高数部分知识点总结
- 格式:doc
- 大小:840.59 KB
- 文档页数:26
高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。
为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。
1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。
1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。
1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。
2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。
2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。
2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。
3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。
3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。
3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。
4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。
4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。
4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。
5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。
5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。
5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。
综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。
大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
高数重要知识点汇总第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x )与g (x )是同阶无穷小。
(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1高数重要知识点汇总准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.高数重要知识点汇总4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.)()(lim )()(lim 00x F x f x F x f x x x x ''=→→例1计算极限0e 1lim x x x→-. 解 该极限属于“00”型不定式,于是由洛必达法则,得 0e 1lim x x x→-0e lim 11xx →==. 例2计算极限0sin lim sin x ax bx→. 解 该极限属于“00”型不定式,于是由洛必达法则,得 00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.例3计算极限lim (0)n x x x n e→+∞>. 解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有 lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限)()(lim )()(lim 00x F x f x F x f x x x x ''=→→基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 8.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
高数基础知识总结:掌握高数的核心要点
一、引言
高等数学(高数)是数学的一个重要分支,它涉及到更加抽象和深入的数学概念。
对于许多学生来说,高数是他们学术生涯中的一个挑战。
然而,只要掌握了高数的核心要点,学习高数也可以变得相对容易。
本文将总结高数的核心要点,帮助读者更好地理解和掌握这一学科。
二、高数的核心概念
1. 极限:极限是高数的基石,它描述了函数在某个点或无穷远处的行为。
理解极限的概念对于理解高数的其他概念至关重要。
2. 导数:导数是函数的局部变化率,它描述了函数值随自变量变化的速率。
