程中的一些重要知识点:1.函数与极限:-函数的概念和性质-极限的概念及其性质-极限的运算法则-无穷小与无穷大-极限存在准则2.导数与微分:-导数的概念和定义-导数的性质和运算法则-微分的概念和性质-高阶导数与高阶微分-幂函数、指数函数、对数函数及其导数3.微分中值定理:-拉格朗日中值定理-柯西中值定理-罗尔中值定理4.泰勒公式与近似计算:-函数的泰勒展开-麦克劳林展开-泰勒公式及其应用-近似计算方法5.微分方程:-微分方程的概念-一阶微分方程的解法-可降阶的一阶微分方程-齐次线性微分方程-非齐次线性微分方程-高阶线性微分方程6.不定积分与定积分:-不定积分的概念与性质-基本初等函数的不定积分-不定积分的运算法则-定积分的概念与性质-牛顿-莱布尼茨公式-定积分的运算法则7.微积分基本定理:-第一类微积分基本定理-第二类微积分基本定理8.曲线与曲面积分:-参数方程曲线的弧长-定积分计算曲线长度-曲面积分的概念与性质-曲面积分的计算9.重积分与三重积分:-二重积分的概念与性质-二重积分的计算-极坐标系下的二重积分-三重积分的概念与性质-三重积分的计算-柱面坐标系和球面坐标系下的三重积分10.偏导数与多元函数微分学:-多元函数的偏导数-高阶偏导数-隐函数的偏导数-多元函数的全微分-多元复合函数的求导法则。
大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
大学高数知识点总结大学高数知识点总结一、代数:1、函数及其图象:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、相交函数、无穷小量的概念、函数的极限及其性质。
2、不等式:一元不等式与多元不等式的性质、解不等式的方法以及在几何中的应用。
3、导数:函数的导数的定义、性质、计算、利用导数解析函数的最值问题;高阶导数的概念以及利用它确定函数图象的单调性。
4、曲线的积分:曲线的面积、积分的定义、计算方法、利用积分求曲线面积、平面曲线的积分、特殊函数的积分。
5、复数:复数的概念、运算规则、虚部抽象概念、复数函数、复数解析函数及其图象、利用几何性质解决复数问题。
6、三角函数:三角函数的概念、函数表达式、图象、关系式、函数的性质、函数的变换、求解三角函数的方法、应用。
7、统计:概率的概念、抽样理论、统计分布、误差分析、检验理论。
二、初等数论:1、素数及其分解:素数的概念、素数的分解法、素数的基本性质、素数的充要条件。
2、同余理论:同余方程的概念、同余方程的解法、同余方程的性质、模的概念及其性质。
3、欧几里德算法:求最大公约数、求最小公倍数、求逆元、斯特林公式、欧几里得定理及其应用。
4、置换:置换的概念、置换的性质、置换的构成、置换的表示法、置换的应用。
5、图论:图的概念、图的构成、图的性质、图的表示法、图的生成算法、图的应用。
三、几何:1、几何形体:正n边形、正多边形、空间几何体、椭圆、圆锥、圆柱、圆台等几何形体的性质及其应用。
2、切线、切面:曲线的切线、曲面的切面、曲线的法线方向、曲面的法线方向、曲线的曲率、曲面的曲率及其定义。
3、投影:正射投影、透视投影、锥体投影等投影的概念及其应用。
4、立体视角:立体视角的概念、立体视角的定义及其应用。
四、空间几何:1、几何性质:投影的性质、平面的性质、空间的性质、直线的性质、平行线的性质、平面的性质、直线的性质、平行线的性质、面的性质、曲线的性质、曲面的性质、四边形的性质等。
大学高等数学知识点整理一 . 数列函数 :1. 类型 :(1) 数列 : * ; *(2) 初等函数 :(3) 分段函数 : * ; * ;*(4) 复合 ( 含) 函数 :(5) 隐式 ( 方程 ):(6) 参式 ( 数一 , 二 ):(7) 变限积分函数 :(8) 级数和函数 ( 数一 , 三 ):2. 特征 ( 几何 ):(1) 单调性与有界性 ( 判别 ); ( 单调定号 )(2) 奇偶性与周期性 ( 应用 ).3. 反函数与直接函数 :二 . 极限性质 :1. 类型 : * ; * ( 含); * ( 含)2. 无穷小与无穷大 ( 注 : 无穷量 ):3. 未定型 :4. 性质 : * 有界性 , * 保号性 , * 归并性三 . 常用结论 :, , ,, , , ,,四 . 必备公式 :1. 等价无穷小 : 当时 ,; ; ;; ; ;;2. 泰勒公式 :(1) ;(2) ;(3) ;(4) ;(5) .五 . 常规方法 :前提 : (1) 准确判断( 其它如 : ); (2) 变量代换 ( 如 : )1. 抓大弃小,2. 无穷小与有界量乘积 ( ) ( 注 : )3. 处理 ( 其它如 : )4. 左右极限 ( 包括):(1) ; (2) ; ; (3) 分段函数 : , ,5. 无穷小等价替换 ( 因式中的无穷小 )( 注 : 非零因子 )6. 洛必达法则(1) 先” 处理”, 后法则 ( 最后方法 ); ( 注意对比 : 与)(2) 幂指型处理 : ( 如 : )(3) 含变限积分 ;(4) 不能用与不便用7. 泰勒公式 ( 皮亚诺余项 ): 处理和式中的无穷小8. 极限函数 : ( 分段函数 )六 . 非常手段1. 收敛准则 :(1)(2) 双边夹 : * , *(3) 单边挤 : * * *2. 导数定义 ( 洛必达 ?):3. 积分和 : ,4. 中值定理 :5. 级数和 ( 数一三 ):(1) 收敛, ( 如) (2) ,(3) 与同敛散七 . 常见应用 :1. 无穷小比较 ( 等价 , 阶 ): *(1)(2)2. 渐近线 ( 含斜 ):(1)(2) ,( )3. 连续性 : (1) 间断点判别 ( 个数 ); (2) 分段函数连续性 ( 附 : 极限函数 , 连续性 )八 . 上连续函数性质1. 连通性 : ( 注 : , “ 平均” 值 :)2. 介值定理 : ( 附 : 达布定理 )(1) 零点存在定理 : ( 根的个数 );(2) .第二讲 : 导数及应用 ( 一元 )( 含中值定理 )一 . 基本概念 :1. 差商与导数 : ;(1) ( 注 : 连续 ) )(2) 左右导 : ;(3) 可导与连续 ; ( 在处 , 连续不可导 ; 可导 )2. 微分与导数 :(1) 可微可导 ; (2) 比较与的大小比较 ( 图示 );二 . 求导准备 :1. 基本初等函数求导公式 ; ( 注 : )2. 法则 : (1) 四则运算 ; (2) 复合法则 ; (3) 反函数三 . 各类求导 ( 方法步骤 ):1. 定义导 : (1) 与; (2) 分段函数左右导 ; (3)( 注 : , 求 : 及的连续性 )2. 初等导 ( 公式加法则 ):(1) , 求 : ( 图形题 );(2) , 求 : ( 注 : )(3) , 求及 ( 待定系数 )3. 隐式 ( ) 导 :(1) 存在定理 ;(2) 微分法 ( 一阶微分的形式不变性 ).(3) 对数求导法 .4. 参式导 ( 数一 , 二 ) : , 求 :5. 高阶导公式 :; ;;注 : 与泰勒展式 :四 . 各类应用 :1. 斜率与切线 ( 法线 ); ( 区别 : 上点和过点的切线 )2. 物理 : ( 相对 ) 变化率速度 ;3. 曲率 ( 数一二 ): ( 曲率半径 , 曲率中心 , 曲率圆 )4. 边际与弹性 ( 数三 ) : ( 附 : 需求 , 收益 , 成本 , 利润 )五 . 单调性与极值 ( 必求导 )1. 判别 ( 驻点):(1) ; ;(2) 分段函数的单调性(3) 零点唯一 ; 驻点唯一 ( 必为极值 , 最值 ).2. 极值点 :(1) 表格 ( 变号 ); ( 由的特点 )(2) 二阶导 ( )注 (1) 与的匹配 ( 图形中包含的信息 );(2) 实例 : 由确定点“ ” 的特点 .(3) 闭域上最值 ( 应用例 : 与定积分几何应用相结合 , 求最优 )3. 不等式证明 ( )(1) 区别 : * 单变量与双变量 ? * 与?(2) 类型 : * ; ** ; *(3) 注意 : 单调性端点值极值凹凸性 . ( 如 : )4. 函数的零点个数 : 单调介值六 . 凹凸与拐点 ( 必求导 !):1. 表格 ; ( )2. 应用 : (1) 泰勒估计 ; (2) 单调 ; (3) 凹凸 .七 . 罗尔定理与辅助函数 : ( 注 : 最值点必为驻点 )1. 结论 :2. 辅助函数构造实例 :(1)(2)(3)(4) ;3. 有个零点有个零点4. 特例 : 证明的常规方法 : 令有个零点 ( 待定 )5. 注 : 含时 , 分家 !( 柯西定理 )6. 附 ( 达布定理 ): 在可导 , , , 使 :八 . 拉格朗日中值定理1. 结论 : ; ( )2. 估计 :九 . 泰勒公式 ( 连接之间的桥梁 )1. 结论 : ;2. 应用 : 在已知或值时进行积分估计十 . 积分中值定理 ( 附 : 广义 ): [ 注 : 有定积分 ( 不含变限 ) 条件时使用 ]第三讲 : 一元积分学一 . 基本概念 :1. 原函数:(1) ; (2) ; (3)注 (1) ( 连续不一定可导 );(2) ( 连续 )2. 不定积分性质 :(1) ;(2) ;二 . 不定积分常规方法1. 熟悉基本积分公式2. 基本方法 : 拆 ( 线性性 )3. 凑微法 ( 基础 ): 要求巧 , 简 , 活 ( )如 :4. 变量代换 :(1) 常用 ( 三角代换 , 根式代换 , 倒代换 ):(2) 作用与引伸 ( 化简 ):5. 分部积分 ( 巧用 ):(1) 含需求导的被积函数 ( 如);(2)“ 反对幂三指”:(3) 特别 : (* 已知的原函数为; * 已知)6. 特例 : (1) ; (2) 快速法 ; (3)三 . 定积分 :1. 概念性质 :(1) 积分和式 ( 可积的必要条件 : 有界 , 充分条件 : 连续 )(2) 几何意义 ( 面积 , 对称性 , 周期性 , 积分中值 )* ; *(3) 附 : , )(4) 定积分与变限积分 , 反常积分的区别联系与侧重2: 变限积分的处理 ( 重点 )(1) 可积连续 , 连续可导(2) ; ;(3) 由函数参与的求导 , 极限 , 极值 , 积分 ( 方程 ) 问题3. 公式 : ( 在上必须连续 !)注 : (1) 分段积分 , 对称性 ( 奇偶 ), 周期性(2) 有理式 , 三角式 , 根式(3) 含的方程 .4. 变量代换 :(1) ,(2) ( 如 : )(3) ,(4) ; ,(5) ,5. 分部积分(1) 准备时“ 凑常数”(2) 已知或时 , 求6. 附 : 三角函数系的正交性 :四 . 反常积分 :1. 类型 : (1) ( 连续 )(2) : ( 在处为无穷间断 )2. 敛散 ;3. 计算 : 积分法公式极限 ( 可换元与分部 )4. 特例 : (1) ; (2)五 . 应用 : ( 柱体侧面积除外 )1. 面积 ,(1) (2) ;(3) ; (4) 侧面积 :2. 体积 :(1) ; (2)(3) 与3. 弧长 :(1)(2)(3) :4. 物理 ( 数一 , 二 ) 功 , 引力 , 水压力 , 质心 ,5. 平均值 ( 中值定理 ):(1) ;(2) , ( 以为周期 : ) 第四讲 : 微分方程一 . 基本概念1. 常识 : 通解 , 初值问题与特解 ( 注 : 应用题中的隐含条件 )2. 变换方程 :(1) 令( 如欧拉方程 )(2) 令( 如伯努利方程 )3. 建立方程 ( 应用题 ) 的能力二 . 一阶方程 :1. 形式 : (1) ; (2) ; (3)2. 变量分离型 :(1) 解法 :(2)“ 偏” 微分方程 : ;3. 一阶线性 ( 重点 ):(1) 解法 ( 积分因子法 ):(2) 变化 : ;(3) 推广 : 伯努利 ( 数一 )4. 