盾构机液压系统原理(海瑞克)
- 格式:doc
- 大小:362.50 KB
- 文档页数:20
盾构机的工作原理介绍
盾构机是一种用于地底隧道开挖的特种机械设备。
它的工作原理基于土壤的掘进和排除。
以下是盾构机的工作原理介绍:
1. 预制环片安装:盾构机由机身、掘进头和推力系统等组成。
首先,在掘进头前部设置一个物理屏蔽结构,称为盾构壳体。
在盾构壳体尾部,有一个可供工人进入的工作室,用于预制环片。
2. 土壤挖掘:盾构机启动后,掘进头携带切削工具在掘进面上边切削土壤,同时使用液压系统将土壤转移到盾构机后部。
液压油压力将土壤推到盾构机机体上方,通过传送装置运输到尾部的舱室。
3. 土壤排除:使用螺旋输送机将土壤从尾部舱室中排出,或者通过推力推动盾构机推进,将土壤从尾部直接排出。
4. 支撑系统:盾构机作业过程中,需要使用支撑系统来保持隧道稳定。
一般是在盾构壳体外部设置一个钢管脚手架,支撑隧道壁体。
在支撑系统后方设置混凝土预制环片,固定住刚刚开挖的地下段。
5. 推进系统:为了推进盾构机,推进系统通过液压油缸施加推力。
液压油缸定期向前移动,推动盾构机前进。
同时,推进系统通过液压顶推系统传递前进力。
6. 后续支护和衬砌:在两端推进之后,需要进行后续支护和衬
砌工作。
在盾构机后面的空隙中灌注混凝土,形成隧道壁体。
同时,还可以安装其他支护设备,如加固钢筋和注浆等,以增加隧道的稳定性和强度。
总结:盾构机工作原理是通过切削土壤和运输土壤的方式,逐步掘进地下隧道。
同时,支撑系统、推进系统和后续支护工作保证了隧道的稳定性和安全性。
盾构机工作原理盾构机是一种用于地下隧道施工的特殊工程设备。
它通过推进机构推动盾构机前进,同时在前端设置刀盘进行土层的切削和掘进,然后通过输送系统将切削出的土层从隧道中运出。
盾构机工作原理主要包括推进机构、刀盘系统、土层输送系统和支护系统。
1. 推进机构:盾构机的推进机构通常由主推进缸、辅助推进缸和推进齿轮等组成。
主推进缸通过液压系统提供推进力,推动盾构机前进。
辅助推进缸用于辅助推进和调整机器姿态。
推进齿轮则通过齿轮传动将液压力转化为推进力。
2. 刀盘系统:刀盘系统位于盾构机的前端,主要由刀盘和刀盘驱动装置组成。
刀盘上安装有刀具,通过旋转和振动等方式进行土层的切削和掘进。
刀盘驱动装置通常由机电或者液压马达提供动力,驱动刀盘旋转。
3. 土层输送系统:土层输送系统用于将切削出的土层从隧道中运出。
它通常由螺旋输送机、链式输送机或者橡胶带输送机等组成。
这些输送机通过转动或者运动将土层从刀盘处输送到出口处,并将其排出隧道。
4. 支护系统:为了保证隧道的稳定和安全,盾构机还配备有支护系统。
支护系统通常由液压支架、钢拱架和注浆设备等组成。
液压支架用于支撑隧道壁,钢拱架则用于加固隧道顶部。
注浆设备则用于注入固化材料,增加隧道的稳定性。
盾构机工作时,首先通过推进机构提供推进力,推动盾构机前进。
同时,刀盘系统开始切削土层,将切削出的土层通过土层输送系统运出隧道。
在切削和掘进过程中,支护系统起到保护隧道结构的作用。
随着盾构机的推进,隧道逐渐形成。
盾构机工作原理的核心在于刀盘系统的切削和掘进。
刀盘通过旋转和振动等方式切削土层,然后通过土层输送系统将切削出的土层排出隧道。
这种切削和掘进的方式能够有效地减少地下施工对周围环境的影响,提高工程施工的效率和质量。
总结起来,盾构机工作原理包括推进机构、刀盘系统、土层输送系统和支护系统。
通过推进机构提供推进力,刀盘系统切削土层,土层输送系统将切削出的土层排出隧道,支护系统保证隧道的稳定和安全。
土压平衡式盾构机控制原理与参数设置随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。
在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司Φ6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。
控制原理土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。