导数的计算和应用在高数中非常广泛。
3. 积分:积分是微分的逆运算,它用来计算曲线与x轴之间的面积。
积分在高数中也有着重要的应用。
4. 微分方程:微分方程描述了函数随时间变化的规律,是解决实际问题的重要工具。
5. 多元函数:多元函数涉及到多个变量的函数,其导数和积分等概念也更加复杂。
三、如何掌握高数的核心要点
1. 理解概念:对于每个高数概念,都要深入理解其定义和性质,以及其在解决实际问题中的应用。
2. 练习计算:高数的概念比较抽象,需要通过大量的练习来熟悉和掌握。
3. 建立知识体系:高数的知识点是相互联系的,需要建立起知识体系,以便更好地理解和记忆。
4. 学习方法:好的学习方法可以提高学习效率,例如采用归纳总结、类比学习等学习方法。
四、结论
高数虽然是一门比较难的学科,但是只要掌握了其核心要点,就可以轻松地理解和应用高数的知识。
希望本文对读者掌握高数的核心要点有所帮助。
第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ⊂B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A 。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。
考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。
二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。
三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。
四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。
五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。
总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。
在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。
高数知识点汇总第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ⊂B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A 。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。
高等数学知识点汇总高等数学是大学理工科和经济类等专业的重要基础课程,它包含了丰富的知识体系,对于培养学生的逻辑思维、分析问题和解决问题的能力具有重要意义。
下面就为大家汇总一下高等数学中的一些主要知识点。
一、函数与极限函数是高等数学研究的基本对象之一。
函数的概念包括定义域、值域和对应法则。
常见的函数类型有初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数)以及由这些初等函数经过有限次四则运算和复合运算得到的函数。
极限是高等数学中的一个重要概念,它用于描述函数在某个过程中的变化趋势。
例如,当自变量趋于某个值时,函数值的趋近情况。
极限的计算方法有很多,如代入法、有理化法、等价无穷小替换法、洛必达法则等。
二、导数与微分导数是函数的变化率,它反映了函数在某一点处的瞬时变化速度。
导数的定义是函数的增量与自变量增量之比的极限。
通过求导公式和求导法则可以求出函数的导数,常见的求导公式有基本初等函数的求导公式,求导法则包括四则运算求导法则、复合函数求导法则等。
微分是函数增量的线性主部,它与导数密切相关。
函数在某一点处的微分可以表示为 dy = f'(x)dx 。
三、中值定理与导数的应用中值定理是高等数学中的重要定理,包括罗尔中值定理、拉格朗日中值定理和柯西中值定理。
这些定理在证明等式和不等式、研究函数的性质等方面有着广泛的应用。
导数的应用非常广泛,例如利用导数判断函数的单调性、极值和最值;利用导数研究函数的凹凸性和拐点;利用导数解决优化问题,如求最大利润、最小成本等。
四、不定积分不定积分是求导的逆运算,它是求一个函数的原函数的过程。
不定积分的基本公式包括基本初等函数的不定积分公式,不定积分的计算方法有换元积分法(包括第一类换元法和第二类换元法)和分部积分法。
五、定积分定积分表示的是一个数值,它是由函数在某个区间上的积分和所定义的。
定积分的几何意义可以是曲边梯形的面积。
定积分的计算方法有牛顿莱布尼茨公式,即如果函数 F(x) 是 f(x) 的一个原函数,则∫a,bf(x)dx = F(b) F(a) 。
考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。
下面是对高等数学知识点的总结,希望对考研学生有所帮助。
一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。
