数控稳压电源的设计与制作
- 格式:pptx
- 大小:2.02 MB
- 文档页数:20
基于单片机89C58的数控直流线性稳压电源题目:数控直流线性稳压电源系别:电子与电气工程学院指导老师:秦益霖完成时间:2009年12月目录一、设计任务与技术指标(一)设计任务------------------------------------------------------------------------------------1(二)技术指标------------------------------------------------------------------------------------1(三)题目分析------------------------------------------------------------------------------------1二、方案论证(一)系统电源模块------------------------------------------------------------------------------3(二)数控模块------------------------------------------------------------------------------------3(三)控制模块------------------------------------------------------------------------------------3(四)显示模块------------------------------------------------------------------------------------4三、系统硬件设计(一)系统的总体设计----------------------------------------------------------------------------5(二)单元电路的设计及参数计算-------------------------------------------------------------6(三)电路原理图---------------------------------------------------------------------------------12(四)元器件清单四系统软件模块五、系统组装(一)整机结构图及其工艺说明----------------------------------------------------------------13(二)演示部分说明------------------------------------------------------------------------------- 六、总结报告---------------------------------------------------------------------------------------------------14参考文献及网站------------------------------------------------------------------------------------------16一、设计任务和技术指标一、设计任务设计一个数控直流稳压电源。
数控稳压电源的设计【摘要】本设计采用单片机AT89C52为主要控制器件,以MCP4921作为数显转换核心,实现对电源输出电压的数字控制及LCD液晶显示。
电路调压有两种方法,可直接对电位器调节,也可以利用单片机进行数字控制,其输出电压可调范围为0-12V,并具有过流保护和短路保护功能。
【关键词】单片机;数字控制;过流保护1.总体设计方案数控稳压电源主要由整流稳压模块[1]、D/A转换模块、LCD显示模块、单片机控制模块、按键模块、过流保护模块、运算放大器模块、蜂鸣器模块组成。
总框图如图1所示。
图1 系统总体框图方案一:采用传统的调整管方案,主要特点在于使用一套十进制计数器完成系统的控制功能,一方面完成电压译码显示,另一方面输出作为EPROM的输出经MCP4921(D/A)转换去控制误差放大的基准电压,以控制输出。
方案二:采用单片机AT89C52作为整机的主要控制器件,通过改变输入数字量来改变输出电压值,从而使输出功率管的基极电压发生变化,间接地改变输出电压的大小。
为了能够使系统具备检测实际输出电压值的大小,可以经过MCP4921进行数模转换,间接用单片机实时对电压进行采样,然后进行数据处理及显示。