土压的平衡控制是通过装在盾构机土仓隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值E,通过PID控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。
以保持土仓内土压平衡,使盾构机正常掘进。
主要参数抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。
过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应也就越迟钝。
比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效果越好。
积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E,也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。
为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除偏差。
目录隧道掘进机的技术说明5.1 概述 (3)5。
2 功能(EPB盾构) (4)5.2.1 土料挖掘 / 推进 (5)5。
2。
2 控制 (6)5。
2.3 管环拼装周期 (7)5。
3 技术数据/总览 (8)5.4 操作步骤 (16)5。
4.1 进入开挖室 (16)5.4.2 人行气闸 (19)准备和注意事项 (19)加压 (21)加压步骤 (22)加压图 (24)通过通道室加压(加压附加人员) (26)附加人员加压图 (27)卸压 (28)卸压步骤: (29)卸压图 (31)对一个人员的紧急卸压图 (33)紧急情况下,通道室和主室内应分别采取的措施 (36)紧急情况卡卡样 (37)5.4。
3 将开挖工具送入压力室 (39)5.4.4 拼装管环 (40)5。
4.5 回填 (42)通过尾部机壳进行回填 (42)灌浆泵的工作原理 (43)5.4.6 压缩空气供给 (45)工业用空气 (45)压缩空气调节 (46)5.4.7 发泡设备说明 (47)安装设计 (47)设备功能 (48)高压聚合物系统 (48)5.5 隧道掘进机各部件 (49)5.5.1 盾构 (50)概述 (50)前部盾构 (50)中间盾构 (51)尾部机壳 (51)推力缸 (51)盾构关节油缸 (52)5。
5.2 人行气闸 (53)5.5。
3 刀盘驱动装置 (55)原理 (55)旋转工作机构系统,主轴承 (55)齿轮润滑 (55)密封系统 (56)5.5。
4 拼装机 (57)技术说明 (57)支架梁 (57)行走机架 (58)旋转机架 (58)带抓取头的横向行走装置 (59)旋转机架的动力提供 (60)安全设备 (60)5。
5.5 螺旋输送机 (61)一般说明 (61)伸缩缸 (61)前部闸阀 (61)前部闸阀 (62)驱动装置 / 密封系统 (63)安全装置 (63)5。
5.6 后援装置 (64)一般说明 (64)桥 (65)龙门架1 (66)龙门架2 (67)龙门架3 (69)龙门架4 (70)龙门架5 (72)5.1 概述该设备是一种液压挖掘盾构机,采用土压支护隧道开挖面.泥土由刀盘开挖。
盾构机工作原理盾构机是一种用于地下隧道施工的专用机械设备,它通过推进盾构机头部,同时进行土壤开挖和隧道衬砌,完成隧道的开挖和建设。
盾构机的工作原理主要包括推进系统、土壤开挖系统、土壤输送系统和隧道衬砌系统。
1. 推进系统推进系统是盾构机的核心部份,它负责推进盾构机头部,同时进行土壤开挖和隧道衬砌。
推进系统主要由推进液压缸、推进螺旋和推进盘组成。
推进液压缸通过液压力将盾构机推进到前方,推进螺旋用于土壤开挖,推进盘用于隧道衬砌。
2. 土壤开挖系统土壤开挖系统是盾构机的关键部份,它负责将土壤开挖并输送到后方。
土壤开挖系统主要由刀盘、刀盘传动系统和土壤输送系统组成。
刀盘通过旋转和切削作用将土壤开挖,刀盘传动系统将动力传递给刀盘,土壤输送系统将开挖的土壤输送到盾构机后方。
3. 土壤输送系统土壤输送系统负责将开挖的土壤从盾构机前方输送到后方。
土壤输送系统主要由螺旋输送机和输送管道组成。
螺旋输送机通过螺旋叶片将土壤推送到输送管道中,输送管道将土壤输送到盾构机后方的料斗中。