齐次方程 :(1) 解法 :(2) 特例 :5. 全微分方程 ( 数一 ): 且6. 一阶差分方程 ( 数三 ):三 . 二阶降阶方程1. :2. : 令3. : 令四 . 高阶线性方程 :1. 通解结构 :(1) 齐次解 :(2) 非齐次特解 :2. 常系数方程 :(1) 特征方程与特征根 :(2) 非齐次特解形式确定 : 待定系数 ; ( 附 : 的算子法 )(3) 由已知解反求方程 .3. 欧拉方程 ( 数一 ): , 令五 . 应用 ( 注意初始条件 ):1. 几何应用 ( 斜率 , 弧长 , 曲率 , 面积 , 体积 );注 : 切线和法线的截距2. 积分等式变方程 ( 含变限积分 );可设3. 导数定义立方程 :含双变量条件的方程4. 变化率 ( 速度 )5.6. 路径无关得方程 ( 数一 ):7. 级数与方程 :(1) 幂级数求和 ; (2) 方程的幂级数解法 :8. 弹性问题 ( 数三 )第五讲 : 多元微分与二重积分一 . 二元微分学概念1. 极限 , 连续 , 单变量连续 , 偏导 , 全微分 , 偏导连续 ( 必要条件与充分条件 ),(1)(2)(3) ( 判别可微性 )注 : 点处的偏导数与全微分的极限定义 :2. 特例 :(1) : 点处可导不连续 ;(2) : 点处连续可导不可微 ;二 . 偏导数与全微分的计算 :1. 显函数一 , 二阶偏导 :注 : (1) 型 ; (2) ; (3) 含变限积分2. 复合函数的一 , 二阶偏导 ( 重点 ):熟练掌握记号的准确使用3. 隐函数 ( 由方程或方程组确定 ):(1) 形式 : * ; * ( 存在定理 )(2) 微分法 ( 熟练掌握一阶微分的形式不变性 ): ( 要求 : 二阶导 )(3) 注 : 与的及时代入(4) 会变换方程 .三 . 二元极值 ( 定义 ?);1. 二元极值 ( 显式或隐式 ):(1) 必要条件 ( 驻点 );(2) 充分条件 ( 判别 )2. 条件极值 ( 拉格朗日乘数法 ) ( 注 : 应用 )(1) 目标函数与约束条件 : , ( 或 : 多条件 )(2) 求解步骤 : , 求驻点即可 .3. 有界闭域上最值 ( 重点 ).(1)(2) 实例 : 距离问题四 . 二重积分计算 :1. 概念与性质(“ 积” 前工作 ):(1) ,(2) 对称性 ( 熟练掌握 ): * 域轴对称 ; * 奇偶对称 ; * 字母轮换对称 ; * 重心坐标 ;(3)“ 分块” 积分 : * ; * 分片定义 ; * 奇偶2. 计算 ( 化二次积分 ):(1) 直角坐标与极坐标选择 ( 转换 ): 以“ ” 为主 ;(2) 交换积分次序 ( 熟练掌握 ).3. 极坐标使用 ( 转换 ):附 : ; ;双纽线4. 特例 :(1) 单变量 : 或(2) 利用重心求积分 : 要求 : 题型, 且已知的面积与重心5. 无界域上的反常二重积分 ( 数三 )五 : 一类积分的应用 ( ):1. “ 尺寸”: (1) ; (2) 曲面面积 ( 除柱体侧面 );2. 质量 , 重心 ( 形心 ), 转动惯量 ;3. 为三重积分 , 格林公式 , 曲面投影作准备 .第六讲 : 无穷级数 ( 数一 , 三 )一 . 级数概念1. 定义 : (1) , (2) ; (3) ( 如)注 : (1) ; (2) ( 或); (3)“ 伸缩” 级数 : 收敛收敛 .2. 性质 : (1) 收敛的必要条件 : ;(2) 加括号后发散 , 则原级数必发散 ( 交错级数的讨论 );(3) ;二 . 正项级数1. 正项级数 : (1) 定义 : ; (2) 特征 : ; (3) 收敛( 有界 )2. 标准级数 : (1) , (2) , (3)3. 审敛方法 : ( 注 : , )(1) 比较法 ( 原理 ): ( 估计 ), 如;(2) 比值与根值 : * * ( 应用 : 幂级数收敛半径计算 )三 . 交错级数 ( 含一般项 ): ( )1. “ 审” 前考察 : (1) (2) ; (3) 绝对 ( 条件 ) 收敛 ?注 : 若, 则发散2. 标准级数 : (1) ; (2) ; (3)3. 莱布尼兹审敛法 ( 收敛 ?)(1) 前提 : 发散 ; (2) 条件 : ; (3) 结论 : 条件收敛 .4. 补充方法 :(1) 加括号后发散 , 则原级数必发散 ; (2) .5. 注意事项 : 对比; ; ; 之间的敛散关系四 . 幂级数 :1. 常见形式 :(1) , (2) , (3)2. 阿贝尔定理 :(1) 结论 : 敛; 散(2) 注 : 当条件收敛时3. 收敛半径 , 区间 , 收敛域 ( 求和前的准备 )注 (1) 与同收敛半径(2) 与之间的转换4. 幂级数展开法 :(1) 前提 : 熟记公式 ( 双向 , 标明敛域 );;(2) 分解 : ( 注 : 中心移动 ) ( 特别 : )(3) 考察导函数 :(4) 考察原函数 :5. 幂级数求和法 ( 注 : * 先求收敛域 , * 变量替换 ):(1)(2) ,( 注意首项变化 )(3) ,(4) 的微分方程(5) 应用 : .6. 方程的幂级数解法7. 经济应用 ( 数三 ):(1) 复利 : ; (2) 现值 :五 . 傅里叶级数 ( 数一 ): ( )1. 傅氏级数 ( 三角级数 ):2. 充分条件 ( 收敛定理 ):(1) 由( 和函数 )(2)3. 系数公式 :4. 题型 : ( 注 : )(1) 且( 分段表示 )(2) 或(3) 正弦或余弦*(4) ( )*5.6. 附产品 :第七讲 : 向量 , 偏导应用与方向导 ( 数一 )一 . 向量基本运算1. ; ( 平行)2. ; ( 单位向量 ( 方向余弦 ) )3. ; ( 投影 : ; 垂直 : ; 夹角 : )4. ; ( 法向 : ; 面积 : )二 . 平面与直线1. 平面(1) 特征 ( 基本量 ):(2) 方程 ( 点法式 ):(3) 其它 : * 截距式; * 三点式2. 直线(1) 特征 ( 基本量 ):(2) 方程 ( 点向式 ):(3) 一般方程 ( 交面式 ):(4) 其它 : * 二点式 ; * 参数式 ;( 附 : 线段的参数表示 :)3. 实用方法 :(1) 平面束方程 :(2) 距离公式 : 如点到平面的距离(3) 对称问题 ;(4) 投影问题 .三 . 曲面与空间曲线 ( 准备 )1. 曲面(1) 形式: 或; ( 注 : 柱面)(2) 法向( 或) 2. 曲线(1) 形式, 或;(2) 切向 : ( 或)3. 应用(1) 交线 , 投影柱面与投影曲线 ;(2) 旋转面计算 : 参式曲线绕坐标轴旋转 ;(3) 锥面计算 .四 . 常用二次曲面1. 圆柱面 :2. 球面 :变形 : , ,,3. 锥面 :变形 : ,4. 抛物面 : ,变形 : ,5. 双曲面 :6. 马鞍面 : , 或五 . 偏导几何应用1. 曲面(1) 法向 : , 注 :(2) 切平面与法线 :2. 曲线(1) 切向 :(2) 切线与法平面3. 综合 : ,六 . 方向导与梯度 ( 重点 )1. 方向导 ( 方向斜率 ):(1) 定义 ( 条件 ):(2) 计算 ( 充分条件 : 可微 ):附 :(3) 附 :2. 梯度 ( 取得最大斜率值的方向 ) :(1) 计算 :;(2) 结论;取为最大变化率方向 ;为最大方向导数值 .第八讲 : 三重积分与线面积分 ( 数一 )一 . 三重积分 ( )1. 域的特征 ( 不涉及复杂空间域 ):(1) 对称性 ( 重点 ): 含 : 关于坐标面 ; 关于变量 ; 关于重心(2) 投影法 :(3) 截面法 :(4) 其它 : 长方体 , 四面体 , 椭球2. 的特征 :(1) 单变量, (2) , (3) , (4)3. 选择最适合方法 :(1)“ 积” 前 : * ; * 利用对称性 ( 重点 )(2) 截面法 ( 旋转体 ): ( 细腰或中空 , , )(3) 投影法 ( 直柱体 ):(4) 球坐标 ( 球或锥体 ): ,(5) 重心法 ( ):4. 应用问题 :(1) 同第一类积分 : 质量 , 质心 , 转动惯量 , 引力(2) 公式二 . 第一类线积分 ( )1. “ 积” 前准备 :(1) ; (2) 对称性 ; (3) 代入“ ” 表达式2. 计算公式 :3. 补充说明 :(1) 重心法 : ;(2) 与第二类互换 :4. 应用范围(1) 第一类积分(2) 柱体侧面积三 . 第一类面积分 ( )1. “ 积” 前工作 ( 重点 ):(1) ; ( 代入)(2) 对称性 ( 如 : 字母轮换 , 重心 )(3) 分片2. 计算公式 :(1)(2) 与第二类互换 :四 : 第二类曲线积分 (1): ( 其中有向 )1. 直接计算 : ,常见 (1) 水平线与垂直线 ; (2)2. Green 公式 :(1) ;(2) : * 换路径 ; * 围路径(3) ( 但内有奇点 ) ( 变形 )3. 推广 ( 路径无关性 ):(1) ( 微分方程 ) ( 道路变形原理 )(2) 与路径无关 ( 待定 ): 微分方程 .4. 应用功 ( 环流量 ): ( 有向, , ) 五 . 第二类曲面积分 :1. 定义 : , 或( 其中含侧 )2. 计算 :(1) 定向投影 ( 单项 ): , 其中( 特别 : 水平面 ); 注 : 垂直侧面 , 双层分隔(2) 合一投影 ( 多项 , 单层 ):(3) 化第一类 ( 不投影 ):3. 公式及其应用 :(1) 散度计算 :(2) 公式 : 封闭外侧 , 内无奇点(3) 注 : * 补充“ 盖” 平面 : ; * 封闭曲面变形( 含奇点 )4. 通量与积分 :( 有向, , )六 : 第二类曲线积分 (2):1. 参数式曲线: 直接计算 ( 代入 )注 (1) 当时 , 可任选路径 ; (2) 功 ( 环流量 ):2. Stokes 公式 : ( 要求 : 为交面式 ( 有向 ), 所张曲面含侧 )(1) 旋度计算 :(2) 交面式 ( 一般含平面 ) 封闭曲线 : 同侧法向或;(3)Stokes 公式 ( 选择 ):( ) 化为; ( ) 化为; ( ) 化为高数重点知识总结1、基本初等函数:反函数 (y=arctanx) ,对数函数 (y=lnx) ,幂函数 (y=x) ,指数函数 ( ) ,三角函数 (y=sinx) ,常数函数 (y=c)2、分段函数不是初等函数。
高数复习知识点及公式一、知识点1、 求直线方程和平面方程2、 求条件极值3、 二重积分4、 曲线积分(弧长积分、坐标积分)5、 曲面积分6、 格林公式7、 高斯公式→空间闭曲面 ※8、 幂级数(求收敛半径、判断正项级数收敛性) 9、 傅里叶级数二、公式空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y m tx x p n m s t p z z n y y m x x C B A DCz By Ax d c zb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx yx x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。