利用51系列单片机为主控制器,通过按键来设置直流电源的输出电压,并可由LCD液晶显示实际输出电压值和电压设定值。
综上所述,经比较,方案二硬件电路简单,利用程序控制来完成。
采用方案二来完成本项目。
2.硬件电路设计2.1 电源模块采用桥式整流经过电容滤波、7815、7905、7805稳压得15V、+5V、-5V电压,提供给单片机、MCP4921、运算放大器等供电,如图2所示。
图2 电源模块2.2 D/A转换模块如图3所示,采用MCP4921对单片机信号进行数模转换[2],MCP4921芯片的VREFA脚由TL431提供基准电压。
VOUTA脚输出模拟电压,其计算公式(1)如下:(1)=外部基准电压;=DAC的输入代码;n=12(DAC分辨率);G=增益选择(G=2时<>位=0;G=1时<>位=1)。
数控直流稳压电源设计1.数控直流稳压电源的概述现代电子装置在供电要求方面有着越来越高的要求,而数控直流稳压电源则是目前广泛应用的一种供电装置。
数控直流稳压电源不仅具有直流稳定的输出特性,而且还能实现数字化控制,具有更加高效、精确的供电能力和性能。
数控直流稳压电源适用于各种电子装置的开发和生产领域,如通信技术、医疗器械、军事通讯和工业自动化等。
2.数控直流稳压电源的设计原理数控直流稳压电源主要由下列几个模块组成。
2.1输入端输入端是稳压电源的第一步,它接收外部电源的直流或交流信号,并且对输入电压进行过滤和波形整形,以确保后续的电路可以正常工作。
2.2稳压模块稳压模块负责稳定输出电压的值。
在闭环控制下,稳压模块保证输出电压稳定在标准值附近,即使在输入电压波动或负载变化的条件下,它也能确保输出电压的稳定性和可靠性。
2.3数控模块数控模块为整个电源提供了数字化控制的功能。
它包括一个集成电路、显示屏、输入设备和计算机接口等组成部分。
通过输入输出端口与计算机相连,可实时监测和控制电源的电压、电流、功率等参数。
2.4保护模块保护模块负责保护电源免受外界环境的影响。
它包括四种保护措施:过压保护、过温保护、过载保护和短路保护,并采用相应的防护电路来实现保护功能。
3.数控直流稳压电源的设计流程数控直流稳压电源的设计流程包括以下几个步骤:3.1确定电源的基本参数这包括电源输出电压、电流、功率、负载范围等参数。
设计人员需要根据电路应用需要,确定电源所需的输出电压和电流等参数。
3.2选取和确认元件在确定电源的基本参数后,设计人员应选择与之相适应的元件,包括电容器、电感器、稳压管、集成电路等,这是设计数控直流稳压电源的关键步骤之一。
设计人员需要综合考虑元件的品质、供货和维护等方面的因素,以便在成本和性能之间取得平衡。
3.3进行电路设计在确定元件后,设计人员需要根据设计参数和基本电路原理,设计稳压电源的具体电路方案,逐步完善和优化电路。
数控直流稳压电源的设计和制作数控直流稳压电源,是一种集数字化控制、直流电源稳定输出功能于一体的电子制品,它广泛应用于各类实验、测试、仪器、通讯系统及各种机电设备中。
今天我们就来谈谈数控直流稳压电源的设计和制作的具体过程。
一、设计1.稳压芯片选型在设计数控直流稳压电源中,首先要选用一款适合的稳压芯片。
常见的稳压芯片有LM317、LM350、LM338等,选择其中的一种根据自己的需求进行选择。
例如,LM317适合安装功率较低的电路,LM350适合于安装功率较大的电路,而LM338的输出电流可达5A以上,是一种非常适合于实验室及大功率稳压电源设计的芯片。
2.规划电源输出模块在设计中需要考虑输出模块的功能设置与实际需要相符,因此需要详细了解电源输出模块的所有类型,包括DC稳压输出、DC包络线输出、交流输出、多路并联输出等的优劣之处,然后选用适合自己需要的类型进行设计。
3.阻容电路的设计在电源输出中需要设计阻容电路,其目的是为了保护电源不受怠工放置,以及电源的过载保护等,详见下面内容。
二、制作1.准备器材在制作数控直流稳压电源之前,需要准备相应的器材和材料,例如PCB板、元器件、焊接工具等。
2.电源输出模块的焊接在制作中需要用到数控直流稳压电源输出模块,首先在PCB板上进行焊接,接下来安装电容、二极管等元器件,进行一定量的基础防护。
3.安装稳压芯片安装稳压芯片需要考虑其散热问题,此时应该做好散热片附加硅脂,以保证芯片处于稳定状态。
4.接线在焊接和装配完成后,接线工作是必要的。
在接线时,必须要认真看清接线图,把电路板上的元器件和接线线路进行一一对应,以便拼接时不会出现误差。
5.开机测试制作数控直流稳压电源时,一定要经过开机测试。
在开机时,应该观察电源的工作状态是否正常,电压是否稳定,是否存在短路等问题。
