当前位置:文档之家› 氯吡格雷和华法林代谢相关基因多态性检测及临床

氯吡格雷和华法林代谢相关基因多态性检测及临床

氯吡格雷和华法林代谢相关基因多态性检测及临床
氯吡格雷和华法林代谢相关基因多态性检测及临床

氯毗格雷和华法林代谢相关基

因多态性检测及临床

检验通讯第60期

北京积水潭医院检验科主办2017年4月

氯吡格雷和华法林代谢相关基因多态性检测及

临床应用

一、概述

氯吡格雷是心血管疾病中广泛用于抗血小板的药物。多项研究表明,CYP2C佃*2功能缺

失型突变在亚洲人种出现频率约为29%-35%,而CYP2C19*3出现频率约为2%-9%,均高于白种人和

非洲人。FDA建议,临床医生在使用氯吡格雷前应检测患者的CYP2C佃基因型,对已证实的氯吡格雷代谢不良者应考虑增加剂量,或使用其他抗血小板药物。

华法林是一种双香豆素衍生物,是目前临床

上应用最广泛的口服抗凝药物之一,用于预防和治疗深静脉血栓、肺栓塞、心脏瓣膜置换术及房颤导致的血栓形成。华法林治疗窗较窄,很小的剂量都可能导致不良反应的发生,且在不同个体

达到相同作用效果,高低剂量者之间可相差10倍以上。CYP2C9基因多态性对华法林剂量影响较大。VK0RC1是维生素K循环中的关键酶,华法林因抑制该酶而阻断维生素K以辅因子形式参与羧化酶的催化反应,抑制了凝血因子U、 %、区、X 的功能活性,从而产生抗凝作用。

FDA指出:在使用华法林时,建议检测CYP2C9 和VKORC1基因型。

检测方法

Sulfurylase

APS+PPi ATP

lucirerin oxy Luciferin

Luciferase

ATP Light

nucleotide incorporation light

seen as a peak in Pyrvgmm

图1、焦磷酸测序检测原理

本实验室采用PCR-焦磷酸测序法”进行该

项目的检测。本法是由4种酶催化的同一反应体系中的酶级联化学发光反应。实验时,一条生物素标记的测序引物与单链模板DNA退火后,在DNA聚合酶、ATP硫酸化酶、荧光素酶和三磷酸腺苷双磷

酸酶4种酶的协同作用下,将引物上每一个dNTP 的聚合与一次荧光信号的释放偶联起来,通过检测荧光的释放和强度,达到实时测定DNA序列的目的。判读结果时,根据荧光信号峰图读取核苷酸序列。焦磷酸测序具有检测速度快、特异性好的特点,比对试验中,与“金标准”的Sanger测序符合率100%。

三、临床应用

1、CYP2C19*2 和CYP2C19*3 多态性检测

CYP2C19参与氯吡格雷、S-美芬妥英、奥

美拉唑、伏立康唑、安定、去甲安定等药物的代谢。CYP2C19遗传变异可导致酶活性的个体差异,使人群出现超快代谢者(UM )、快代谢者

(EM )、中间代谢者(IM )和慢代谢者(PM)4种表型(表1)。

表1.CYP2C19基因型与代谢类型

代谢类

测序检测结果

基因型CYP2C19*2 CYP2C19*3

(G681A) (G636A)

快代谢*1/*1GG GG

EM

中代谢*1/*2GA GG

IM*1/*3GG GA

慢代谢*2/*2AA GG

PM*2/*3GA GA

*3/*3GG AA

氯吡格雷是一种抗血小板药物,广泛用于急性冠脉综合征、缺血性脑血栓、闭塞性脉管炎和动脉硬化及血栓栓塞引起的并发症。心脏支架手术后的患者需长期服用氯吡格雷以防止支架内再梗。氯吡格雷主要经CYP2C19代谢活化后发挥抗血小板效应。CYP2C19 PM患者应用常规剂量的氯吡格雷后体内活性代谢物生产减少,对血小板的抑制作用下降。美国FDA和美国心脏病学会建议,对于

CYP2C19慢代谢基因型患者需考虑改变治疗方案,具体意见为:CYP2C19*1/*1基因型个体应用氯吡格雷有效,可常规使用;CYP2C佃*2或*3基因型个体对氯吡格雷疗效降低,建议更换成普拉格雷或替卡格雷;CYP2C19*2或*3突变型纯合子个体应用氯吡格雷效果差,建议换用普拉格雷或替卡格雷。

阿米替林为三环类抗抑郁药,主要用于焦虑性或激动性抑郁症的治疗。阿米替林在体内主要经CYP2C19代谢为活性代谢产物去甲替林。CYP2C19活性的高低可通过影响血液中阿米替林与去甲替林的浓度比,影响阿米替林的疗效和不良反应的产生。调整携带CYP2C19突变等位基因患者阿米替林的起始用药剂量有助于降低初始治疗的失败率。CPIC指南建议CYP2C佃EM和IM基因型患者应用常规起始剂量的阿米替林,而CYP2C19 PM基因型个体阿米替林的起始剂量应降低至常规剂量的50%,并进行治疗药物监测。