4. 隧道衬砌系统隧道衬砌系统负责在土壤开挖后,将预制的隧道衬砌片安装在开挖的土壤周围,形成隧道的结构支撑。
隧道衬砌系统主要由衬砌片安装机构和衬砌片输送系统组成。
衬砌片安装机构将衬砌片安装在开挖的土壤周围,衬砌片输送系统将衬砌片输送到安装位置。
盾构机工作原理的基本流程如下:1. 盾构机进入施工现场,准备开始施工。
2. 推进系统启动,推进盾构机头部进入土壤。
3. 土壤开挖系统开始工作,刀盘旋转并切削土壤。
4. 土壤输送系统将开挖的土壤输送到盾构机后方。
5. 隧道衬砌系统开始工作,衬砌片安装机构将衬砌片安装在开挖的土壤周围。
6. 推进系统继续推进盾构机,进行下一段的土壤开挖和隧道衬砌。
7. 循环进行土壤开挖和隧道衬砌,直到完成整个隧道的施工。
盾构机工作原理的优点:1. 盾构机施工速度快,可以大大缩短施工周期。
2. 盾构机施工过程中对周围环境的影响较小,可以减少噪音和振动。
盾构机工作原理【盾构机工作原理】盾构机是一种用于地下隧道开挖的工程机械设备,它能够在地下进行快速、安全、高效的隧道开挖工作。
盾构机的工作原理是通过推进系统、掘进系统、支撑系统和排土系统的配合运作,完成隧道的开挖和支护。
一、推进系统:盾构机的推进系统主要由推进机构和推进液压缸组成。
推进机构通过电机或液压驱动推进液压缸,推动盾构机向前推进。
推进液压缸的推进力可根据需要进行调整,以适应地层的不同情况。
二、掘进系统:盾构机的掘进系统主要由刀盘、刀盘驱动系统和刀盘刀具组成。
刀盘位于盾构机前端,通过刀盘驱动系统带动刀盘旋转,刀盘刀具则负责切削地层。
刀盘的刀具种类丰富,可以根据地层的不同选择不同的刀具进行切削。
三、支撑系统:盾构机的支撑系统主要由隧道衬砌和支撑液压缸组成。
隧道衬砌是由预制的隧道环片组成,通过支撑液压缸将隧道环片推入地层,形成隧道的支撑结构。
支撑液压缸的数量和位置可以根据需要进行调整,以确保隧道的稳定性和安全性。
四、排土系统:盾构机的排土系统主要由刀盘后部的螺旋输送机和螺旋输送机的排土管道组成。
刀盘切削地层后,土屑通过螺旋输送机被输送至盾构机后部,再通过排土管道排出地面。
排土系统的设计和运行稳定性对于盾构机的工作效率和安全性至关重要。
盾构机的工作原理可以简单概括为:推进系统推动盾构机向前推进,掘进系统切削地层,支撑系统进行隧道支撑,排土系统将土屑排出。
这四个系统的协调运作使得盾构机能够在地下进行高效、安全的隧道开挖工作。
盾构机的工作原理与地层的情况、盾构机的类型和规格、工程要求等因素有关。
在实际工程中,需要根据具体情况进行调整和优化,以确保盾构机的工作效率和隧道的质量。
盾构机的工作原理
盾构机是一种用来在地下进行隧道建设的机械设备。
它的工作原理可以简单地分为以下几个步骤:
1. 掘进机械部分:盾构机由巨大的盾体和推进机械构成。
巨大的盾体是由钢制拼装而成的圆筒形结构,前端有巨大的开挖面。
推进机械则负责推动盾体向前移动。
2. 土层开挖:盾构机在地下推进时,盾体前端的开挖面负责切割和挖掘土层。
通常采用刀盘来进行土层开挖,通过转动刀盘上的刀片来切割土层。
挖掘的土层由盾体后部的输送系统或螺旋输送器进行排出。
3. 土层支护:在盾构机挖掘过程中,土层会因受力而形成压力。
为了确保施工安全,需要进行土层的支护。
常见的土层支护方式包括注浆、钢板桩或混凝土衬砌等。
4. 推进与补齐:当盾构机挖掘一定距离后,需要对盾体后部进行推进,以保证整体的前进。
推进机械会通过液压系统推动盾体向前移动。
同时,盾构机在挖掘过程中,会在后部补充环状的预制衬砌片,以加固和保护挖掘环境。
5. 循环重复:盾构机会不断重复以上步骤,直到完成整条隧道的建设为止。
总体而言,盾构机通过刀盘进行土层开挖,同时进行土层支护
和盾体的推进,以实现地下隧道的建设。
通过不断重复的循环,能够高效地推进并完成隧道的建设。
盾构机工作原理盾构机是一种用于地下隧道施工的重型机械设备。
它采用盾构法施工,具有高效、安全、环保等优点。
下面将详细介绍盾构机的工作原理。
一、盾构机的构造盾构机主要由盾构机主体、刀盘、推进系统、控制系统和后续支护系统等部份组成。
1. 盾构机主体:由机壳、先后密封室、先后推进系统、主推进油缸和主推进盘等组成。
机壳是盾构机的主体结构,能够承受地下土压力。
2. 刀盘:位于盾构机前部,由刀盘主轴、刀盘盘体、刀具和刀盘驱动系统等组成。