这样可以在实际应用时更加安全和稳定。
以上就是数控直流稳压电源的设计和制作的具体过程,每一步都要做好方案设计和操作步骤的准备工作,以确保电源的稳定运行。
简易数控直流稳压电源设计数控直流稳压电源是一种能够提供稳定输出电压的电源装置,常用于电子设备的测试、实验和制造过程中。
下面是一个简易的数控直流稳压电源设计。
1.设计需求和规格在开始设计之前,我们需要明确电源的输出电压和电流需求。
假设设计目标为输出电压范围为0-30V,最大输出电流为5A。
2.选择电源变压器根据设计需求,我们需要选择一个合适的电源变压器。
变压器的选择应该满足以下条件:-输入电压范围为市电的电压范围;-输出电压是设计需求的两倍,即60V;-输出功率需大于最大输出功率,即300W。
3.整流电路设计使用桥式整流电路将交流输入电压转换为直流电压。
桥式整流电路由4个二极管组成,将交流输入电压的负半周和正半周均转换为正向电流。
4.滤波电路设计滤波电路用于减小输出电压中的纹波,并提供稳定的直流输出电压。
常见的滤波电路是使用电容滤波器。
根据设计需求,选择适当的电容来达到所需的输出纹波和稳定性。
5.稳压电路设计稳压电路用于控制输出电压在设定范围内稳定。
可以使用集成稳压器芯片,例如LM317,它可以根据外部电阻器和电容器的值来控制输出电压。
6.控制电路设计为了实现数控功能,可以使用微控制器或模拟电路来控制输出电压和电流。
通过合理设置电容、电阻和电位器等元器件,可以设计出合适的控制电路。
7.保护电路设计为了确保电源和负载的安全,应设计适当的保护电路。
常见的保护电路包括过流保护、过压保护和过温保护。
可以使用电流检测器、过压保护器和温度传感器等元器件来实现这些保护功能。
8.PCB设计和制造根据上述电路设计,进行PCB布局和布线。
设计合适的PCB尺寸和布局,以容纳所有元器件,并确保电路的稳定性和可靠性。
完成设计后,可以选择将PCB文件发送给制造商进行制造。
9.组装和测试将制造好的PCB组装在电源箱中,接好输入电源线和输出连接线。
在保证安全的情况下,通电测试电源的稳定性、输出的准确性和保护电路的可靠性。
10.调试和优化根据实际测试结果,不断调试和优化电源的性能。
基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
数控直流稳压电源的设计与制作摘要:本系统以STC89C52为核心,主电路利用达林顿管进行稳压输出,采用电压、电流闭环反馈控制电路,调整达林顿管的导通率,达到稳压输出的目的。
通过键盘来设置直流电源的输出电流,并可由液晶显示器显示输出的电压、电流值。
本系统由单片机程控设定数字信号,经过D/A转换器输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流(压)。
系统通过单片机以及其外围器件实现输出电压、电流的显示,人机交互,输出电流、电压的实时测量,输出过流保护等功能。
实际测量表明,采用达林顿管和LM324运放进行稳压输出基本能够完成题目要求的所有指标。
关键词:STC89C52 A/D转换器 D/A转换器运算放大器恒压源1、设计目的本设计以STC89C52单片机为核心,设计并制作直流电源。
其中,控制回路我们采用了电压、电流双重闭环反馈控制电路,达到电压、电流稳定输出同时,进行过流保护,使该系统更加的完善。
本系统输入交流电压范围:200-240V;输出电压可调范围:0-- +12V、输出电流可调范围:0—1A;过电流保护动作电流:1.1A。
2、功能要求(1)、通过“+”、“-”键步进调整输出电压的上升、电压的下降。
(2)、输出电压和电流值通过4为LED数码管显示,显示精度分别为0.1V 和0.01A。
(3)、通过“F1”键视线电压/电流显示切换,开机默认显示电压,按“F1”键转换为显示电流,再按显示电压。
(4)、过流保护与报警功能。
一、系统组成及工作原理本系统由硬件和软件两大部分组成。
硬件部分主要完成数字显示、输出信号的采集、数控电源的调节,A/D和D/A转换等电路组成,数控电源的系统图1-1所示。
软件主要完成信号的扫描和处理、芯片的驱动和输出控制、调节等功能。
我们通过调节“+、- ”两个按键从而达到控制输出电压的升降。
该系统采用了电压电流反馈控制双闭环控制电路,一方面可实现反馈稳定电压、电流的同时,进行过流保护;另一方面将输出电压、电流通过四位七段的数码管显示。