大一必考高数知识点在大一的学习生活中,高等数学是必修课程之一,对于学习理工科的同学来说,掌握好高数知识点非常重要。
下面将介绍一些大一必考的高数知识点,帮助同学们更好地应对高数考试。
一、函数与极限1. 函数的定义与性质:介绍函数的定义、定义域、值域等概念,以及奇函数和偶函数的性质。
2. 函数的极限:介绍函数极限的定义、左极限和右极限的概念,以及常见函数的极限计算方法。
3. 无穷大与无穷小:讲解无穷大和无穷小的定义,以及无穷小的判定方法。
二、导数与微分1. 导数的定义:介绍导数的定义,讨论导数存在的条件,并给出常见函数的导数计算方法。
2. 导数的应用:介绍导数在几何与物理问题中的应用,如切线与法线、相关变率、最值等。
3. 微分的概念:引入微分的概念,讨论微分与导数的关系,并解释微分的几何意义。
三、不定积分与定积分1. 不定积分的定义:介绍不定积分的定义,给出常见函数的不定积分计算方法,如幂函数、指数函数、三角函数等。
2. 定积分的概念:介绍定积分的定义,讨论定积分的性质,如线性性、区间可加性等。
3. 定积分的应用:介绍定积分在几何与物理问题中的应用,如曲线长度、平面面积、体积、质量等。
四、级数1. 数项级数:讲解数项级数的定义与判敛条件,介绍常见级数的性质,如正项级数、比较判别法、比值判别法等。
2. 幂级数:介绍幂级数的定义与收敛半径,讨论幂级数的收敛性以及幂函数展开。
五、微分方程1. 微分方程的基本概念:介绍常微分方程的分类,讲解微分方程的阶、线性与非线性等概念。
2. 一阶常微分方程:讨论一阶常微分方程的可分离变量、线性方程、齐次方程等特殊类型的解法。
总结:以上介绍了大一必考的高数知识点,包括函数与极限、导数与微分、不定积分与定积分、级数以及微分方程等内容。
希望同学们能够认真学习这些知识点,充分理解概念和原理,并进行大量的练习,以提高解题能力和应对考试的能力。
祝大家在高数考试中取得优异的成绩!。
高数总结知识点一、函数与极限函数的概念、性质及其图像。
函数的极限定义、性质及其运算。
无穷小与无穷大的概念及关系。
极限存在准则(夹逼准则、单调有界准则等)。
二、导数与微分导数的定义、性质及几何意义。
导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。
高阶导数的概念及计算。
微分的定义、性质及运算。
三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。
洛必达法则及其应用。
函数的单调性、极值、最值及凹凸性的判定。
曲线的渐近线、拐点及图形的描绘。
四、不定积分与定积分不定积分的概念、性质及基本积分公式。
不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。
定积分的概念、性质及计算。
定积分的应用(如面积、体积、弧长、功、平均值等的计算)。
五、向量代数与空间解析几何向量的概念、性质及运算。
空间直角坐标系及点的坐标表示。
向量的坐标表示及运算。
平面与直线的方程及其位置关系。
六、多元函数微分学多元函数的概念、性质及极限与连续。
偏导数的定义、计算及几何意义。
全微分的概念及计算。
多元函数的极值与最值问题。
七、多元函数积分学二重积分的概念、性质及计算。
三重积分的概念及计算。
曲线积分与曲面积分的概念及计算。
八、无穷级数常数项级数的概念、性质及收敛判别法。
函数项级数的概念及一致收敛性。
幂级数的概念、性质及运算。
傅里叶级数及其应用。
九、微分方程微分方程的概念及分类。
一阶微分方程的解法(分离变量法、凑微分法等)。
高阶微分方程的解法(降阶法、幂级数解法等)。
微分方程的应用(如物理、化学、生物等领域中的实际问题)。
以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。
高数前三章知识点总结公式一、函数与极限1. 函数的概念函数是数学中的一个重要概念,它描述了一个自变量和因变量之间的映射关系。
在高等数学中,函数通常表示为f(x),其中x为自变量,f(x)为因变量。
函数的定义域、值域、奇偶性、周期性等性质都是我们研究函数的重要内容。
2. 极限的概念极限是微积分中一个基本概念,它描述了一个函数在某一点或者无穷远处的趋势。
在高等数学中,我们主要讨论函数在某一点的极限和无穷远处的极限。
极限的定义、性质、计算方法是我们学习的重点内容。
3. 极限存在的条件在高等数学中,我们学习了许多函数的极限存在的条件,比如数列的极限、函数的左右极限、无穷极限等。
这些条件对我们理解函数的性质和应用都有着重要的意义。
4. 极限的运算法则在计算函数的极限时,我们通常会用到极限的四则运算法则、复合函数的极限、夹逼准则等方法。
这些运算法则是我们计算极限时的重要工具。
5. 无穷小与无穷大在研究极限时,我们会遇到无穷小和无穷大的概念。
无穷小是当自变量趋于某一点时,因变量趋于零的量,而无穷大是当自变量趋于某一点时,因变量趋于无穷的量。
无穷小和无穷大的性质和计算是我们学习的重点内容。