大一高数知识点笔记大全一、函数与极限1. 函数的定义与性质- 函数的概念- 定义域、值域与对应关系- 奇偶性与周期性- 单调性与零点- 复合函数与反函数2. 极限的概念与性质- 函数极限的定义- 左、右极限与无穷大极限- 极限的四则运算法则- 极限存在准则- 无穷小与无穷大二、导数与微分1. 导数的概念与计算- 导数的定义与几何意义 - 基本函数的导数- 导数的四则运算法则- 高阶导数与Leibniz公式2. 微分的概念与应用- 微分的定义与计算- 高阶微分的概念- 微分中值定理- 凹凸性与拐点三、不定积分与定积分1. 不定积分的概念与计算 - 不定积分的定义- 分部积分法与换元积分法 - 部分分式分解法2. 定积分的概念与计算- 定积分的定义与几何意义 - 定积分的基本性质- 牛顿-莱布尼茨公式- 反常积分四、微分方程1. 微分方程的基本概念- 微分方程的定义与分类 - 解的存在唯一性- 利用初始条件求解2. 常微分方程的解法- 齐次线性方程- Bernoulli方程- 一阶线性齐次方程- 二阶线性齐次方程五、多元函数与偏导数1. 多元函数的概念与性质 - 多元函数的定义与表示 - 偏导数的概念与计算 - 隐函数与参数曲线2. 高阶偏导数与全微分- 高阶偏导数的定义- 混合偏导数与次序互换 - 全微分的概念与计算- 隐函数的全微分公式六、重积分与曲线积分1. 二重积分的概念与计算- 二重积分的定义与性质- 坐标变换与极坐标系- 二重积分的计算方法- 物理应用2. 三重积分的概念与计算- 三重积分的定义与性质- 坐标变换与柱坐标系、球坐标系 - 三重积分的计算方法- 物理应用七、向量代数与空间解析几何1. 空间向量与向量运算- 空间向量的概念与表示- 向量的线性运算- 向量的数量积与夹角- 平面与直线的方程2. 空间解析几何的基本概念- 平面与直线的位置关系- 点、直线与面的距离- 球的方程与性质- 圆柱曲线与曲面以上是大一高数的知识点笔记大全,通过仔细学习和实践掌握这些知识点,将对你的数学学习和理解有很大的帮助。
高数基础知识总结与重点概念整理
一、导数与微分
导数:描述函数在某一点附近的变化率,是函数值的极限。
可导性:函数在某点可导,当且仅当该点附近存在一个定义恰当的导数。
微分:一个近似值,表示函数在某点附近的小变化所引起的函数值的大致变化。
二、积分
不定积分:求一个函数的原函数(或反导数),即求函数的不定积分。
定积分:对一个区间上函数的值的总和的量度,即求函数的定积分。
微积分基本定理:定积分可化为不定积分的计算。
三、级数
数列:一个数字序列。
无穷级数:无穷多个数的和,即数列的和。
收敛性:无穷级数趋于一个有限的和的性质称为收敛性。
发散性:无穷级数不收敛的性质称为发散性。
四、多元函数
多元函数:定义在多个变量上的函数。
偏导数:多元函数对一个变量的导数。
方向导数:描述函数在某点处沿某一方向的变化率。
梯度:方向导数的最大值,表示函数在某点处沿梯度方向的增长最快的方向。
五、微分方程
微分方程:包含未知函数的导数或微分的方程。
初值问题:给定初始条件的微分方程问题。
通解与特解:满足微分方程的解称为通解,满足特定初始条件的解称为特解。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y =a x ),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x 2+x x=lim =13、无穷小:高阶+低阶=低阶例如:lim x →0x →0xx sin x4、两个重要极限:(1)lim =1x →0x (2)lim (1+x )=ex →01x⎛1⎫lim 1+⎪=ex →∞⎝x ⎭g (x )x经验公式:当x →x 0,f (x )→0,g (x )→∞,lim [1+f (x )]x →x 0=e x →x 0lim f (x )g (x )例如:lim (1-3x )=e x →01x⎛3x ⎫lim -⎪x →0⎝x ⎭=e -35、可导必定连续,连续未必可导。
例如:y =|x |连续但不可导。
6、导数的定义:lim∆x →0f (x +∆x )-f (x )=f '(x )∆x x →x 0limf (x )-f (x 0)=f '(x 0)x -x 07、复合函数求导:df [g (x )]=f '[g (x )]•g '(x )dx例如:y =x +x ,y '=2x =2x +12x +x 4x 2+x x1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dxx 2+y 2=1,2x +2yy '=0⇒y '=-例如:解:法(1),左右两边同时求导xy dy x法(2),左右两边同时微分,2xdx +2ydy ⇒=-dx y9、由参数方程所确定的函数求导:若⎨⎧y =g (t )dy dy /dt g '(t )==,则,其二阶导数:dx dx /dt h '(t )⎩x =h (t )d (dy /dx )d [g '(t )/h '(t )]d y d (dy /dx )dt dt ===2dx dx dx /dt h '(t )210、微分的近似计算:f (x 0+∆x )-f (x 0)=∆x •f '(x 0)例如:计算sin 31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y =sin x(x=0x是函数可去间断点),y =sgn(x )(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f (x )=sin ⎪(x=0是函数的振荡间断点),y =数的无穷间断点)12、渐近线:水平渐近线:y =lim f (x )=cx →∞⎛1⎫⎝x ⎭1(x=0是函x 铅直渐近线:若,lim f (x )=∞,则x =a 是铅直渐近线.x →a斜渐近线:设斜渐近线为y =ax +b ,即求a =lim x →∞f (x ),b =lim [f (x )-ax ]x →∞x x 3+x 2+x +1例如:求函数y =的渐近线x 2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。
每个部分都需要深入学习并通过大量的练习来掌握。
这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。
第 1 1 页页共 30 30 页页大学全册高等数学知识点(全套)极限与连续一. 数列函数: 1. 类型类型: (1)数列: *()n a f n =; *1()n na f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x £ì=í>î; *00()(),x x f x F x x x a ¹ì=í=î;* (4)复合(含f )函数: (),()y f u u x j == (5)隐式(方程): (,)0F x y = (6)参式(数一,二): ()()x x t y y t =ìí=î (7)变限积分函数: ()(,)xaF x f x t dt=ò (8)级数和函数(数一,三): (),n n n S x a x x ¥==ÎW å 2. 特征特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x Þ"--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数反函数与直接函数: 11()()()y f x x f y y f x --=Û=Þ=二. 极限性质: 1. 类型类型: *lim n n a ®¥; *lim ()x f x ®¥(含x ®±¥); *0lim ()x x x xf x ®(含0x x ±®) 2. 无穷小与无穷大无穷小与无穷大(注: 无穷量): 3. 未定型未定型: 000,,1,,0,0,0¥¥¥-¥×¥¥¥ 4. 性质性质: *有界性有界性, *保号性保号性, *归并性归并性第 2 2 页页 共 30 30 页页三. 常用结论: 四. 必备公式: 1. 等价无穷小等价无穷小: 当()0u x ®时, 2. 泰勒公式泰勒公式: (1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+; (3)341sin ()3!x x x o x =-+; (4)24511cos 1()2!4!x x x o x =-++; (5)22(1)(1)1()2!x x x o x a a a a -+=+++. 五. 常规方法: 前提前提: (1)准确判断准确判断0,,1,0M a ¥¥¥(其它如:00,0,0,¥-¥×¥¥); (2)变量代换(如:1t x=) 1. 抓大弃小抓大弃小()¥¥, 2. 无穷小与有界量乘积无穷小与有界量乘积 (M a ×) (注:1sin 1,x x£®¥) 3. 1¥处理(其它如:000,¥) 4. 左右极限左右极限(包括x ®±¥): (1)1(0)x x ®; (2)()xe x ®¥; 1(0)xe x ®; (3)分段函数: x , []x , max ()f x 5. 无穷小等价替换无穷小等价替换(因式中的无穷小)(注: 非零因子) 6. 洛必达法则洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比注意对比: 1ln lim 1x x x x ®-与0ln lim 1x x x x ®-) (2)幂指型处理: ()()ln ()()v x v x u x u x e =(如: 1111111(1)x x xx xe e e e -++-=-) 第 3 3 页页 共 30 30 页页 (3)含变限积分; (4)不能用与不便用 7. 泰勒公式泰勒公式(皮亚诺余项): 处理和式中的无穷小处理和式中的无穷小处理和式中的无穷小 8. 极限函数极限函数: ()lim (,)n f x F x n ®¥=(Þ分段函数) 六. 非常手段非常手段 1. 收敛准则收敛准则: (1)()lim ()n x a f n f x ®+¥=Þ (2)双边夹: *n n n b a c ££, *,?n n b c a ® (3)单边挤: 1()n n a f a += *21?a a ³ *?n a M £ *'()0?f x > 2. 导数定义导数定义(洛必达?): 0lim'()x ff x x®= 3. 积分和积分和: 10112lim [()()()]()n nf f f f x dx n n nn ®¥+++=ò, 4. 中值定理中值定理: lim[()()]lim '()x x f x a f x a f x ®+¥®+¥+-= 5. 级数和级数和(数一三): (1)1n n a ¥=å收敛lim 0nn a ®¥Þ=, (如2!lim nnn n n ®¥) (2)121lim()n n n n a a a a ¥®¥=+++=å, (3){}n a 与11()n n n a a ¥-=-å同敛散同敛散七. 常见应用: 1. 无穷小比较无穷小比较(等价,阶): *(),(0)?nf x kx x ® (1)(1)()(0)'(0)(0)0,(0)n n f f ffa -=====Û()()!!n nna a f x x x x n n a =+ (2)0()x xn f t dt kt dtòò 2. 渐近线渐近线(含斜): (1)()lim ,lim[()]x x f x a b f x ax x®¥®¥==-()f x ax b a Þ++第 4 4 页页 共 30 30 页页 (2)()f x ax b a =++,(10x®) 3. 连续性连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质上连续函数性质 1. 连通性连通性: ([,])[,]f a b m M = (注:01l "<<, “平均”值:0()(1)()()f a f b f x l l +-=) 2. 介值定理介值定理: (附: 达布定理) (1)零点存在定理: ()()0f a f b <0()0f x Þ=(根的个数); (2)()0(())'0x a a f x f x dx =Þ=ò. 