数控直流电流源设计摘要AVR 系列的单片机不仅具有良好的集成性能, 而且都具有在线编程接口, 其中的Mega 系列还具有JTAG 仿真和下载功能; 含有片内看门狗电路、片内Flash、同步串行接口SPI; 多数AVR 单片机还内嵌了A/D 转换器、EEPROM、模拟比较器、PWM 按时计数器等多种功能; AVR 单片机的I/O 接口具有很强的驱动能力, 灌入电流可直接驱动继电器、LCD 等元件, 从而省去驱动电路, 节约系统本钱。
关键词:直流稳压电源;AVR单片机;液晶显示。
一、前言数控电源是从80年代才真正的进展起来的,期间系统的电力电子理论开始成立。
在以后的一段时刻里,数控电源技术有了长足的进展。
但其产品存在数控程度达不到要求、分辨率不高、功率密度比较低、靠得住性较差的缺点。
因此数控电源要紧的进展方向,是针对上述缺点不断加以改善。
单片机技术及电压转换模块的显现为精准数控电源的进展提供了有利的条件。
新的变换技术和操纵理论的不断进展,各类类型专用集成电路、数字信号处置器件的研制应用,到90年代,己显现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W 的数控电源。
从组成上,数控电源可分成器件、主电路与操纵等三部份。
电源采纳数字操纵,具有以下明显优势:1)易于采纳先进的操纵方式和智能操纵策略,使电源模块的智能化程度更高,性能更完美。
2)操纵灵活,系统升级方便,乃至能够在线修改操纵算法,而没必要改动硬件线路。
3)操纵系统的靠得住性提高,易于标准化,能够针对不同的系统(或不同型号的产品),采纳统一的操纵板,而只是对操纵软件做一些调整即可。
二、系统功能系统电压调剂范围为0~12V,最大输出电流1A,具有过载和短路爱惜功能。
输出电压可用1602LCD液晶显示。
键盘设有6个键,复位键,步进增减1V两个键,步进增减0.1V两个键和确认键。
复位键用于启动参数设定状态(5V),步进增减键用于设定参数数值,确认键用于确认输出设定值[2,3].电源开机设定电压输出默许值为5V。
基于单片机的数控直流稳压电源在电子设备中,直流稳压电源是非常重要的一部分,它能够为其他电路、芯片或者整个系统提供稳定可靠的电源供应。
而基于单片机的数控直流稳压电源技术则能够在一定程度上提升电源的稳定性和可调性,本文将介绍基于单片机的数控直流稳压电源的原理和设计。
1. 引言直流稳压电源在各种电子设备中都起着至关重要的作用。
传统的直流稳压电源主要采用稳压二极管、稳压管等元件,无法实现精准的控制和调节。
而基于单片机的数控直流稳压电源通过单片机的控制和监测,能够实现电源输出的精确控制和稳定性。
2. 设计原理基于单片机的数控直流稳压电源采用了反馈控制的原理,通过单片机对电源输出进行监测和调节。
其基本原理如下:首先,将输入交流电源经过整流和滤波,得到稳定的直流电压。
然后,通过单片机的模数转换功能,将电源输出电压转换为数字信号。
单片机通过比较这个数字信号与设定值,计算出控制电源输出的PWM 信号。
接下来,PWM信号经过数模转换后,通过放大电路驱动功率开关管。
功率开关管的导通与截止控制决定了电源的输出电压。
单片机通过不断调整PWM信号的占空比,实现对电源输出电压的精确调节。
同时,通过单片机监测电源输出电压的实际值,并与设定值进行比较,若存在偏差,则单片机通过反馈控制的方式调整PWM信号,使电源输出电压保持在设定值附近,从而实现直流稳压电源的功能。
3. 设计步骤基于单片机的数控直流稳压电源的设计步骤如下:3.1 硬件设计根据需要设计输出电压范围和电流容量,选取适当的元器件。
包括整流滤波电路、模数转换电路、功率开关管和放大电路等。
3.2 软件设计编写单片机的控制程序,实现电源输出的精确控制和稳定性。
包括模数转换、PWM控制和反馈控制等功能。
3.3 系统集成将硬件电路和单片机控制程序进行集成,进行系统调试和优化。
通过实验和测试,不断优化电源的稳定性和可调性。
4. 应用示例基于单片机的数控直流稳压电源的应用非常广泛。
例如,可以应用于实验室、工业自动化、通信设备等领域。