6. 泰勒公式泰勒公式是微积分中的一个重要定理,它描述了一个函数在某一点附近的近似表达式。
泰勒公式的推导和应用是我们学习的重要内容。
7. 函数的连续性连续性是函数的一个重要性质,它描述了函数图像的平滑程度。
在高等数学中,我们学习了函数的间断点、可导性、连续函数的性质和应用。
8. 函数的单调性单调性是函数的一个重要性质,它描述了函数在定义域上的增减性。
在高等数学中,我们学习了函数的单调递增和单调递减的判定方法和应用。
二、导数与微分1. 导数的概念导数是微积分中的一个重要概念,它描述了一个函数在某一点的变化率。
在高等数学中,我们学习了导数的定义、性质、几何意义和物理意义。
2. 导数的计算在计算函数的导数时,我们通常会用到导数的四则运算法则、复合函数的导数、高阶导数、隐函数的导数等方法。
高数基础知识总结与重点概念整理
一、导数与微分
导数:描述函数在某一点附近的变化率,是函数值的极限。
可导性:函数在某点可导,当且仅当该点附近存在一个定义恰当的导数。
微分:一个近似值,表示函数在某点附近的小变化所引起的函数值的大致变化。
二、积分
不定积分:求一个函数的原函数(或反导数),即求函数的不定积分。
定积分:对一个区间上函数的值的总和的量度,即求函数的定积分。
微积分基本定理:定积分可化为不定积分的计算。
三、级数
数列:一个数字序列。
无穷级数:无穷多个数的和,即数列的和。
收敛性:无穷级数趋于一个有限的和的性质称为收敛性。
发散性:无穷级数不收敛的性质称为发散性。
四、多元函数
多元函数:定义在多个变量上的函数。
偏导数:多元函数对一个变量的导数。
方向导数:描述函数在某点处沿某一方向的变化率。
梯度:方向导数的最大值,表示函数在某点处沿梯度方向的增长最快的方向。
五、微分方程
微分方程:包含未知函数的导数或微分的方程。
初值问题:给定初始条件的微分方程问题。
通解与特解:满足微分方程的解称为通解,满足特定初始条件的解称为特解。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y =a x ),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x 2+x x=lim =13、无穷小:高阶+低阶=低阶例如:lim x →0x →0xx sin x4、两个重要极限:(1)lim =1x →0x (2)lim (1+x )=ex →01x⎛1⎫lim 1+⎪=ex →∞⎝x ⎭g (x )x经验公式:当x →x 0,f (x )→0,g (x )→∞,lim [1+f (x )]x →x 0=e x →x 0lim f (x )g (x )例如:lim (1-3x )=e x →01x⎛3x ⎫lim -⎪x →0⎝x ⎭=e -35、可导必定连续,连续未必可导。
例如:y =|x |连续但不可导。
6、导数的定义:lim∆x →0f (x +∆x )-f (x )=f '(x )∆x x →x 0limf (x )-f (x 0)=f '(x 0)x -x 07、复合函数求导:df [g (x )]=f '[g (x )]•g '(x )dx例如:y =x +x ,y '=2x =2x +12x +x 4x 2+x x1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dxx 2+y 2=1,2x +2yy '=0⇒y '=-例如:解:法(1),左右两边同时求导xy dy x法(2),左右两边同时微分,2xdx +2ydy ⇒=-dx y9、由参数方程所确定的函数求导:若⎨⎧y =g (t )dy dy /dt g '(t )==,则,其二阶导数:dx dx /dt h '(t )⎩x =h (t )d (dy /dx )d [g '(t )/h '(t )]d y d (dy /dx )dt dt ===2dx dx dx /dt h '(t )210、微分的近似计算:f (x 0+∆x )-f (x 0)=∆x •f '(x 0)例如:计算sin 31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y =sin x(x=0x是函数可去间断点),y =sgn(x )(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f (x )=sin ⎪(x=0是函数的振荡间断点),y =数的无穷间断点)12、渐近线:水平渐近线:y =lim f (x )=cx →∞⎛1⎫⎝x ⎭1(x=0是函x 铅直渐近线:若,lim f (x )=∞,则x =a 是铅直渐近线.x →a斜渐近线:设斜渐近线为y =ax +b ,即求a =lim x →∞f (x ),b =lim [f (x )-ax ]x →∞x x 3+x 2+x +1例如:求函数y =的渐近线x 2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数大一上下知识点总结高数是大一学生必修的一门重要课程,它是数学的基础,对于后续学习其他学科具有重要的作用。