第二讲:导数及应用(一元)(含中值定理)一. 基本概念: 1. 差商与导数差商与导数: '()f x =0()()lim x f x x f x x®+-; 0'()f x =000()()lim x x f x f x x x ®-- (1)0()(0)'(0)lim x f x f f x ®-= (注:0()lim (x f x A f x ®=连续)(0)0,'(0)f f A Þ==) (2)左右导: ''00(),()f x f x -+; (3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+Þ= (1)可微Û可导; (2)比较,f df D 与"0"的大小比较(图示); 二. 求导准备: 1. 基本初等函数求导公式基本初等函数求导公式; (注: (())'f x ) 2. 法则法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤): 第 5 5 页页 共 30 30 页页 1. 定义导定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()lim h f x h f x h h®+-- (注: 00()(),x x F x f x x x a ¹ì=í=î, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导初等导(公式加法则): (1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xa F x f t dt =òò, 求:'()F x (注: ((,))',((,))',(())'xbba a a f x t dt f x t dt f t dt òòòòòò) (3)0102(),()x x f x y x x f x <ì=í³î,求''00(),()f x f x -+及0'()f x (待定系数) 3. 隐式隐式((,)0f x y =)导: 22,dy d ydx dx (1)存在定理; (2)微分法(一阶微分的形式不变性). (3)对数求导法. 4. 参式导参式导(数一,二): ()()x x t y y t =ìí=î, 求:22,dy d ydx dx 5. 高阶导高阶导()()n f x 公式: 注: ()(0)n f 与泰勒展式: 2012()nnf x a a x a x a x =+++++()(0)!n nf a n Þ=四. 各类应用: 1. 斜率与切线斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线) 2. 物理物理: (相对相对)变化率-速度; 3. 曲率曲率(数一二): 23"()(1'())f x f x r =+(曲率半径, 曲率中心, 曲率圆) 4. 边际与弹性边际与弹性(数三): (附: 需求, 收益, 成本, 利润)第 6 6 页页 共 30 30 页页五. 单调性与极值(必求导) 1. 判别判别(驻点0'()0f x =): (1) '()0()f x f x ³Þ; '()0()f x f x £Þ; (2)分段函数的单调性分段函数的单调性 (3)'()0f x >Þ零点唯一; "()0f x >Þ驻点唯一(必为极值,最值). 2. 极值点极值点: (1)表格('()f x 变号); (由0002'()'()''()lim 0,lim 0,lim 00xx x x x x f x f x f x x x x x ®®®¹¹¹Þ=的特点) (2)二阶导(0'()0f x =) 注(1)f 与',"f f 的匹配('f 图形中包含的信息); (2)实例: 由'()()()()f x x f x g x l +=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明不等式证明(()0f x ³) (1)区别: *单变量与双变量单变量与双变量? *[,]x a b Î与[,),(,)x a x Î+¥Î-¥+¥? (2)类型: *'0,()0f f a ³³; *'0,()0f f b £³ (3)注意: 单调性Å端点值Å极值Å凹凸性. (如: max ()()f x M f x M £Û=) 4. 函数的零点个数函数的零点个数: 单调Å介值介值 六. 凹凸与拐点(必求导!): 1. "y Þ表格; (0"()0f x =) 2. 应用应用: (1)泰勒估计泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论结论: ()()'()()0F b F a F f x x =Þ==第 7 7 页页 共 30 30 页页 2. 辅助函数构造实例辅助函数构造实例: (1)()f x Þ()()x a a F x f t dt=ò (2)'()()()'()0()()()f g f g F x f x g x x x x x +=Þ= (3)()'()()()'()0()()f x fg f g F x g x x x x x -=Þ= (4)'()()()0f f x l x x +=Þ()()()x dxF x e f x l ò=; 3. ()()0()n ff x x =Û有1n +个零点(1)()n fx -Û有2个零点个零点 4. 特例特例: 证明()()n f a x =的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定) 5. 注: 含12,x x 时,分家!(柯西定理) 6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b "Î,[,]a b x $Î,使:'()f c x = 八. 拉格朗日中值定理拉格朗日中值定理 1. 结论结论: ()()'()()f b f a f b a x -=-; (()(),'()0a b j j x j x <Þ$'>) 2. 估计估计: '()f f x x =九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x x =+-+-+-; 2. 应用应用: 在已知()f a 或()f b 值时进行积分估计值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学 一. 基本概念: 1. 原函数原函数()F x : (1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+ò第 8 8 页页 共 30 30 页页 注(1)()()x aF x f t dt=ò(连续不一定可导); (2)()()()()xx aax t f t dt f t dt f x -ÞÞòò (()f x 连续) 2. 不定积分性质不定积分性质: (1)(())'()f x dx f x =ò; (())()d f x dx f x dx =ò (2)'()()f x dx f x c =+ò; ()()df x f x c=+ò二. 不定积分常规方法 1. 熟悉基本积分公式熟悉基本积分公式熟悉基本积分公式 2. 基本方法基本方法: 拆(线性性) 3. 凑微法凑微法(基础): 要求巧要求巧,简,活(221sin cos x x =+) 如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2dxd x x = 4. 变量代换变量代换: (1)常用(三角代换,根式代换,倒代换): 1sin ,,,1xx t ax b t t e t x =+==+= (2)作用与引伸(化简): 21x x t ±-= 5. 分部积分分部积分(巧用): (1)含需求导的被积函数(如ln ,arctan ,()xaxxf t dtò); (2)“反对幂三指”: ,ln ,n axnx e dxxxdxòò (3)特别: ()xf x dxò (*已知()f x 的原函数为()F x ; *已知已知'()()f x F x =) 6. 特例特例: (1)11sin cos sin cos a x b x dx a x b x ++ò; (2)(),()sin kx p x e dx p x axdxòò快速法; (3)()()n v x dx u x ò 三. 定积分: 1. 概念性质概念性质: (1)积分和式(可积的必要条件:有界, 充分条件:连续) 第 9 9 页页 共 30 30 页页 (2)几何意义(面积,对称性,周期性,积分中值) (3)附: ()()b a f x dx M b a £-ò, ()()()bba af xg x dx Mg x dx £òò) (4)定积分与变限积分, 反常积分的区别联系与侧重反常积分的区别联系与侧重 2: 变限积分变限积分()()xa x f t dt F =ò的处理(重点) (1)f 可积ÞF 连续, f 连续ÞF 可导可导 (2)(())'xa f t dt ò()f x =; (()())'()xx aax t f t dt f t dt-=òò; ()()()xa f x dt x a f x =-ò (3)由函数()()xaF x f t dt=ò参与的求导, 极限, 极值, 积分(方程)问题问题 3. N L -公式: ()()()ba f x dx Fb F a =-ò(()F x 在[,]a b 上必须连续!) 注: (1)分段积分分段积分, 对称性(奇偶), 周期性周期性 (2)有理式, 三角式, 根式根式 (3)含()ba f t dt ò的方程. 4. 变量代换变量代换: ()(())'()ba f x dxf u t u t dt ba=òò (1)00()()()aaf x dx f a x dx x a t =-=-òòòò, (2)0()()()[()()]a a aa af x dx f x dx x t f x f x dx--=-=-=+-òòò (如:4411sin dx xpp -+ò) (3)2201sin nn n n I xdx I n p--==ò, (4)2200(sin )(cos )f x dxf x dx pp=òò; 200(sin )2(sin )f x dxf x dx pp=òò, (5)00(sin )(sin )2xf x dx f x dx p pp =òò, 5. 分部积分分部积分分部积分 (1)准备时“凑常数” (2)已知'()f x 或()xaf x =ò时, 求()baf x dx ò 6. 附: 三角函数系的正交性: 第 10 10 页页 共 30 30 页页四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +¥+¥-¥-¥òòò (()f x 连续) (2)()ba f x dx ò: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断) 2. 敛散; 3. 计算: 积分法积分法ÅN L -公式Å极限(可换元与分部) 4. 特例: (1)11p dx x +¥ò; (2)101pdx xò 五. 应用: (柱体侧面积除外柱体侧面积除外) 1. 面积面积, (1)[()()];b a S f x g x dx=-ò (2)1()dcS f y dy -=ò; (3)21()2S r d b aq q =ò; (4)侧面积:22()1'()b aS f x f x dx p =+ò 2. 