刀盘通过旋转和推进来进行土层的开挖。
3. 推进系统:由推进油缸、推进盘和推进螺杆等组成。
推进油缸通过液压系统提供推进力,推进盘和推进螺杆将盾构机推进到地下。
4. 控制系统:包括盾构机的操作控制台、传感器、液压系统和电气系统等。
控制系统能够监测和控制盾构机的运行状态。
5. 后续支护系统:在盾构机通过后,需要进行地下隧道的支护。
后续支护系统包括涵洞衬砌、钢筋混凝土衬砌、喷射混凝土等。
二、盾构机的工作原理盾构机采用盾构法进行隧道施工,其工作原理如下:1. 准备工作:在施工前,需要对地质情况进行勘察,并确定盾构机的施工参数。
施工现场需要进行地面开挖,建立起盾构机的工作坑。
2. 推进过程:盾构机启动后,刀盘开始旋转,刀具在土层中开挖。
同时,推进油缸提供推进力,将盾构机推进到地下。
推进过程中,盾构机会持续排放掘进物料。
3. 土层处理:盾构机开挖的土层通过输送系统运出隧道,同时通过注浆系统进行土层的稳定,防止地面沉降。
4. 密封和支护:盾构机在开挖过程中,通过先后密封室和密封垫进行土层的封闭,防止水和泥浆进入隧道。
同时,后续支护系统进行隧道的支护。
5. 推进和停顿:盾构机在推进过程中,需要根据地质情况和施工计划进行停顿和调整。
停顿时,可以进行刀具更换、维护和修理。
6. 完工和拆除:当盾构机推进到目标位置后,施工完成。
隧道的后续工程,如道路铺设、管线安装等可以进行。
盾构机可以拆除或者继续用于其他隧道施工。
盾构机工作原理盾构机是一种用于地下隧道施工的专用机械设备,其工作原理是通过推进盾构机,同时进行土层的掘进和支护,完成地下隧道的开挖和施工。
盾构机通常由刀盘、推进系统、土压平衡系统、泥水处理系统和支撑系统等组成。
1. 刀盘刀盘是盾构机的核心部件,位于盾构机的前端。
刀盘上装有刀具,通过旋转切削地层,将土层切割成碎片,然后通过输送系统将碎片运送到后方的螺旋输送机上。
2. 推进系统推进系统是盾构机的驱动装置,用于推动盾构机前进。
推进系统通常由液压缸、液压马达和推进盾构机的推进液压缸组成。
液压马达通过液压系统提供动力,推动盾构机向前推进。
3. 土压平衡系统土压平衡系统是保持盾构机在地下工作时的平衡状态的重要装置。
它通过在盾构机前方施加与土层压力相等的反力,使盾构机前后压力保持平衡,防止土层坍塌。
土压平衡系统通常由前后推进液压缸、活塞、土压平衡油缸和土压平衡油缸控制系统等组成。
4. 泥水处理系统泥水处理系统用于处理盾构机在工作过程中产生的泥浆和废水。
盾构机在切削地层时会产生大量的泥浆,泥水处理系统通过过滤、分离和回收,将泥浆中的固体颗粒和废水分离,使其可以循环使用或进行处理。
5. 支护系统支护系统用于在盾构机开挖过程中对地下隧道进行支护,防止土层坍塌。
支护系统通常由支护壁、液压支撑系统和封闭环境系统等组成。
支护壁可以是预制的钢筋混凝土片或喷射混凝土,液压支撑系统通过液压缸提供支撑力,保持隧道的稳定。
盾构机工作原理的具体步骤如下:1. 盾构机进入工作区域,并进行安全检查和准备工作。
2. 启动盾构机的推进系统,盾构机开始向前推进。
3. 刀盘开始旋转,切削土层,将碎片通过输送系统运送到螺旋输送机上。
4. 土压平衡系统施加与土层压力相等的反力,保持盾构机的平衡状态。
5. 泥水处理系统处理盾构机产生的泥浆和废水,使其可以循环使用或进行处理。
6. 支护系统根据盾构机的推进情况,及时进行地下隧道的支护,防止土层坍塌。
7. 盾构机持续推进,直至完成地下隧道的开挖和施工。
海瑞克盾构机自动加气系统(Samson保压系统)操作方法吴启谊 139********1 原理功能 盾构机空气自动加气系统用于保持土仓内空气压力接近恒定值,是一个压力自动控制系统。
1――压力变送器 2――调节阀 3――阀门定位器 4――调节器5――减压阀 6――气动三联件 7、9、10、11、12――球阀 8――压力表图1 自动加气系统原理图(该图取自海瑞克盾构机自动加气系统图)自动加气系统控制原理见图1。
系统原理为:压力变送器将土仓内实际的空气压力转换成标准的气压信号x 送往调节器。
调节器把变送器送来的测量值x 与设定值w 进行比较得出偏差,根据偏差大小及变化趋势,按PI 控制规律进行运算后,输出相应的控制信号y 给定位器。
