平面的概念及画法
- 格式:ppt
- 大小:1.27 MB
- 文档页数:14
平面的概念知识点总结一、平面的概念平面是数学中的基本几何概念之一,是一个没有厚度的二维几何空间。
平面可以用来描述点、直线和其他几何图形的位置关系,是几何学中的基本工具之一。
二、平面的特征1. 平面是无限大的平面没有边界,没有限制,可以延伸到无限远的位置。
任何两点都可以在平面上找到直线连接,这也是平面的特征之一。
2. 平面是无厚度的平面是一个没有厚度的二维几何空间,没有高度和深度的概念,只有长度和宽度的概念。
3. 平面是无旋绕的平面上的任意两条直线不会相交于一个以上的点,也不会平行于一个以上的点,这是平面的另一重要特征。
4. 平面是无法弯曲的平面上的任意两点之间都可以画出唯一一条直线,这条直线不会弯曲或者有转折,也不会在平面之外。
以上几点是平面的主要特征,理解这些特征对于理解平面的性质和应用是非常重要的。
三、平面的表示方法平面可以用三种方法来表示:1. 平面的点集表示法这种方法是最基本的表示方法,平面可以用一组点的集合来表示。
例如,我们可以用A(1,2), B(3,4), C(5,6)来表示一个平面上的三个点。
2. 二维坐标系表示法这种方法是比较常用的表示方法,平面上的点可以用二维坐标系来表示,例如,点A的坐标为(1,2),点B的坐标为(3,4)。
3. 方程表示法这种方法是用代数方程来表示平面上的点,例如,平面上的点满足方程x+y=5,这就表示了一个平面。
以上三种表示方法可以根据具体情况和需要来选择使用,它们都可以很好地表示平面。
四、平面的性质1. 平面上的直线在平面上的两点可以确定一条直线,平面上的直线可以是任意方向的,可以与平面相交,也可以不相交。
平面上的直线有无限多条。
2. 平面上的角角是由两条不同的直线所围成的空间,平面上的角有不同的类型,例如,锐角、直角和钝角。
3. 平面上的图形平面上的图形有很多种,例如,三角形、正方形、矩形等等,它们都是在平面上的一些特殊的形状。
4. 平面的投影平面上的点和图形可以投影到另一个平面上,投影的形状和大小是与原来的形状和大小有关的。
课 题: 2.1 空间点、直线、平面之间的位置关系一、内容讲解知识点1 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 常见的桌面,黑板面都是平面的局部形象 指出: 平面的两个特征:①_薄厚一致___ ②_无限延伸_。
平面的表示:__1.在每个顶点处写大写字母____2.小写的希腊字母,,αβχ______________。
点的表示:大写字母 点A 点B线的表示:小写英文字母 线l,线a 线b平面的画法:在立体几何中,通常画成水平放置的平行四边形来表示平面;锐角画成45ο, 2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
图形 符号语言 文字语言(读法)A a A ∈a 点A 在直线a 上A aA ∉a 点A 在直线a 外 Aα A ∈α 点A 在平面α上(内) A αA ∉α 点A 在平面α外 b a A a b A =I直线a,b 交于点A a αa α⊂线a 在面α内 aα a α⊄ 线a 在面α外a Aα a A α=I 直线a 交α于点Al αβ=I平面α交β于线l与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 :如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:(1)符号语言:____________________________________.(2)应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面。
知识点3 公理2 :如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:(1)符号语言:____________________________________(2)应用:确定两相交平面的交线位置;判定点在直线上 知识点4 公理3 :经过不在同一条直线上的三点,有且只有一个平面 指出:(1)符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 经过一条直线和直线外的一点有且只有一个平面.指出:推论1的符号语言:_____________________________-推论2 经过两条相交直线有且只有一个平面指出:推论2的符号语言:____________________________________推论3 经过两条平行直线有且只有一个平面指出:推论3的符号语言:________________________________三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.五、备选习题1. 画图表示下列由集合符号给出的关系:(1) A ∈α,B ∉α,A ∈l ,B ∈l ; (2) a ⊂α,b ⊂β,a ∥c ,b ∩c =P ,α∩β=c .2. 根据下列条件,画出图形.(1)平面α∩平面β=l ,直线AB ⊂α,AB ∥l ,E ∈AB ,直线EF∩β=F ,F ∉l ;(2)平面α∩平面β=a ,△ABC 的三个顶点满足条件:A ∈a ,B ∈α,B ∉a ,C ∈β,C ∉a .3. 画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.4. 正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,(1) 画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2) 设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.5.已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.6. 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上G H AC D E P空间点、线、面位置关系练习题1、下列命题:其中正确的个数为( )①若直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若a ∥b ,α⊂b ,那么直线a 平行于平面α内的无数条直线;A .1B .2C .3D .02、若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面3、如图,在正方体ABCD —A 1B 1C 1D 1中判断下列位置关系:(1)AD 1所在直线与平面BCC 1的位置关系是 ;(2)平面A 1BC 1与平面ABCD 的位置关系是 ;4、如果直线l 在平面α外,那么直线l 与平面α( )A .没有公共点B .至多有一个公共点C .至少有一个公共点D .有且只有一个公共点5、以下四个命题:其中正确的是( ) A .①② B .②③ C .③④ D .①③ ①三个平面最多可以把空间分成八部分;②若直线⊂a 平面α,直线⊂b 平面β,则“a 与b 相交”等价于“α与β相交”;③若l =⋂βα,直线⊂a 平面α,直线⊂b 平面β,且P b a =⋂,则l P ∈;④若n 条直线中任意两条共面,则它们共面,6、若一条直线上有两点到一个平面的距离相等,那么这条直线和这个平面的位置关系是( )A .在平面内B .相交C .平行D .以上均有可能7、若直线m 不平行于平面α,且α⊄m ,则下列结论中正确的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一一条直线与m 平行D .α内的直线与m 都相交8、在长方体ABCD —A 1B 1C 1D 1的六个表面与六个对角面(面AA 1C 1C ,面BB 1D 1D ,面ABC 1D 1,面ADC 1B 1,面A 1BCD 1及面A 1B 1CD )所在平面中,与棱AA 1平行的平面共有( )A .2个B .3个C .4个D .5个9、两条直线都与一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均有可能10、下列命题:其中正确的个数是( )A .0 B .1 C .2 D .3①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面,11、下列命题中正确的个数是( )A .1 B .2 C .3 D .4①四边相等的四边形是菱形;②若四边形有两个对角都是直角,则这个四边形是圆内接四边形; ③“直线不在平面内”的等价说法是“直线上至多有一个点在平面内”;④若两平面有一条公共直线,则这两个平面的所有公共点都在这条公共直线上;12、若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面13、与两个相交平面的交线平行的直线和这两个平面的位置关系是14、经过平面外两点可作这个平面的平行平面的个数是15、设有不同的直线a ,b 和不同的平面γβα,,,给出下列三个命题:其中正确命题的序号是 ①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β;③若α∥β,β∥γ,则α∥γ。