体积体积: (1)22[()()]b x a V f x g x dx p =-ò; (2)12[()]2()dby caV f y dyxf x dx p p-==òò (3)0x x V =与0y y V = 3. 弧长弧长: 22()()ds dx dy =+ (1)(),[,]y f x x a b =Î 21'()bas fx dx =+ò (2)12(),[,]()x x t t t t y y t =ìÎí=î 2122'()'()t t s x t y t dt =+ò (3)(),[,]r r q q a b =Î: 22()'()s r r d baq q q=+ò 4. 物理物理(数一,二)功,引力,水压力,质心, 5. 平均值平均值(中值定理): (1)1[,]()ba f ab f x dx b a =-ò; (2)0()[0)lim xx f t dt f x®+¥+¥=ò, (f 以T 为周期:0()Tf t dt f T=ò) 第 11 11 页页 共 30 30 页页 第四讲: 微分方程一. 基本概念基本概念 1. 常识常识: 通解, 初值问题与特解(注: 应用题中的隐含条件) 2. 变换方程变换方程: (1)令()'""x x t y Dy =Þ=(如欧拉方程) (2)令(,)(,)'u u x y y y x u y =Þ=Þ(如伯努利方程) 3. 建立方程建立方程(应用题)的能力的能力 二. 一阶方程: 1. 形式形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b = 2. 变量分离型变量分离型: '()()y f x g y = (1)解法: ()()()()dyf x dx G y F x Cg y =Þ=+òò (2)“偏”微分方程: (,)zf x y x ¶=¶; 3. 一阶线性一阶线性(重点): '()()y p x y q x += (1)解法(积分因子法): 0()01()[()()]()xx p x dxxx M x ey M x q x dx y M x ò=Þ=+ò (2)变化: '()()x p y x q y +=; (3)推广: 伯努利(数一) '()()y p x y q x y a+= 4. 齐次方程齐次方程: '()yy x=F (1)解法: '(),()y du dx u u xu ux u u x =Þ+=F =F -òò (2)特例: 111222a xb yc dy dx a x b y c ++=++第 12 12 页页 共 30 30 页页 5. 全微分方程全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y¶¶=¶¶ 6. 一阶差分方程一阶差分方程(数三): 1*0()()xx x x xn x xy ca y ay b p x y x Q x b+=ì-=Þí=î 三. 二阶降阶方程二阶降阶方程 1. "()y f x =: 12()y F x c x c =++ 2. "(,')y f x y =: 令'()"(,)dp y p x y f x p dx=Þ== 3. "(,')y f y y =: 令'()"(,)dp y p y y pf y p dy=Þ==四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构通解结构: (1)齐次解: 01122()()()y x c y x c y x =+ (2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c l l ++= (2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程. 3. 欧拉方程欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =Þ=-=五. 应用(注意初始条件): 1. 几何应用几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距切线和法线的截距 2. 积分等式变方程积分等式变方程(含变限积分); 可设可设 ()(),()0xa f x dx F x F a ==ò第 13 13 页页 共 30 30 页页 3. 导数定义立方程导数定义立方程: 含双变量条件()f x y +=的方程的方程 4. 变化率变化率(速度) 5. 22dv d x F ma dt dt=== 6. 路径无关得方程路径无关得方程(数一): Q Px y ¶¶=¶¶ 7. 级数与方程级数与方程: (1)幂级数求和; (2)方程的幂级数解法:21201,(0),'(0)y a a x a x a y a y =+++== 8. 弹性问题弹性问题(数三) 第五讲: 多元微分与二重积分一. 二元微分学概念二元微分学概念 1. 极限极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y D =++D =+D =+ (2)lim ,lim ,limy x x y f f f f f xyD D D ==D D (3)22,lim()()x y f df f x f y df x y D -++ (判别可微性判别可微性) 注: (0,0)点处的偏导数与全微分的极限定义: 2. 特例特例: (1)22(0,0)(,)0,(0,0)xyx y f x y ì¹ï+=íï=î: (0,0)点处可导不连续; 第 14 14 页页 共 30 30 页页 (2)22(0,0)(,)0,(0,0)xy f x y x y ì¹ï=+íï=î: (0,0)点处连续可导不可微; 二. 偏导数与全微分的计算: 1. 显函数一显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)x x y z ; (3)含变限积分含变限积分 2. 复合函数的一复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y = 熟练掌握记号''"""12111222,,,,f f f f f 的准确使用的准确使用 3. 隐函数隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =ìí=î (存在定理) (2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入的及时代入 (4)会变换方程. 三. 二元极值(定义?); 1. 二元极值二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别) 2. 条件极值条件极值(拉格朗日乘数法) (注: 应用) (1)目标函数与约束条件: (,)(,)0z f x y x y j =Å=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y l lj =+, 求驻点即可. 3. 有界闭域上最值有界闭域上最值(重点). (1)(,){(,)(,)0}z f x y M D x y x y j =ÅÎ=£ (2)实例: 距离问题距离问题第 15 15 页页 共 30 30 页页四. 二重积分计算: 1. 概念与性质概念与性质(“积”前工作): (1)Dd s òò, (2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称字母轮换对称; *重心重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶奇偶 2. 计算计算(化二次积分): (1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用极坐标使用(转换): 22()f x y + 附: 222:()()D x a y b R -+-£; 2222:1x yD a b+£; 双纽线222222()()x y a x y +=- :1D x y +£ 4. 特例特例: (1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +òò, 且已知D 的面积D S 与重心(,)x y 5. 无界域上的反常二重积分无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L s WÞW W G S ò): 1. “尺寸”: (1)D Dd S s Ûòò; (2)曲面面积(除柱体侧面); 2. 质量质量, 重心(形心), 转动惯量; 3. 为三重积分为三重积分, 格林公式, 曲面投影作准备. 第六讲: 无穷级数(数一,三) 一. 级数概念级数概念第 16 16 页页 共 30 30 页页 1. 定义定义: (1){}n a , (2)12n n S a a a =+++; (3)l im lim n n S ®¥ (如1(1)!n nn ¥=+å) 注: (1)lim nn a ®¥; (2)nq å(或1n a å); (3)“伸缩”级数:1()n n a a +-å收敛{}n a Û收敛. 2. 性质性质: (1)收敛的必要条件: lim 0n n a ®¥=; (2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +®®Þ®Þ®; 二. 正项级数正项级数 1. 正项级数正项级数: (1)定义: 0n a ³; (2)特征: n S ; (3)收敛n S M Û£(有界) 2. 标准级数标准级数: (1)1p n å, (2)ln kn n a å, (3)1ln kn n å 3. 审敛方法审敛方法: (注:222ab a b £+,ln ln baa b=) (1)比较法(原理):np ka n(估计), 如1()nf x dx ò; ()()P n Q n å (2)比值与根值: *1lim n n n u u+®¥ *lim nn n u ®¥ (应用: 幂级数收敛半径计算) 三. 交错级数(含一般项): 1(1)n n a +-å(0n a >) 1. “审”前考察: (1)0?n a > (2)0?n a ®; (3)绝对(条件)收敛? 注: 若1lim 1n n n a a r +®¥=>,则nu å发散发散 2. 标准级数标准级数: (1)11(1)n n +-å; (2)11(1)n pn +-å; (3)11(1)ln n pn +-å 3. 莱布尼兹审敛法莱布尼兹审敛法(收敛?) (1)前提: na å发散; (2)条件: ,0nn a a ®; (3)结论: 1(1)n n a +-å条件收敛. 第 17 17 页页 共 30 30 页页 4. 补充方法补充方法: (1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +®®Þ®Þ®. 5. 注意事项注意事项: 对比对比对比 na å; (1)nna -å; na å; 2n a å之间的敛散关系之间的敛散关系四. 幂级数: 1. 常见形式常见形式: (1)nn a x å, (2)0()n n a x x -å, (3)20()nn a x x -å 2. 阿贝尔定理阿贝尔定理: (1)结论: *x x =敛*0R x x Þ³-; *x x =散*0R x x Þ£- (2)注: 当*x x =条件收敛时*R x x Þ=- 3. 收敛半径收敛半径,区间,收敛域(求和前的准备) 注(1),nn n n a na x x n åå与n n a x å同收敛半径同收敛半径 (2)nn a x å与20()nn a x x -å之间的转换之间的转换 4. 