定位器将从调节器来的调节信号y 与从调节阀来的阀门位置信号相比较,保证阀门位置按调节器发出的信号正确定位。
2 使用方法图2是自动加气系统控制模块,包括显示面板、手动操作站、调节器等。
1――手动操作站 1.1――外壳 1.2――插件单元 2――标签 3――土仓压力显示值 4――设定值 5――设定值调节旋钮 6――手动/自动控制转换开关 7――手动控制设定旋钮 8――自动控制设定值显示(A y ) 9――手动控制设定值显示(H y ) 10――指示灯 11――锁紧单元 12――调节阀作用方向指示 13――int /ext w w 选择开关 20――调节器图2 自动加气系统显示面板和手动操作站使用该自动加气系统的方法步骤如下:1)打开相关气路,检查图1减压阀5和6出口压力是否分别为1.40.1bar ±和40.1bar ±,确保管路无泄漏、堵塞现象,确保进入土仓的闸阀处于关闭状态,同时球阀10约打开五分之一;2)检查int /ext w w 选择开关是否处在int w 位,处在int w 位表明调节器的设定值w 由图2旋钮5调定,处在ext w 位则表明调节器的设定值w 由操作站外部给定,本系统中设定值w 由旋钮5调定,检查完后调整旋钮5设定土仓压力(绿色指针值),为避免土仓泥水反流,设定压力必须略大于土仓压力;;3)将手动/自动开关打到手动操作位;4)调整图2旋钮7,使控制系统开始工作,调整H y 值直到实际值指示针(红色)慢慢靠近设定值(绿色指针值);5)在调整H y 过程中,自动操作输出信号A y 也在慢慢上升,当A H y y =时,将手动/自动开关打到自动操作位,这样可减少系统冲击;6)观察系统动态响应特性,如果实际值是在设定值上下作合理的波动,则表明系统已处在正常的工作状态中,否则需要重新调整调节器的PID 控制参数。
盾构机技术讲座一.盾构机结构(EPB总体结构图)盾构是一个具备多种功能于一体的综合性隧洞开挖设备,它集和了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能,目前,盾构机已成为地下交通工程及隧道建设施工的首选设备被广泛使用。
其优点如下:1. 不受地面交通、河道、航运、季节、气候等条件的影响。
2. 能够经济合理地保证隧道安全施工。
3. 盾构的掘进、出土、衬砌、拼装等可实行自动化、智能化和施工运输控制信息化。
4. 掘进速度较快,效率较高,施工劳动强度较低。
5. 地面环境不受盾构施工的干扰。
其缺点为:1. 盾构机械造价较高。
2. 在饱和含水的松软地层中施工地表沉陷风险大。
3. 隧道曲线半径过小或埋深较浅时难度较大。
4. 设备的转移、运输、安装及场地布置等较复杂。
盾构作为一种保护人体和设备的护体,其外形(断面形状)随所建的工程要求不同有圆形、双圆形、三圆形、矩形、马蹄形、半圆形等。
(如:人行道方形能最大限度的利用空间、过水洞马蹄形符合流体力学、公路隧道半圆形利用下玄跑车)。
而因圆形断面受力好、圆形盾构设备制造相对简单及成本相对低廉,绝大部分盾构还是采用传统的圆形。
为适应各种不同类型土质及盾构机工作方式的不同,盾构机可分为三种类型、四种模式:三种类型:(1)软土盾构机;(2)硬岩盾构机;(3)混合型盾构机。
四种模式:(4)开胸式;(5)半开胸式(半闭胸式、欠土压平衡式);(6)闭胸式(土压平衡式);(7)气压式。
软土盾构机适应于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩。
刀盘只安装刮刀,无需滚刀。
硬岩盾构机适应于硬岩且围岩层较致密完整,只安装滚刀,不需要刮刀。
混合盾构机适应于以上两种情况,适应更为复杂多变的复合地层。
可同时安装滚刀和刮刀。
气压盾构是在加气压状态下的施工模式,即可用于泥水加压式盾构机,也可用于土压平衡式盾构机。
以下以海瑞克公司在广州地铁使用的典型土压平衡式盾构机为例:盾构机总图总体外形尺寸:Φ6280X75000mm总质量:520t装机总功率:1744.6KW最大掘进速度:80mm/min第一节:主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。
浅析海瑞克盾构机现场调试的方法李剑祥(中铁六局集团有限公司盾构分公司广东深圳 518056)摘要:详细阐述盾构机现场调试的准备项目和具体步骤,避免常见的问题,并通过处理故障,优质高效的完成盾构机现场调试工作。