下面是对高数大一上下的知识点进行总结:1. 微积分基础1.1 导数与微分在微积分中,导数是一种衡量函数变化率的工具,使用符号f'(x)表示。
导数的概念主要以极限的形式进行定义。
微分是导数的一种应用,通过微分可以求得函数在某一点上的线性近似值,并用于解决实际问题。
1.2 积分与不定积分积分是导数的逆运算,通过积分可以求得函数在一个区间上的面积或曲线的长度。
不定积分是指对函数进行积分,得到的结果是一个含有常数C的表达式。
2. 函数与极限2.1 函数极限函数极限是指当自变量趋近某一点时,函数的取值趋近于某个常数的过程。
使用极限的方法可以求解函数在某一点处的特定值。
2.2 极限运算法则极限运算法则是一些求极限的基本规则,如常数倍法则、和差法则、乘积法则、商法则等,可以简化极限的计算过程。
3. 降幂与导数3.1 降幂法降幂法是求解高阶导数的一种常用方法,通过将多项式的幂逐次降低,然后求导来简化计算过程。
3.2 高阶导数在微积分中,高阶导数是指对函数进行多次求导得到的导数,用符号f^(n)(x)表示。
高阶导数在函数的图像分析中起到重要作用。
4. 微分中值定理4.1 介值定理介值定理是微分中值定理的基本形式之一,它指出在一个闭区间上,连续函数会取到区间内的每一个值。
4.2 罗尔定理罗尔定理是微分中值定理的特例,它指出在一个闭区间上,如果函数在两个端点处取相同的值,并且在开区间上连续可导,那么存在至少一个点,使得该点的导数等于零。
4.3 拉格朗日中值定理拉格朗日中值定理是微分中值定理的重要应用,它用于求函数在一个区间上的某一点处的导数值。
5. 函数的应用5.1 极值与最值极值是函数在某一区间上取得的最大值或最小值,可以通过求导数来确定。
5.2 函数的图像函数的图像是可视化函数的一种方式,通过图像可以更直观地理解函数的性质与特点。
专升本高数知识点归纳总结专升本高数是许多专科生提升学历的重要途径之一,高数作为基础课程,其知识点的掌握对于后续学习至关重要。
以下是专升本高数的一些重要知识点归纳总结:一、函数与极限- 函数的定义、性质及分类。
- 极限的概念、性质和求解方法。
- 无穷小量的比较和等价无穷小替换。
二、导数与微分- 导数的定义、几何意义和物理意义。
- 基本初等函数的导数公式。
- 高阶导数、隐函数和参数方程的导数。
- 微分的概念、性质和应用。
三、中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理。
- 导数在函数性质研究中的应用,如单调性、凹凸性等。
- 泰勒公式和麦克劳林级数。
四、不定积分与定积分- 不定积分的概念、性质和计算方法。
- 定积分的定义、几何意义和计算技巧。
- 定积分在几何和物理问题中的应用。
五、多元函数微分学- 多元函数的极限、连续性、偏导数和全微分。
- 多元函数的极值问题和条件极值。
六、无穷级数- 级数的收敛性、正项级数的收敛准则。
- 幂级数、泰勒级数和傅里叶级数。
七、常微分方程- 一阶微分方程的求解方法,如可分离变量法、变量替换法等。
- 高阶微分方程的求解技巧,如降阶法、常系数线性微分方程。
八、线性代数基础- 矩阵的运算、行列式、特征值和特征向量。
- 向量空间、基和维数的概念。
- 线性方程组的解法,如高斯消元法和克拉默法则。
结束语专升本高数的学习是一个系统而深入的过程,掌握上述知识点对于理解和应用高等数学至关重要。
希望这份归纳总结能够帮助同学们更好地复习和掌握高数知识,为专升本考试做好充分的准备。
高三高数知识点总结在高三阶段,数学是所有学生都需要面对的一门重要科目。
高数知识涉及广泛、内容繁多,掌握好高数知识点对于学习和应对考试至关重要。
下面是对高三高数知识点的详细总结:一、函数与方程1.函数的概念:函数是一种对应关系,它把自变量的取值映射为因变量的取值。
2.一次函数:一次函数的表达式为y = kx + b,其中k为斜率,b为截距。
3.二次函数:二次函数的表达式为y = ax²+ bx + c,其中a、b、c为常数,a ≠ 0。
4.指数函数:指数函数的表达式为y = a^x,其中a为常数,且a > 0且a ≠ 1。
5.对数函数:对数函数的表达式为y = logₐx,其中a为常数,且a > 0且a ≠ 1。
6.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数等。
7.方程的解:根据方程的类型,可以使用代数方法或图像法求解方程。
二、数列与数列极限1.数列的概念:数列是按照一定规律排列的一组数。
2.等差数列:等差数列的通项公式为an = a₁ + (n - 1)d,其中a₁为首项,d为公差。
3.等比数列:等比数列的通项公式为an = a₁ * q^(n - 1),其中a₁为首项,q为公比。
4.数列极限:当数列的项随着n的增大而趋于一个确定的数,这个数被称为数列的极限。
5.数列极限性质:数列极限有唯一性、有界性、保号性等重要性质。