幂级数展开法幂级数展开法: (1)前提: 熟记公式(双向,标明敛域) (2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx fÞ=+ò (4)考察原函数: 0()()xg xf x dxò()'()f x g x Þ= 5. 幂级数求和法幂级数求和法(注: *先求收敛域, *变量替换变量替换): (1)(),S x =+åå (2)'()S x =,(注意首项变化) (3)()()'S x =å, (4)()"()"S x S x Þ的微分方程的微分方程第 18 18 页页 共 30 30 页页 (5)应用:()(1)n n n n a a x S x a SÞ=Þ=ååå. 6. 方程的幂级数解法方程的幂级数解法方程的幂级数解法 7. 经济应用经济应用(数三): (1)复利: (1)nA p +; (2)现值: (1)nA p -+ 五. 傅里叶级数(数一): (2T p =) 1. 傅氏级数傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ¥==++å 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x Þ(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdxa f x dx nb f x nxdx ppp pp p p pp ---ì=ïï==íï=ïîòòò 4. 题型题型: (注: ()(),?f x S x x =Î) (1)2T p =且(),(,]f x x p p =Î-(分段表示) (2)(,]x p p Î-或[0,2]x p Î (3)[0,]x p Î正弦或余弦正弦或余弦 *(4)[0,]x p Î(T p =) *5. 2T l = 6. 附产品附产品: ()f x Þ01()cos sin 2n n n a S x a nx b nx ¥==++å 第七讲: 向量,偏导应用与方向导(数一) 一. 向量基本运算向量基本运算第 19 19 页页 共 30 30 页页 1. 12k a kb +; (平行b a l Û=) 2. a ; (单位向量(方向余弦) 1(cos ,cos ,cos )aaaa b g =) 3. a b ×; (投影:()a a b b a ×=; 垂直垂直:0a b a b ^Û×=; 夹角夹角:(,)a b ab a b ×=) 4. a b ´; (法向:,n a b a b=´^; 面积面积:S a b =´) 二. 平面与直线平面与直线 1.平面平面P (1)特征(基本量): 0000(,,)(,,)M x y z n A B C Å= (2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D p -+-+-=Þ+++= (3)其它: *截距式截距式1x y za b c++=; *三点式三点式三点式 2.直线直线L (1)特征(基本量): 0000(,,)(,,)M x y z s m n p Å= (2)方程(点向式): 000:x x y y z z L m n p ---== (3)一般方程(交面式): 1111222200A x B y C z D A x B y C z D +++=ìí+++=î (4)其它: *二点式二点式; *参数式参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-ìï=+-Îíï=+-î) 3. 实用方法实用方法: (1)平面束方程: 11112222:()0A x B y C z D A x B y C z D p l +++++++=第 20 20 页页 共 30 30 页页 (2)距离公式: 如点如点0(,)M x y 到平面的距离000222Ax By Cz Dd A B C+++=++ (3)对称问题; (4)投影问题. 三. 曲面与空间曲线(准备) 1. 曲面曲面曲面 (1)形式S : (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F a b g =Þ (或(,1)x y n z z =--) 2. 曲线曲线曲线 (1)形式():()()x x t y y t z z t =ìïG =íï=î, 或(,,)0(,,)0F x y z G x y z =ìí=î; (2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =´) 3. 应用应用应用 (1)交线, 投影柱面与投影曲线; (2)旋转面计算: 参式曲线绕坐标轴旋转参式曲线绕坐标轴旋转; (3)锥面计算. 四. 常用二次曲面常用二次曲面 1. 圆柱面圆柱面: 222x y R += 2. 球面球面: 2222x y z R ++= 变形: 2222x y R z +=-, 222()z R x y =-+, 3. 锥面锥面: 22z x y =+ 变形: 222x y z +=, 22z a x y =-+ 4. 抛物面抛物面: 22z x y =+, 第 21 21 页页 共 30 30 页页 变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面双曲面: 2221x y z +=± 6. 马鞍面马鞍面: 22z x y =-, 或z xy = 五. 偏导几何应用偏导几何应用 1. 曲面曲面曲面 (1)法向: (,,)0(,,)x y z F x y z n F F F =Þ=, 注: (,)(,1)x y z f x y n f f =Þ=- (2)切平面与法线: 2. 曲线曲线曲线 (1)切向: (),(),()(',',')x x t y y t z z t s x y z ===Þ= (2)切线与法平面切线与法平面 3. 综合综合: :G 00F G =ìí=î , 12s n n=´ 六. 方向导与梯度(重点) 1. 方向导方向导(l 方向斜率): (1)定义(条件): (,,)(cos ,cos ,cos )l m n p a b g =Þ (2)计算(充分条件:可微): cos cos cos x y z uu u u la b g ¶=++¶ 附: 0(,),{cos ,sin }z f x y l q q==cos sin x y z f f lq q ¶Þ=+¶ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lq q q q¶=++¶ 2. 梯度梯度(取得最大斜率值的方向) G : (1)计算: (2)结论结论()b 取l G =为最大变化率方向; 第 22 22 页页 共 30 30 页页 ()c 0()G M 为最大方向导数值. 第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Wòòò) 1. W 域的特征(不涉及复杂空间域): (1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心关于重心 (2)投影法: 22212{(,)}(,)(,)xyD x y x y R z x y z z x y =+£Å££ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+£Å££ (4)其它: 长方体长方体, 四面体四面体, 椭球椭球椭球 2. f 的特征: (1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法选择最适合方法: (1)“积”前: *dvWòòò; *利用对称性(重点) (2)截面法(旋转体): ()baD z I dzfdxdy=òòò(细腰或中空, ()f z , 22()f x y +) (3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdyfdz=òòò (4)球坐标(球或锥体): 220sin ()RI ddf d paqj jr r=×××òòò, (5)重心法(f ax by cz d =+++): ()I ax by cz d V W =+++ 4. 应用问题应用问题: (1)同第一类积分: 质量质量, 质心, 转动惯量, 引力引力 (2)Gauss 公式公式 二. 第一类线积分(Lfds ò) 1. “积”前准备: 第 23 23 页页 共 30 30 页页 (1)Lds L =ò; (2)对称性; (3)代入“L ”表达式表达式 2. 计算公式计算公式: 22()[,]((),())'()'()()b a L x x t t a b fds f x t y t x t y t dt y y t =ìÎÞ=+í=îòò 3. 补充说明补充说明: (1)重心法: ()()Lax by c ds ax by c L ++=++ò; (2)与第二类互换: LLA ds A drt ×=×òò 4. 应用范围应用范围应用范围 (1)第一类积分第一类积分 (2)柱体侧面积柱体侧面积 (),Lz x y ds ò三. 第一类面积分(fdS åòò) 1. “积”前工作(重点): (1)dS S=S òò; (代入代入:(,,)0F x y z S =) (2)对称性(如: 字母轮换, 重心) (3)分片分片 2. 计算公式计算公式: (1)22(,),(,)(,,(,))1xyxy x yD z z x y x y D I f x y z x y z z dxdy =ÎÞ=++òò (2)与第二类互换: A ndSA d S S S×=×òòòò四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +ò (其中其中L 有向) 1. 直接计算直接计算: ()()x x t y y t =ìí=î,2112:['()'()]t t t t t I Px t Qy t dt®Þ=+ò 常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: 第 24 24 页页 共 30 30 页页 (1)()LDQ P Pdx Qdy dxdy xy¶¶+=-¶¶òòò; (2)()L A B ®ò: *P Q y y ¶¶=Þ¶¶换路径; *P Q y y ¶¶¹Þ¶¶围路径围路径 (3)Lò(x y Q P =但D 内有奇点) *LL =òò(变形) 3. 推广推广(路径无关性):P Qy y ¶¶=¶¶ (1)Pdx Qdy du +=(微分方程)()BA L AB u ®Û=ò(道路变形原理) (2)(,)(,)LP x y dx Q x y dy +ò与路径无关(f 待定): 微分方程微分方程. 4. 应用应用应用 功(环流量):IF dr G=×ò (G 有向t ,(,,)F P Q R =,(,,)d r ds dx dy dz t ==) 五. 第二类曲面积分: 1. 定义定义: Pdydz Qdzdx RdxdyS ++òò, 或(,,)R x y z dxdySòò (其中其中S 含侧) 2. 计算计算: (1)定向投影(单项): (,,)R x y z dxdySòò, 其中:(,)z z x y S =(特别:水平面); 注: 垂直侧面, 双层分隔双层分隔 (2)合一投影(多项,单层): (,,1)x y n z z =-- (3)化第一类(S 不投影): (cos ,cos ,cos )n a b g = 3. Gauss 公式及其应用: (1)散度计算: P Q R div A x y z¶¶¶=++¶¶¶ (2)Gauss 公式: S 封闭外侧, W 内无奇点内无奇点 (3)注: *补充“盖”平面:0SS +òòòò; *封闭曲面变形Sòò(含奇点) 4. 