数控直流稳压电源毕业设计智能控制设计大赛数控直流稳压电源目录摘要 (3)一、方案论证与比较 (4)1. 1系统供电部分 (4)1.2 控制器部分 (4)1. 3 显示部分 (4)1.4 键盘部分 (4)1. 5 数模/模数转换部分 (4)1. 6 掉电记忆部分 (5)二、系统的具体设计及实现 (5)2.1系统总框图 (5)2.2硬件设计 (6)2.2.1电源模块 (6)2.2.2DA转换模块 (6)2.2.3电压调整模块 (7)2.2.4键盘模块 (8)2.2.5EEPROM拓展模块 (8)2.2.6显示模块 (9)2.3软件设计 (10)2.3.1主程序流程 (10)2.3.2键盘程序流程 (11)2.3.3EEPROM读写流程 (12)2.3.4DAC0832程序流程 (13)2.3.5TLC1543程序流程 (13)三、测试、结果及分析 (14)3.1基本功能 (14)3.2发挥功能部分 (14)3.3其他发挥部分 (15)3.4详细的测试数据 (15)四、总结 (16)参考文献 (17)附录一、完整的系统原理图............................................................18附录二、完整的系统源代码 (19)数控直流稳压电源设计任务与要求一、设计任务设计并制作一个直流可调稳压电源。
二、设计要求1、基本要求:1)当输入交流电压为220v±10%时,输出电压在3-13v可调;2)额定电流为0.5A,且纹波不大于10mV;3)使用按键设定电压,同时具有常用电平快速切换功能(3v、5v、6v、9v、12v),设定后按键可锁定,防止误触;4)显示设定电压和测量电压,显示精度为0.01v。
2、扩展要求:1)输出电压在0-13v可调;2)额定电流为1A,且纹波不大于1mV;3)掉电后可记忆上次的设定值;4)两级过流保护功能,当电流超过额定值的20%达5秒时,电路作断开操作;当电流超过额定值的50%时,电路立即断开。
数控dcdc电源设计设计思路以数控DC-DC电源设计为题,本文将介绍数控DC-DC电源的设计思路和流程。
一、引言随着电子设备的普及和功能的增强,对电源的要求也越来越高。
传统的线性稳压电源由于效率低、功耗大,无法满足现代电子设备的需求。
因此,DC-DC电源作为一种高效、稳定的电源解决方案,逐渐得到了广泛应用。
二、数控DC-DC电源设计的基本原理1. 输入电压范围选择根据应用场景和需求确定输入电压范围,一般选择常用的12V或24V为标准输入电压。
2. 输出电压和电流选择根据设备的要求确定输出电压和电流。
可以根据设备的工作电压和功率计算得出所需的输出电流。
3. 转换拓扑选择常见的DC-DC电源拓扑有Buck、Boost、Buck-Boost、Cuk等。
根据输入输出电压和电流的关系选择合适的拓扑。
4. 控制方式选择数控DC-DC电源一般采用PWM控制,可通过微处理器或专用控制芯片实现。
5. 反馈回路设计为了实现稳定的输出电压,需要设计反馈回路,通过比较输出电压和参考电压来实现闭环控制。
6. 输出滤波设计为了减小输出纹波,需要在输出端设计适当的滤波电路。
7. 保护电路设计为了保护电源和负载,需要设计过流、过压、过热等保护电路。
三、数控DC-DC电源设计的具体步骤和注意事项1. 确定输入电压范围,选择合适的输入电源模块。
2. 根据输出电压和电流要求,计算所需的功率。
选择合适的DC-DC 芯片或模块。
3. 根据所选的DC-DC芯片或模块的规格书,设计输入和输出滤波电路。
4. 设计反馈回路,选择合适的反馈元件和比较器。
5. 设计PWM控制电路,选择合适的控制芯片或微处理器。
6. 设计保护电路,包括过流保护、过压保护、过热保护等。
7. 进行仿真和调试,验证设计的性能和稳定性。
8. 制作样机,进行实际测试和性能评估。
9. 根据测试结果进行优化和改进设计。
10. 完善设计文档,包括原理图、PCB布局、元器件清单等。
在数控DC-DC电源设计过程中,需要注意以下几点:1. 选择合适的DC-DC芯片或模块,确保其输入和输出规格满足设计要求。
数控直流稳压电源的设计数控直流稳压电源是一种常用的电源设备,用于提供稳定的电压和电流,以供电子设备工作。
在电子行业和各种制造业中广泛使用。
本篇文档将着重介绍数控直流稳压电源的设计。
一、需求分析在设计数控直流稳压电源时,需要对实际需求进行分析,以选择合适的电源参数。
通常,需要考虑以下因素:1. 输入电压范围2. 输出电压范围3. 输出电流范围4. 稳定性要求在以上因素中,输入电压范围和输出电压范围是最关键的因素。
输入电压应该能够满足设备需要的电源,而输出电压应该与设备所需的直流电压匹配。
二、设计要点在设计数控直流稳压电源时,需要考虑以下要点:1. 电源拓扑结构2. 运算放大器的选择3. 稳定性设计4. 容量和功率需求5. 保护措施1. 电源拓扑结构数控直流稳压电源的设计通常采用基于反馈电路的电源拓扑结构。
其中,最常用的电源拓扑结构是基于线性稳压器的设计。
此外,还有基于开关稳压器的设计。
两种设计各有优劣,需要根据具体需求进行选择。
2. 运算放大器的选择在反馈电路中,运算放大器是一个非常关键的因素。
运算放大器为反馈电路提供放大器,并将反馈信号传递给反馈节点。