关键词:海瑞克盾构机调试盾构机是一种集机械、液压、电气和自动化控制于一体、专用于地下隧道工程开挖的技术密集型重大工程装备。
它具有开挖速度快、质量高、人员劳动强度小、安全性高、对地表沉降和环境影响小等优点。
但是其体积庞大、系统复杂,内部管路和线路纵横交错,自动化控制系统先进强大。
对于负责盾构设备的机电工程师来说,组装调试维护盾构机就必须具备机械液压电气等方面的基础知识,并且学习掌握其结构和原理,还需结合现场、不断总结和提高,才能真正管理和维护好盾构设备。
盾构机调试按地点分为工厂调试和现场调试,按阶段分为空载调试和负载调试。
盾构机工厂调试是设备在工厂车间进行的第一次调试。
在这里主要讨论现场调试的空载调试阶段。
盾构机现场调试作为盾构始发的一项重要工作,如何优质高效的完成,对机电人员是个大考验。
1 海瑞克盾构机简介本文介绍的调试对象是海瑞克S436盾构机。
S436为开挖直径6280mm土压平衡盾构机,由主机、连接桥和五节台车组成,总长78米。
主机分为刀盘、前盾、中盾和尾盾,内含主驱动、人闸、拼装机和螺旋机。
台车上布置了司机室、液压泵站、低压配电柜、变压器和循环水系统。
盾构机液压系统主要有刀盘驱动系统、推进和铰接系统、螺旋机系统、拼装机系统和注浆系统。
辅助系统有循环水系统、压缩空气系统、油脂系统、泡沫系统和膨润土系统。
电气系统分为高压系统、低压系统和控制系统。
其他辅助系统有双轨梁系统和皮带系统。
2 调试的准备工作在调试之前需要重点检查的部位有:23 具体调试步骤一般空载调试步骤如下:34负载调试阶段就是始发掘进阶段,处理一些在空载调试时没有出现的问题。
调试完毕后,测试其各系统各功能正常后,填写调试验收表。
盾构机的工作原理介绍
盾构机是一种用于隧道施工的工程机械设备,其工作原理主要包括以下几个步骤:
1. 掘进:盾构机主要通过推进系统推进盾构机身体,同时使用刀盘上的刀具在地面形成一定的切削力。
盾构机通常由刀盘、刀盘驱动系统、推进系统等组成。
刀盘上的刀具在掘进过程中对土壤进行切削,并将土壤推向盾构机内部。
2. 排土:盾构机掘进时,土壤通过螺旋输送机或链式输送机输送到盾构机内部。
同时,通过注浆系统向工作面注射注浆材料,以稳定土体,防止地层塌方。
3. 支护:当掘进到一定距离后,需要进行土体的支护,以保证隧道稳定。
盾构机通常可以在掘进面后方进行支护工作,支护方式包括设置钢管桩、喷射混凝土等。
4. 环片安装:盾构机掘进到一定距离后,会同时安装预制的环片,形成隧道结构。
安装环片通常使用液压千吨顶装置进行,将环片通过液压顶推机构安装到预埋的隧道轨道上。
5. 推进循环:通过以上步骤的不断循环,盾构机可以逐步推进掘进,同时不断安装环片,完成整个隧道的掘进工作。
总的来说,盾构机的工作原理就是通过推进系统推动机身,通过刀盘切削土壤并
推进掘进,同时排土和注浆,进行土体支护,并安装预制环片,最终完成隧道的掘进工作。
盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。
这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。
有的系统还相互有联系。
下面就分别介绍一下以上8个液压系统的作用及工作原理。
(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。
铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。
(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。
恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。
恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。
由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。
因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。