通量与积分通量与积分: 第 25 25 页页 共 30 30 页页A d S åF =×òò (S 有向n ,(),,A P QR =,(,,)d S ndS dydz dzdx dxdy ==) 六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz G++ò 1. 参数式曲线参数式曲线G : 直接计算(代入) 注(1)当0rot A =时, 可任选路径; (2)功(环流量):IF drG=×ò 2. Stokes 公式: (要求: G 为交面式(有向), 所张曲面所张曲面å含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z¶¶¶=Ñ´=´¶¶¶ (2)交面式(一般含平面)封闭曲线: 00F G =ìÞí=î同侧法向{,,}x y z n F FF =或{,,}x y zG G G ; (3)Stokes 公式(选择): ()A drA ndSG å×=Ñ´×òòò (a )化为Pdydz Qdzdx RdxdyS++òò; (b )化为(,,)R x y z dxdySòò; (c )化为fdS åòò高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xay=),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。
大一数学高数知识点总结
1.极限与连续
-函数的极限:函数极限的定义、极限性质、无穷大与无穷小
-极限运算法则:加减乘除、复合函数、函数比较、夹逼定理
-无穷小的比较:弗斯特定理、阿伯特定理、震荡定理
-连续性与间断点:连续函数的定义、间断点、间断函数
2.导数与微分
-导数的概念与性质:导数的定义、导数的计算、导数的性质
-可导与连续的关系:可导函数的连续性、连续函数的可导性
-高阶导数与导数的应用:高阶导数的定义、多次求导及应用、隐函数求导
-微分与微分近似:微分的概念、微分的计算与应用、泰勒公式与泰勒展开
3.微分学应用
-函数的极值与最值:极值点、最大最小值、最值的存在性
-曲线的凸凹性与拐点:凸凹点与拐点的概念、判定凸凹性与拐点-函数图像与曲线绘制:函数图像的性质、曲线绘制的步骤和方法-积分与微分方程:积分的定义与性质、不定积分与定积分、微分方程的基本概念
4.一元函数积分学
-不定积分与定积分:不定积分的定义与计算、定积分的定义和计算-积分的性质:积分的性质与运算法则、换元积分法、分部积分法
-定积分的应用:面积与曲线长度、曲线的旋转体与体积、物理应用
5.微分方程
-常微分方程:常微分方程的基本概念、一阶线性常微分方程、高阶线性常微分方程
-可降阶的高阶常微分方程:高阶常微分方程的可降阶性、欧拉方程-非齐次线性微分方程:非齐次线性微分方程的解法、特解的构造方法
-解微分方程的初值问题:初值问题的基本概念、存在唯一性定理
以上是大一数学高数的主要知识点总结,涵盖了极限与连续、导数与微分、微分学应用、一元函数积分学以及微分方程等内容。
掌握这些知识点,对于大一数学的学习和理解将起到重要的作用。
大一大二高数知识点
大一大二的高数是大学普遍开设的一门数学课程,为学生打下扎实的
数学基础。
以下是大一大二高数的一些重要知识点:
1.极限与连续:
-极限的概念及性质:定义、左极限与右极限、无穷大与无穷小、夹
逼定理
-连续与间断:连续的定义、连续函数的性质、间断点及分类
2.导数与微分:
-导数的定义及性质:导数的几何意义、导数的计算、导数与函数的
关系
-函数的可导与连续:可导函数的判定、初等函数的可导性、复合函数、反函数的可导性
-微分的概念与性质:微分的定义、微分与导数的关系
3.函数的应用:
-函数的极值与最值:极值点的判定、最值问题的求解、拉格朗日乘
数法
-函数的曲率:曲率与曲线的切线、曲率半径的计算
4.不定积分:
-不定积分的定义与性质:原函数与不定积分的关系、基本积分公式、积分运算法则
-常见函数的积分:幂函数、指数函数、三角函数、反三角函数的积
分
5.定积分:
-定积分的概念与性质:定义、定积分的几何意义、定积分的计算、
定积分的性质
-曲线下面的面积:曲线与坐标轴所围成的面积、参数方程下的曲线
面积
-定积分的应用:平均值、曲线长度、旋转体的体积与曲线长度
6.微分方程:
-常微分方程的基本概念:微分方程的定义、阶数、常微分方程的一
般解
-可分离变量的微分方程:可分离变量的微分方程求解、物理应用
-齐次方程与一阶线性方程:齐次方程的求解、一阶线性方程的求解、常数变易法。
大学高等数学知识点整理公式,用法合集极限与连续一 . 数列函数 :1. 类型 :(1) 数列 : * ; *(2) 初等函数 :(3) 分段函数 : * ; * ;*(4) 复合 ( 含) 函数 :(5) 隐式 ( 方程 ):(6) 参式 ( 数一 , 二 ):(7) 变限积分函数 :(8) 级数和函数 ( 数一 , 三 ):2. 特征 ( 几何 ):(1) 单调性与有界性 ( 判别 ); ( 单调定号 )(2) 奇偶性与周期性 ( 应用 ).3. 反函数与直接函数 :二 . 极限性质 :1. 类型 : * ; * ( 含); * ( 含)2. 无穷小与无穷大 ( 注 : 无穷量 ):3. 未定型 :4. 性质 : * 有界性 , * 保号性 , * 归并性三 . 常用结论 :, , ,, , , ,,四 . 必备公式 :1. 等价无穷小 : 当时 ,; ; ;; ; ;;2. 泰勒公式 :(1) ;(2) ;(3) ;(4) ;(5) .五 . 常规方法 :前提 : (1) 准确判断( 其它如 : ); (2) 变量代换( 如 : )1. 抓大弃小,2. 无穷小与有界量乘积 ( ) ( 注 : )3. 处理 ( 其它如 : )4. 左右极限 ( 包括):(1) ; (2) ; ; (3) 分段函数 : , ,5. 无穷小等价替换 ( 因式中的无穷小 )( 注 : 非零因子 )6. 洛必达法则(1) 先” 处理”, 后法则 ( 最后方法 ); ( 注意对比 : 与)(2) 幂指型处理 : ( 如 : )(3) 含变限积分 ;(4) 不能用与不便用7. 泰勒公式 ( 皮亚诺余项 ): 处理和式中的无穷小8. 极限函数 : ( 分段函数 )六 . 非常手段1. 收敛准则 :(1)(2) 双边夹 : * , *(3) 单边挤 : * * *2. 导数定义 ( 洛必达 ?):3. 积分和 : ,4. 中值定理 :5. 级数和 ( 数一三 ):(1) 收敛, ( 如) (2) ,(3) 与同敛散七 . 常见应用 :1. 无穷小比较 ( 等价 , 阶 ): *(1)(2)2. 渐近线 ( 含斜 ):(1)(2) ,( )3. 连续性 : (1) 间断点判别 ( 个数 ); (2) 分段函数连续性 ( 附 : 极限函数 , 连续性 )八 . 上连续函数性质1. 连通性 : ( 注 : , “ 平均” 值 :)2. 介值定理 : ( 附 : 达布定理 )(1) 零点存在定理 : ( 根的个数 );(2) .第二讲 : 导数及应用 ( 一元 )( 含中值定理 )一 . 基本概念 :1. 差商与导数 : ;(1) ( 注 : 连续 ) )(2) 左右导 : ;(3) 可导与连续 ; ( 在处 , 连续不可导 ; 可导 )2. 微分与导数 :(1) 可微可导 ; (2) 比较与的大小比较 ( 图示 );二 . 求导准备 :1. 基本初等函数求导公式 ; ( 注 : )2. 法则 : (1) 四则运算 ; (2) 复合法则 ; (3) 反函数三 . 各类求导 ( 方法步骤 ):1. 定义导 : (1) 与; (2) 分段函数左右导 ; (3)( 注 : , 求 : 及的连续性 )2. 初等导 ( 公式加法则 ):(1) , 求 : ( 图形题 );(2) , 求 : ( 注 : )(3) , 求及 ( 待定系数 )3. 隐式 ( ) 导 :(1) 存在定理 ;(2) 微分法 ( 一阶微分的形式不变性 ).(3) 对数求导法 .4. 参式导 ( 数一 , 二 ) : , 求 :5. 高阶导公式 :; ;;注 : 与泰勒展式 :四 . 各类应用 :1. 斜率与切线 ( 法线 ); ( 区别 : 上点和过点的切线 )2. 物理 : ( 相对 ) 变化率速度 ;3. 曲率 ( 数一二 ): ( 曲率半径 , 曲率中心 , 曲率圆 )4. 边际与弹性 ( 数三 ) : ( 附 : 需求 , 收益 , 成本 , 利润 )五 . 单调性与极值 ( 必求导 )1. 判别 ( 驻点):(1) ; ;(2) 分段函数的单调性(3) 零点唯一 ; 驻点唯一 ( 必为极值 , 最值 ).2. 极值点 :(1) 表格 ( 变号 ); ( 由的特点 )(2) 二阶导 ( )注 (1) 与的匹配 ( 图形中包含的信息 );(2) 实例 : 由确定点“ ” 的特点 .(3) 闭域上最值 ( 应用例 : 与定积分几何应用相结合 , 求最优 )3. 不等式证明 ( )(1) 区别 : * 单变量与双变量 ? * 与?(2) 类型 : * ; ** ; *(3) 注意 : 单调性端点值极值凹凸性 . ( 如 : )4. 函数的零点个数 : 单调介值六 . 凹凸与拐点 ( 必求导 !):1. 表格 ; ( )2. 应用 : (1) 泰勒估计 ; (2) 单调 ; (3) 凹凸 .七 . 罗尔定理与辅助函数 : ( 注 : 最值点必为驻点 )1. 结论 :2. 辅助函数构造实例 :(1)(2)(3)(4) ;3. 有个零点有个零点4. 特例 : 证明的常规方法 : 令有个零点( 待定 )5. 注 : 含时 , 分家 !( 柯西定理 )6. 附 ( 达布定理 ): 在可导 , , , 使 :八 . 拉格朗日中值定理1. 结论 : ; ( )2. 估计 :九 . 泰勒公式 ( 连接之间的桥梁 )1. 结论 : ;2. 应用 : 在已知或值时进行积分估计十 . 积分中值定理 ( 附 : 广义 ): [ 注 : 有定积分 ( 不含变限 ) 条件时使用 ] 第三讲 : 一元积分学一 . 基本概念 :1. 原函数:(1) ; (2) ; (3)注 (1) ( 连续不一定可导 );(2) ( 连续 )2. 不定积分性质 :(1) ;(2) ;二 . 不定积分常规方法1. 熟悉基本积分公式2. 基本方法 : 拆 ( 线性性 )3. 凑微法 ( 基础 ): 要求巧 , 简 , 活 ( )如 :4. 变量代换 :(1) 常用 ( 三角代换 , 根式代换 , 倒代换 ):(2) 作用与引伸 ( 化简 ):5. 分部积分 ( 巧用 ):(1) 含需求导的被积函数 ( 如);(2)“ 反对幂三指”:(3) 特别 : (* 已知的原函数为; * 已知)6. 特例 : (1) ; (2) 快速法 ; (3)三 . 定积分 :1. 概念性质 :(1) 积分和式 ( 可积的必要条件 : 有界 , 充分条件 : 连续 )(2) 几何意义 ( 面积 , 对称性 , 周期性 , 积分中值 )* ; *(3) 附 : , )(4) 定积分与变限积分 , 反常积分的区别联系与侧重2: 变限积分的处理 ( 重点 )(1) 可积连续 , 连续可导(2) ; ;(3) 由函数参与的求导 , 极限 , 极值 , 积分 ( 方程 ) 问题3. 公式 : ( 在上必须连续 !)注 : (1) 分段积分 , 对称性 ( 奇偶 ), 周期性(2) 有理式 , 三角式 , 根式(3) 含的方程 .4. 