三、导数与微分1.导数的概念:导数表示函数在某一点的变化率,可用极限或求导法求得。
2.常见函数的导数:如常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
3.函数的连续性:函数在一点或一区间内无间断点的性质被称为函数的连续性。
4.微分的概念:微分是导数的算符形式,表示函数在某一点附近的局部线性逼近。
5.微分中值定理:包括拉格朗日中值定理、柯西中值定理等。
四、不定积分与定积分1.不定积分的概念:不定积分是求解原函数的逆运算,可用反求导法求得。
1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x x x 、e x x x =+→10)1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。
1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。
所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aa dx x f )(型定积分,若f(x)是奇函数则有⎰-a a dx x f )(=0;若f(x)为偶函数则有⎰-a a dx x f )(=2⎰a dx x f 0)(;对于⎰20)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-a a 奇函数 、⎰⎰=-aa a 02偶函数偶函数。
在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。
这种思路对于证明定积分等式的题目也同样有效。
1.3 高数第五章《中值定理的证明技巧》由本章《中值定理的证明技巧》讨论一下证明题的应对方法。
用以下这组逻辑公式来作模型:假如有逻辑推导公式A⇒E、(A B)⇒C、(C D E)⇒F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F成立。
为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。
正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。
如对于证明F成立必备逻辑公式中的A⇒E就可能有A⇒H、A⇒(I K)、(A B) ⇒M等等公式同时存在,有的逻辑公式看起来最有可能用到,如(A B) ⇒M,因为其中涉及了题目所给的3个条件中的2个,但这恰恰走不通; 2.对于解题必须的关键逻辑推导关系不清楚,在该用到的时候想不起来或者弄错。
如对于模型中的(A B) ⇒C,如果不知道或弄错则一定无法得出结论。
从反方向入手证明时也会遇到同样的问题。
通过对这个模型的分析可以看出,对可用知识点掌握的不牢固、不熟练和无法有效地从众多解题思路中找出答案是我们解决不了证明题的两大原因。
针对以上分析,解证明题时其一要灵活,在一条思路走不通时必须迅速转换思路,而不应该再从头开始反复地想自己的这条思路是不是哪里出了问题;另外更重要的一点是如何从题目中尽可能多地获取信息。
当我们解证明题遇到困难时,最常见的情况是拿到题莫名其妙,感觉条件与欲证结论简直是风马牛不相及的东西,长时间无法入手;好不容易找到一个大致方向,在做若干步以后却再也无法与结论拉近距离了。
从出题人的角度来看,这是因为没能够有效地从条件中获取信息。
“尽可能多地从条件中获取信息”是最明显的一条解题思路,同时出题老师也正是这样安排的,但从题目的“欲证结论”中获取信息有时也非常有效。
如在上面提到的模型中,如果做题时一开始就想到了公式(C D E) ⇒F再倒推想到 (A B) ⇒C、 A⇒E就可以证明了。
如果把主要靠分析条件入手的证明题叫做“条件启发型”的证明题,那么主要靠“倒推结论”入手的“结论启发型”证明题在中值定理证明问题中有很典型的表现。
其中的规律性很明显,甚至可以以表格的形式表示出来。
下表列出了中值定理证明问题的几种类型:条件欲证结论可用定理A 关于闭区间上的连续函数,常常是只有连续性已知存在一个ε满足某个式子介值定理(结论部分为:存在一个ε使得kf=)(ε)零值定理(结论部分为:存在一个ε使得0)(=εf)B 条件包括函数在闭区间上连续、在存在一个ε满足)()(=εnf费尔马定理(结论部分为:0)(0='xf)洛尔定理(结论部分为:存在一个ε使得0)(='εf)开区间上可导C 条件包括函数在闭区间上连续、在开区间上可导 存在一个ε满足k f n =)()(ε拉格朗日中值定理(结论部分为:存在一个ε使得a b a f b f f --=')()()(ε) 柯西中值定理(结论部分为:存在一个ε使得)()()()()()(a g b g a f b f g f --=''εε)另外还常利用构造辅助函数法,转化为可用费尔马或洛尔定理的形式来证明从上表中可以发现,有关中值定理证明的证明题条件一般比较薄弱,如表格中B 、C 的条件是一样的,同时A 也只多了一条“可导性”而已;所以在面对这一部分的题目时,如果把与证结论与可能用到的几个定理的的结论作一比较,会比从题目条件上挖掘信息更容易找到入手处。