当电压或电流发生变化时,运算放大器可以快速检测到并调整输出,以保持恒定的电压和电流。
3. 稳定性设计为保证电源稳定性,需要进行稳定性设计。
在基于线性稳压器的设计中,输出电压稳定性可以通过选择合适的线性稳压器电路进行实现。
在基于开关稳压器的设计中,可以采用PID反馈控制实现稳定性。
4. 容量和功率需求容量和功率需求应该根据设备需要的功率和电流选择。
需要选择合适的电源变压器和其他元件,并计算合适的功率。
5. 保护措施在电源设计中需要加入保护措施,以防止故障和损坏。
常见的保护措施包括过载保护、过压保护和过流保护,等等。
三、实施步骤通过实施步骤可以设计出稳定且可靠的数控直流稳压电源:1. 确定功率、电压和电流需求2. 选择最合适的电源拓扑结构3. 选择合适的运算放大器4. 进行稳定性设计5. 计算容量和功率需求6. 加入保护措施7. 编写电源控制程序8. 调试并测试电源四、结论在本篇文档中,我们介绍了数控直流稳压电源的设计要点和实施步骤。
数控直流稳压电源的设计与制作
任务书
——数控直流稳压电源
1.基本功能实现:
(1)可输出电压:范围1~5V,步进0.1V,纹波不大于10mV。
(2)可输出电流: 150mA。
(3)可输出电压值由数码管显示。
(4)由“+”、“-”两键分别控制输出电压步进增减。
(5)为实现上述几部件工作,自制一稳压直流电源,输出输出±15v,+5v。
2.扩展功能与创新:
(1)输出电压可预置在0~10v之间的任意一值。
(2)用自动扫描代替人工按键,实现输出电压变化。
(3)扩展输出电压种类(比如三角波等)。
(4)扩展可输出电流:150mA。
(5)在扩展的基础上增加新的功能。
如与其他组雷同则不加分。
3.设计报告:
(1)开题报告:包括可行性分析,方案比较,方案的确定,系统方框图,经费预算,组内分工,进程安排等。
(2)理论方案书:具体的原理图,逻辑分析,理论计算,电路仿真结果等。
(3)验证方案及验证结果:包括验证方案的原理,采取的措施,实际验证的结果等
(4)设计总结:包括实践中出现的问题,解决方法,心得体会等。
(5)参考资料:包括采用的芯片,电路,参考书等。
摘要
随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系益密切。
任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。
特别是随着小型电子设备的应用越来越广泛,也要求能够提供稳定的电源,以满足小型电子设备的用电需要。
本文基于这个思想,设计和制作了符合指标要求的开。
1 引言直流稳压电源是常用的电子设备,用以保证在电网电压波动或负载改变时,输出稳定的电压。
低纹波、高精度的稳压电源在仪器仪表、工业控制及测量领域都有重要的实际应用价值。
这里设计的稳压电源输出电压范围为0~18 V,额定工作电流为500 mA,并具有“+”、“-”步进电压调节功能,最小步进电压为0.05 V.纹波不大于10 mV,并用LCD 液晶显示器显示其输出电压值。
2 系统设计系统硬件设计主要由AT89C51、稳压输出模块、按键处理模块、显示模块和供电模块5部分组成。
如图1所示。
2.1 供电模块供电部分输入220 V、50 Hz交流电,输出系统所需的3种电压:+5 v,+15 V和-15 V。
其中+5 V供AT89C51、D/A和A/D转换器使用;+15 V作为运放的正电源,同时也是稳压输出电路的主电源,最大电流约650 mA;而-15 V作为运放的负电源,同时也为基准电压源LM339供电,该电流较小,不超过50 mA。
供电模块的电路如图2所示。
2.2 稳压输出模块图3为稳压输出模块原理图,该模块将控制部分的电压数据转换稳压输出。
它由D /A转换器(DAC0832)、集成运放OP07、LF356、晶体管VT1、VT2、VT7、VT8基准电压源LM336-5组成。
由于实际用到的最大电压控制字为200,因此D/A转换部分最大输出电压为:D/A转换输出电压Ui作为电源功放级的输入电压。
功放级由IC3和VT1、VT2构成闭环推挽输出电路。
该电路属于典型的电压串联负反馈电路。
于是输出电压Uo与输入电压Ui的关系式为:将Ui代入得:当Ui=3.922 V,R2=10 kΩ,R3=9.1 kΩ,Uo=18 V,由式(4)可求得Rp1=10 k Ω。
实取Rp1为47 kΩ的精密多圈电位器。
当CPU输入电压控制字(11001000)2=(200)10时,Uimax=3.922 V,调节Rp1使Uo=18 V。
2.2.2 过流保护电路图3中VT7、VT8构成过流保护电路。