油泵输出的高压油经高压管路由B组的P口进入,一路径F1(过滤)→A111(流量调整)→A101(压力调整)→经电液换向阀进入推进油缸。
缸的快进快退,提高工作效率。
A783控制的插装阀。
A403为推进油缸底端预卸荷阀。
阀组中还有液控单向阀、载荷溢流阀,以及A256压力传感器和油缸行程传感器。
四组阀组中的电液换向阀的液控油由定量泵(1P002)经减压阀(1V034)提供。
2. 铰接装置工作模式分三种:铰接装置的动力来源于推进系统的液压泵站中的定量泵(1P002),铰接装置的加载和卸载由(A349)两位两通电液阀控制。
(1)铰接回收(PULL或RETRACTION)模式(减小铰接间隙),定量泵输送来的高压油从阀快(2C001)P口进入,此时(H001)不得电截止,(H002)得电导通,高压油进入铰接油缸的有杆腔使铰接油缸回收。
(2)铰接保持(HOLD或FREE)模式(浮动模式),该模式下(H001、H002)都不得电截止。
铰接油缸有杆腔的油被封闭,油量保持不变,被封闭的油在所有相互并联的有杆腔内互相补偿,直线推进时保持铰接间隙,转弯时处于浮动状态。
(3)铰接释放(RELEASE或LOOSE)模式(伸长模式),当(H001)得电导通,(H002)无电截止时,铰接油缸有杆腔的油接通低压,在盾构机推进时,因盾尾的阻力使铰接油缸被拉长,达到增大铰接间隙的目的。
该油路中还设有负载溢流阀(V2)、压力传感器(H005)及铰接间隙长度传感器。
另外可以通过(2V003、2V004、)的导通和截止达到铰接保持和铰接释放功能。
但当(2V003、2V004)两个阀的截止,在铰接油缸有杆腔的压力过高时(盾构机推进时,盾尾如果被卡住),因无压力传感器的压力显示和载荷溢流阀的溢流,可能会使铰接油缸损坏或油管爆裂。
(二)刀盘旋转液压系统刀盘旋转系统可分为补油回路、主工作回路、外部控制供油泵、主泵外部控制回路、马达外部控制回路。
刀盘旋转系统是为刀盘切割岩石或土壤时提供转速和扭矩,要求根据岩石地质的变化转速能够方便的调整。
为了得到较大的功率和扭矩,该系统采用3台315KW的双向变量液压泵并联,带动8台双向两速低速大扭矩液压马达。
下面分别介绍各回路的作用及工作原理。
补油回路:因主工作回路是闭式回路,加之系统功率大,需要进行补油和散热,所以设置了一套补油回路对其进行补油和散热。
为增大散热效率,补油回路采用了55KW低压大流量的定量泵来带走闭式回路中的大量热量,同时也对其进行了补油。
补油泵从油箱泵出的油经两个滤清器(1F001、1F002)进入3个主泵的E口,并通过两个单向阀分别对闭式回路的低压端进行补油,然后经主泵的高压端为液压马达提供动力油。
从马达返回的携带热量的低压油又回到主泵,一部分又进入主泵的高压端,一部分经排放阀从主泵的K1口流出,并经一节流阀流回油箱进行冷却。
补油回路中还设有蓄能器和压力传感器,蓄能器是保证回路的压力平稳。
主工作回路由主泵和液压马达组成,主泵是一315KW 的双向变量泵,在主泵的主回路中有补油单向阀、载荷溢流阀、及低压排放阀,主泵的控制回路有主泵斜盘伺服油缸及双向伺服控制阀,司服阀由外部控制回路调压控制,以便实现换向和无级调速。
两个补油单向阀分别向低压侧进行补油,另一个带弹簧符号的单向阀是当两侧回路都较高或相等时(如:主泵斜盘角度为0时),补油直接通过它,并经节流阀(1Z017)返回油箱。
载荷溢流阀当载荷过大时使过高的压力油泄至低压侧,以达到保护系统不受损坏。
排放阀用于闭式系统多余的热油经低压侧排放回油箱。
节流阀(1Z017)是保证排放出的压力油与油箱之间形成约20bar的压差。
主泵控制回路用于控制其斜盘的±角度,以实现刀盘的正反转及转速的无级调整。
外来控制油经换向阀(1V002)到达司服阀的左右端,使司服油缸的无杆腔进油和排油来实现活塞杆的左右移动,从而完成斜盘角度的控制。
外来控制油是通过外部控制回路中的电比例溢流阀(B006)提供,调整范围0-45bar。
马达回路含有司服油缸、司服阀及低压排放阀,司服阀由主回路压力及外部控制回路控制,当马达外载荷增大时,主回路高压侧的油压随之升高,高压油经过单向阀,一路到达司服阀左端,使司服阀右移,一路到达司服阀P口经减压阀进入司服油缸无杆腔使斜盘角度增大,从而降低转速增加扭矩,外部控制回路由控制油泵提供控制油压,当无控制油压时,马达处于高速档,当外部提供油压时,司服阀右移,使马达处于低速档,从而实现了两速控制。