故对于本部分的定理如介值、最值、零值、洛尔和拉格朗日中值定理的掌握重点应该放在熟记定理的结论部分上;如果能够做到想到介值定理时就能同时想起结论“存在一个ε使得k f=)(ε”、看到题目欲证结论中出现类似“存在一个ε使得k f =)(ε”的形式时也能立刻想到介值定理;想到洛尔定理时就能想到式子0)(='εf ;而见到式子)()()()()()(a g b g a f b f g f --=''εε也如同见到拉格朗日中值定理一样,那么在处理本部分的题目时就会轻松的多,时常还会收到“豁然开朗”的效果。
所以说,“牢记定理的结论部分”对作证明题的好处在中值定理的证明问题上体现的最为明显。
综上所述,针对包括中值定理证明在内的证明题的大策略应该是“尽一切可能挖掘题目的信息,不仅仅要从条件上充分考虑,也要重视题目欲证结论的提示作用,正推和倒推相结合;同时保持清醒理智,降低出错的可能”。
希望这些想法对你能有一点启发。
不过仅仅弄明白这些离实战要求还差得很远,因为在实战中证明题难就难在答案中用到的变形转换技巧、性质甚至定理我们当时想不到;很多结论、性质和定理自己感觉确实是弄懂了、也差不多记住了,但是在做题时那种没有提示、或者提示很少的条件下还是无法做到灵活运用;这也就是自身感觉与实战要求之间的差别。
这就像在记英语单词时,看到英语能想到汉语与看到汉语能想到英语的掌握程度是不同的一样,对于考研数学大纲中“理解”和“掌握”这两个词的认识其实是在做题的过程中才慢慢清晰的。
我们需要做的就是靠足量、高效的练习来透彻掌握定理性质及熟练运用各种变形转换技巧,从而达到大纲的相应要求,提高实战条件下解题的胜算。
依我看,最大的技巧就是不依赖技巧,做题的问题必须要靠做题来解决。
1.4 高数第六章《常微分方程》本章常微分方程部分的结构简单,陈文灯复习指南对一阶微分方程、可降阶的高阶方程、高阶方程都列出了方程类型与解法对应的表格。
历年真题中对于一阶微分方程和可降阶方程至少是以小题出现的,也经常以大题的形式出现,一般是通过函数在某点处的切线、法线、积分方程等问题来引出;从历年考察情况和大纲要求来看,高阶部分不太可能考大题,而且考察到的类型一般都不是很复杂。
对于本章的题目,第一步应该是辨明类型,实践证明这是必须放在第一位的;分清类型以后按照对应的求解方法按部就班求解即可。
这是因为其实并非所有的微分方程都是可解的,在大学高等数学中只讨论了有限的可解类型,所以出题的灵活度有限,很难将不同的知识点紧密结合或是灵活转换。
这样的知识点特点就决定了我们可以采取相对机械的“辨明类型——〉套用对应方法求解”的套路 ,而且各种类型的求解方法正好也都是格式化的,便于以这样的方式使用。
先讨论一下一阶方程部分。
这一部分结构清晰,对于各种方程的通式必须牢记,还要能够对易混淆的题目做出准确判断。
各种类型都有自己对应的格式化解题方法,这些方法死记硬背并不容易,但有规律可循——这些方法最后的目的都是统一的,就是把以各种形式出现的方程都化为f(x)dx=f(y)dy 这样的形式,再积分得到答案。
对于可分离变量型方程0)()()()(2211=+dy y g x f dx y g x f ,就是变形为dx x f x f )()(21=-dy y g y g )()(12,再积分求解;对于齐次方程)(x y f y ='则做变量替换x yu =,则y '化为dxdu x u +,原方程就可化为关于x u 和的可分离变量方程,变形积分即可解;对于一阶线性方程)()(x q y x p y =+'第一步先求0)(=+'y x p y 的通解,然后将变形得到的dxx p y dy )(-=积分,第二步将通解中的C 变为C(x)代入原方程)()(x q y x p y =+'解出C(x)后代入即可得解;对于贝努利方程)()(x q y x p y =+'n y ,先做变量代换n y z -=1代入可得到关于z 、x 的一阶线性方程,求解以后将z 还原即可;全微分方程M(x,y)dx+N(x,y)dy 比较特殊,因为其有条件x N y M∂∂∂∂=,而且解题时直接套用通解公式⎰+xx dx y x M 0),(0⎰=y y C dy y x N 0),(.所以,对于一阶方程的解法有规律可循,不用死记硬背步骤和最后结果公式。
对于求解可降阶的高阶方程也有类似的规律。
对于)()(x f y n =型方程,就是先把)1(-n y当作未知函数Z ,则Z y n '=)( 原方程就化为 dx x f dz )(= 的一阶方程形式,积分即得;再对)2(-n y 、)3(-n y 依次做上述处理即可求解;),(y x f y '='' 叫不显含 y 的二阶方程,解法是通过变量替换p y ='、p y '='' (p 为x 的函数)将原方程化为一阶方程;),(y y f y '=''叫不显含x 的二阶方程,变量替换也是令p y ='(但此中的p 为y 的函数),则p p p y dy dp dx dy dy dp '==='',也可化为一阶形式。