变量代换 :(1) ,(2) ( 如 : )(3) ,(4) ; ,(5) ,5. 分部积分(1) 准备时“ 凑常数”(2) 已知或时 , 求6. 附 : 三角函数系的正交性 :四 . 反常积分 :1. 类型 : (1) ( 连续 )(2) : ( 在处为无穷间断 )2. 敛散 ;3. 计算 : 积分法公式极限 ( 可换元与分部 )4. 特例 : (1) ; (2)五 . 应用 : ( 柱体侧面积除外 )1. 面积 ,(1) (2) ;(3) ; (4) 侧面积 :2. 体积 :(1) ; (2)(3) 与3. 弧长 :(1)(2)(3) :4. 物理 ( 数一 , 二 ) 功 , 引力 , 水压力 , 质心 ,5. 平均值 ( 中值定理 ):(1) ;(2) , ( 以为周期 : ) 第四讲 : 微分方程一 . 基本概念1. 常识 : 通解 , 初值问题与特解 ( 注 : 应用题中的隐含条件 )2. 变换方程 :(1) 令( 如欧拉方程 )(2) 令( 如伯努利方程 )3. 建立方程 ( 应用题 ) 的能力二 . 一阶方程 :1. 形式 : (1) ; (2) ; (3)2. 变量分离型 :(1) 解法 :(2)“ 偏” 微分方程 : ;3. 一阶线性 ( 重点 ):(1) 解法 ( 积分因子法 ):(2) 变化 : ;(3) 推广 : 伯努利 ( 数一 )4. 齐次方程 :(1) 解法 :(2) 特例 :5. 全微分方程 ( 数一 ): 且6. 一阶差分方程 ( 数三 ):三 . 二阶降阶方程1. :2. : 令3. : 令四 . 高阶线性方程 :1. 通解结构 :(1) 齐次解 :(2) 非齐次特解 :2. 常系数方程 :(1) 特征方程与特征根 :(2) 非齐次特解形式确定 : 待定系数 ; ( 附 : 的算子法 )(3) 由已知解反求方程 .3. 欧拉方程 ( 数一 ): , 令五 . 应用 ( 注意初始条件 ):1. 几何应用 ( 斜率 , 弧长 , 曲率 , 面积 , 体积 );注 : 切线和法线的截距2. 积分等式变方程 ( 含变限积分 );可设3. 导数定义立方程 :含双变量条件的方程4. 变化率 ( 速度 )5.6. 路径无关得方程 ( 数一 ):7. 级数与方程 :(1) 幂级数求和 ; (2) 方程的幂级数解法 :8. 弹性问题 ( 数三 )第五讲 : 多元微分与二重积分一 . 二元微分学概念1. 极限 , 连续 , 单变量连续 , 偏导 , 全微分 , 偏导连续 ( 必要条件与充分条件 ),(1)(2)(3) ( 判别可微性 )注 : 点处的偏导数与全微分的极限定义 :2. 特例 :(1) : 点处可导不连续 ;(2) : 点处连续可导不可微 ;二 . 偏导数与全微分的计算 :1. 显函数一 , 二阶偏导 :注 : (1) 型 ; (2) ; (3) 含变限积分2. 复合函数的一 , 二阶偏导 ( 重点 ):熟练掌握记号的准确使用3. 隐函数 ( 由方程或方程组确定 ):(1) 形式 : * ; * ( 存在定理 )(2) 微分法 ( 熟练掌握一阶微分的形式不变性 ): ( 要求 : 二阶导 )(3) 注 : 与的及时代入(4) 会变换方程 .三 . 二元极值 ( 定义 ?);1. 二元极值 ( 显式或隐式 ):(1) 必要条件 ( 驻点 );(2) 充分条件 ( 判别 )2. 条件极值 ( 拉格朗日乘数法 ) ( 注 : 应用 )(1) 目标函数与约束条件 : , ( 或 : 多条件 )(2) 求解步骤 : , 求驻点即可 .3. 有界闭域上最值 ( 重点 ).(1)(2) 实例 : 距离问题四 . 二重积分计算 :1. 概念与性质(“ 积” 前工作 ):(1) ,(2) 对称性 ( 熟练掌握 ): * 域轴对称 ; * 奇偶对称 ; * 字母轮换对称 ; * 重心坐标 ;(3)“ 分块” 积分 : * ; * 分片定义 ; * 奇偶2. 计算 ( 化二次积分 ):(1) 直角坐标与极坐标选择 ( 转换 ): 以“ ” 为主 ;(2) 交换积分次序 ( 熟练掌握 ).3. 极坐标使用 ( 转换 ):附 : ; ;双纽线4. 特例 :(1) 单变量 : 或(2) 利用重心求积分 : 要求 : 题型, 且已知的面积与重心5. 无界域上的反常二重积分 ( 数三 )五 : 一类积分的应用 ( ):1. “ 尺寸”: (1) ; (2) 曲面面积 ( 除柱体侧面 );2. 质量 , 重心 ( 形心 ), 转动惯量 ;3. 为三重积分 , 格林公式 , 曲面投影作准备 .第六讲 : 无穷级数 ( 数一 , 三 )一 . 级数概念1. 定义 : (1) , (2) ; (3) ( 如)注 : (1) ; (2) ( 或); (3)“ 伸缩” 级数 : 收敛收敛 .2. 性质 : (1) 收敛的必要条件 : ;(2) 加括号后发散 , 则原级数必发散 ( 交错级数的讨论 );(3) ;二 . 正项级数1. 正项级数 : (1) 定义 : ; (2) 特征 : ; (3) 收敛( 有界 )2. 标准级数 : (1) , (2) , (3)3. 审敛方法 : ( 注 : , )(1) 比较法 ( 原理 ): ( 估计 ), 如;(2) 比值与根值 : * * ( 应用 : 幂级数收敛半径计算 )三 . 交错级数 ( 含一般项 ): ( )1. “ 审” 前考察 : (1) (2) ; (3) 绝对 ( 条件 ) 收敛 ?注 : 若, 则发散2. 标准级数 : (1) ; (2) ; (3)3. 莱布尼兹审敛法 ( 收敛 ?)(1) 前提 : 发散 ; (2) 条件 : ; (3) 结论 : 条件收敛 .4. 补充方法 :(1) 加括号后发散 , 则原级数必发散 ; (2) .5. 注意事项 : 对比; ; ; 之间的敛散关系四 . 幂级数 :1. 常见形式 :(1) , (2) , (3)2. 阿贝尔定理 :(1) 结论 : 敛; 散(2) 注 : 当条件收敛时3. 收敛半径 , 区间 , 收敛域 ( 求和前的准备 )注 (1) 与同收敛半径(2) 与之间的转换4. 幂级数展开法 :(1) 前提 : 熟记公式 ( 双向 , 标明敛域 );;(2) 分解 : ( 注 : 中心移动 ) ( 特别 : )(3) 考察导函数 :(4) 考察原函数 :5. 幂级数求和法 ( 注 : * 先求收敛域 , * 变量替换 ):(1)(2) ,( 注意首项变化 )(3) ,(4) 的微分方程(5) 应用 : .6. 方程的幂级数解法7. 经济应用 ( 数三 ):(1) 复利 : ; (2) 现值 :五 . 傅里叶级数 ( 数一 ): ( )1. 傅氏级数 ( 三角级数 ):2. 充分条件 ( 收敛定理 ):(1) 由( 和函数 )(2)3. 系数公式 :4. 题型 : ( 注 : )(1) 且( 分段表示 )(2) 或(3) 正弦或余弦*(4) ( )*5.6. 附产品 :第七讲 : 向量 , 偏导应用与方向导 ( 数一 )一 . 向量基本运算1. ; ( 平行)2. ; ( 单位向量 ( 方向余弦 ) )3. ; ( 投影 : ; 垂直 : ; 夹角 : )4. ; ( 法向 : ; 面积 : )二 . 平面与直线1. 平面(1) 特征 ( 基本量 ):(2) 方程 ( 点法式 ):(3) 其它 : * 截距式; * 三点式2. 直线(1) 特征 ( 基本量 ):(2) 方程 ( 点向式 ):(3) 一般方程 ( 交面式 ):(4) 其它 : * 二点式 ; * 参数式 ;( 附 : 线段的参数表示 :)3. 实用方法 :(1) 平面束方程 :(2) 距离公式 : 如点到平面的距离(3) 对称问题 ;(4) 投影问题 .三 . 曲面与空间曲线 ( 准备 )1. 曲面(1) 形式: 或; ( 注 : 柱面)(2) 法向( 或) 2. 曲线(1) 形式, 或;(2) 切向 : ( 或)3. 应用(1) 交线 , 投影柱面与投影曲线 ;(2) 旋转面计算 : 参式曲线绕坐标轴旋转 ;(3) 锥面计算 .四 . 常用二次曲面1. 圆柱面 :2. 球面 :变形 : , ,,3. 锥面 :变形 : ,4. 抛物面 : ,变形 : ,5. 双曲面 :6. 马鞍面 : , 或五 . 偏导几何应用1. 曲面(1) 法向 : , 注 :(2) 切平面与法线 :2. 曲线(1) 切向 :(2) 切线与法平面3. 综合 : ,六 . 方向导与梯度 ( 重点 )1. 方向导 ( 方向斜率 ):(1) 定义 ( 条件 ):(2) 计算 ( 充分条件 : 可微 ):附 :(3) 附 :2. 梯度 ( 取得最大斜率值的方向 ) :(1) 计算 :;(2) 结论;取为最大变化率方向 ;为最大方向导数值 .第八讲 : 三重积分与线面积分 ( 数一 )一 . 三重积分 ( )1. 域的特征 ( 不涉及复杂空间域 ):(1) 对称性 ( 重点 ): 含 : 关于坐标面 ; 关于变量 ; 关于重心(2) 投影法 :(3) 截面法 :(4) 其它 : 长方体 , 四面体 , 椭球2. 的特征 :(1) 单变量, (2) , (3) , (4)3. 选择最适合方法 :(1)“ 积” 前 : * ; * 利用对称性 ( 重点 )(2) 截面法 ( 旋转体 ): ( 细腰或中空 , , )(3) 投影法 ( 直柱体 ):(4) 球坐标 ( 球或锥体 ): ,(5) 重心法 ( ):4. 应用问题 :(1) 同第一类积分 : 质量 , 质心 , 转动惯量 , 引力(2) 公式二 . 第一类线积分 ( )1. “ 积” 前准备 :(1) ; (2) 对称性 ; (3) 代入“ ” 表达式2. 计算公式 :3. 补充说明 :(1) 重心法 : ;(2) 与第二类互换 :4. 应用范围(1) 第一类积分(2) 柱体侧面积三 . 第一类面积分 ( )1. “ 积” 前工作 ( 重点 ):(1) ; ( 代入)(2) 对称性 ( 如 : 字母轮换 , 重心 )(3) 分片2. 计算公式 :(1)(2) 与第二类互换 :四 : 第二类曲线积分 (1): ( 其中有向 )1. 直接计算 : ,常见 (1) 水平线与垂直线 ; (2)2. Green 公式 :(1) ;(2) : * 换路径 ; * 围路径(3) ( 但内有奇点 ) ( 变形 )3. 推广 ( 路径无关性 ):(1) ( 微分方程 ) ( 道路变形原理 )(2) 与路径无关 ( 待定 ): 微分方程 .4. 应用功 ( 环流量 ): ( 有向, , ) 五 . 第二类曲面积分 :1. 定义 : , 或( 其中含侧 )2. 计算 :(1) 定向投影 ( 单项 ): , 其中( 特别 : 水平面 ); 注 : 垂直侧面 , 双层分隔(2) 合一投影 ( 多项 , 单层 ):(3) 化第一类 ( 不投影 ):3. 公式及其应用 :(1) 散度计算 :(2) 公式 : 封闭外侧 , 内无奇点(3) 注 : * 补充“ 盖” 平面 : ; * 封闭曲面变形( 含奇点 )4. 通量与积分 :( 有向, , )六 : 第二类曲线积分 (2):1. 参数式曲线: 直接计算 ( 代入 )注 (1) 当时 , 可任选路径 ; (2) 功 ( 环流量 ):2. Stokes 公式 : ( 要求 : 为交面式 ( 有向 ), 所张曲面含侧 )(1) 旋度计算 :(2) 交面式 ( 一般含平面 ) 封闭曲线 : 同侧法向或;(3)Stokes 公式 ( 选择 ):( ) 化为; ( ) 化为; ( ) 化为高数重点知识总结1、基本初等函数:反函数 (y=arctanx) ,对数函数 (y=lnx) ,幂函数 (y=x) ,指数函数 ( ) ,三角函数 (y=sinx) ,常数函数 (y=c)2、分段函数不是初等函数。