外部控制供油泵(2P001):控制油泵是一台 5.5KW的恒压变量泵,泵中的两个司服阀上面一个与溢流阀联合控制泵的压力,下面一个以控制流量为主。
(B040)为加载电磁阀。
该泵的油通过滤清器(2F001)向刀盘旋转系统的主泵和液压马达以及螺旋输送机的控制回路供油。
一路去旋转主泵回路的控制阀,一路去旋转马达控制阀,另两路去两台螺旋输送机的主泵控制阀。
进入旋转主泵控制阀的油经节流和减压后在经电液比例溢流阀(B006)向旋转主泵司服阀提供0-45bar的可变压控制油压,以实现转速的无级调整。
另外从主泵P口(H88)和梭阀(V030、H92)反馈到控制阀(2C003)并汇集到两组溢流阀和载荷感知阀,两组溢流阀由手动两位四通阀转换,正常工作时使用左边溢流阀,增大扭矩时使用右边溢流阀(只能短时间使用),手动阀自动回位。
感知阀是在扭矩突然增大时,反馈的油压将减低其溢流压力,使控制主泵伺服的压力降低,从而减小主泵斜盘角降低刀盘转速。
进入旋转马达控制阀P口的油经节流阀(M10)又分两路,一路经减压阀、两位四通电磁阀(B032)到(H86)旋转马达控制马达的高低速。
另一路经减压阀、两位四通阀(B033)、单向节流阀去控制马达(1A002)的刹车(1G002)。
在(1A002)马达上装有旋转方向传感器(1S026、B035)、马达高低速传感器(1S025、B038)和油温传感器(1S023、B050)。
在刹车回路中设有蓄能器(2C002),与单向节流阀一起保证了刹车时的快杀慢放。
(三)管片拼装机液压系统为了提高管片的拼装效率及避免拼装中的管片损坏,要求系统要有一定的速度、准确的移动位置精度、足够的活动自由度及可靠的安全度。
速度由一55KW的双联恒压变量泵提高的流量控制,精度靠电液比例司服阀控制,自由度有:管片的左右旋转、提升(可左右分别提升及同时提升)、前后水平六个自由度,并有管片的抓紧及绕抓举头水平微转、前后微倾的微调功能。
55KW的双联恒压变量泵为拼装机提供动力。
当用快速档时,双泵同时工作。
低速档时,只(1P002)工作。
加载阀(C003、C004)由PLC控制,根据拼装机的工作速度可对其进行分别控制或同时控制。
旋转控制:油泵输出的高压油一路经减压阀(DM)减至30bar到达电液比例阀然后控制司服阀以达到控制流量来控制马达旋转速度。
各阀的功能如下,DM为控制油减压阀,DBV2为控制油溢流阀,DBV1与插装阀组成主溢流阀,进入司服阀前的减压阀经DUE4、DUE7节流阀后的反馈油控制,以达到动作启动时的平稳。
D1、D4为反馈油溢流阀,F1、DUE2是停止动作时起泄油的作用。
经控制阀控制后压力油分别进入两个并联的回转马达,高压侧的油一路经减压阀(1V001)减压后去控制刹车,减压阀旁的单向阀起回转停止时刹车的泄油回路。
进入马达的油先经平衡阀(此阀进油时不起作用),驱动马达旋转,马达出来的油进入下一个平衡阀,该阀在进油有一定压力后经X口其慢慢打开回油通路,并保证一定的背压,避免马达因惯性吸空,当旋转惯性过大时平衡阀右边的压力会增加,使阀芯左移以减少回油来减小惯性产生的转速,当回油压力增大到最大设定值时平衡阀中的溢流阀工作,避免了液压元件被损坏。
水平移动的控制与回转控制一样,从控制阀出来的油经平衡阀(1C004)进入水平移动油缸,控制油缸的前后移动。
提升控制:控制阀原理与回转控制相同,但在司服阀反馈油出口处只在提升回路中设置了节流阀,下降反馈口没有设置,其目的是为了较快的提高司服阀进口处减压阀的减压压力以增加下降时的反应速度,同时也反映一个功率平衡问题。
两个提升油缸即可以单控,也可以同时控制,所以有两套单独得司服控制阀,。
从控制阀出来的压力油先通过一个两位两通随动阀进入提升油缸,当达到一定压力后,油缸出油口的两位两通随动阀在进口压力的推动下打开,导通回油通道形成回路。
反之亦然。
管片抓紧控制:压力油经减压阀减压,在经三位四通电磁换向阀换向,经液压锁、单向节流阀、B口端还有溢流阀。
抓紧时,从A1口出来的油经过抓举油缸进口处的液压锁进入抓举缸的有杆腔,当达到设定的抓紧力时油缸旁的溢流阀溢流,并使油缸旁的两位两通阀换向,切断通往压力开关(1S001)的油压,使压力开关信号改变。