伏立康唑是一种广谱三唑类抗真菌药,

CYP2C19是其主要代谢酶之一。CYP2C19 EM 与PM 个体间伏立康唑的血液浓度存在显著差异,PM个体在应用常规剂量药物时可能出现毒副反应,建议减少用药剂量;EM和IM个体可给予常规剂量。在常规剂量治疗时,若EM个体出现毒副反应或PM疗效不佳,均应考虑更换药物。FDA批准的药物说明书中指出应用伏立康唑前需检测CYP2C佃基因型,以确保用药安全。

2、CYP2C9*2和CYP2C9*3多态性检测

CYP2C9是细胞色素P450酶(CYP)第二亚家

族中的重要成员,占肝微粒体P450蛋白总量的20%。CYP2C9参与抗凝血药、抗惊厥药、降糖药、非甾体类解热镇痛抗炎药、抗高血压药以及利尿药等多种药物的羟化代谢,其中华法林、甲苯磺丁脲和苯妥因均为治疗指数较窄的药物。CYP2C9活性变化可导致这些药物体内浓度出现较大变化,甚至导致严重药物不良反应的发生。

华法林是临床上常用的抗凝药物,是深静脉血栓、心房纤颤、心脏瓣膜置换术和肺栓塞等疾病的一线用药,其临床疗效和不良反应存在很大的个体差异,血药浓度过高或敏感性增加可导致严重出血事件。CYP2C9*3纯合子和杂合子基因型个体S伞法林的口服清除率分别下降90%和66%,因此华法林的给药剂量需相应降低。测定CYP2C9*3等位基因可用于指导中国人群确定华法林的起始用药剂量,并预测药物毒性,结合国际标准化比值INR,估计华法林的维持剂量,确保用药安全。

塞来昔布是昔布类非甾体类抗炎药,通过特

异性抑制环氧酶-2而发挥解热、镇痛和抗炎作用,其不良反应涉及心血管系统、胃肠道、中枢神经系统和呼吸系统,如引起高血压、消化不良、头疼等。塞来昔布在肝脏中主要由CYP2C9代

谢。建议携带CYP2C9低酶活性基因型的患者降低塞来昔布的用药剂量,从而降低药物不良反应的发生风险。

洛沙坦是一种常用的抗高血压药物,在体内主要经CYP2C9代谢活化为具有降压作用的代谢产物E-3仃4。携带CYP2C9*3等位基因的个体服用洛沙坦后E-3174的生成减少,洛沙坦的代谢率降低。口服单剂量洛沙坦后1h~6h后,CYP2C9*1/*3基因型个体中洛沙坦的降压作用下降,需适当增加用药剂量以增强降压疗效。

3、VKORC1多态性检测

维生素K氧化还原酶是抗凝药物华法林的作用靶点。维生素K环氧化物还原酶复合物1的编码基因VKORC1的遗传变异可通过影响VKORC1表达,从而影响华法林的敏感性。美国FDA于2007年批准修改华法林的产品说明书,推荐在使用华法林前对VKORC1进行基因检测;

2010年再次修改说明书,建议结合VK0RC1和CYP2C9基因型考虑华法林的初始用药剂量(表3)。临床上也可根据考虑了VKORC1和CYP2C9 基因型、年龄、身高、体重、种族、是否合用肝药酶

华法林抗凝治疗患者 CYP2C9 基因多态性的研究

华法林抗凝治疗患者CYP2C9 基因多态性的研究 霍梅1, 刘春1, 杨超2, 李体远3, 龚亮4 摘要: [ 目的] 研究深圳地区口服华法林抗凝治疗患者细胞色素P4502C9 ( CYP2C9) 基因CYP2C9*1、CYP2C9*2、CYP2C9*3 多态性的特点。[ 方法] 应用聚合酶链反应- 限制性片段长度多态性分析方法(PCR- RFLP) 检测151 例口服华法林抗凝治疗患者CYP2C9 基因CYP2C9*1、CYP2C9*2、CYP2C9*3 的多态性。[ 结果] 151 例口服华法林抗凝治疗患者中未检测出CYP2C9*2 等位基因, CYP2C9*1、CYP2C9*3 等位基因的频率分别为92.7%和7.3%,CYP2C9*1*1、CYP2C9*1*3、CYP2C9*3*3基因型频率分别为85.4% (129) 、14.6% (22) 、0 (0) 。[ 结论] 深圳地区口服华法林抗凝治疗病人中存在CYP2C9*3 突变基因, 使用华法林抗凝治疗时应检测患者CYP2C9 的基因型。 关键词: 华法林; 抗凝; 基因; 多态性; 细胞色素P4502C9 STUDY ON THE GENETIC POL YMORPHISM OF CYTOCHROME P450 ( CYP2C9) IN PA- TIENTS WITH W ARFARIN ANTICOAGULANT THERAPY HUO Mei, LIU Chun, YANG Chao,et al. (People’s Hospital of Shenzhen, The Second Affiliated Hospital of Medical College, Ji’nan Universi-ty, Shenzhen 518020, China) Abstract: [ Objective] To study on the feature of CYP2C9*1, CYP2C9*2, CYP2C9*3 genetic polymorphisms of cy-tochrome P450 ( CYP2C9) in patients with warfarin anticoagulant therapy in Shenzhen area. [ Methods] The CYP2C9*1,CYP2C9*2, CYP2C9*3 genetic polymorphisms of cytochrome P450 (CYP2C9) were analyzed in 151 patients with warfarin an-ticoagulant therapy by polymerase chain reaction and restriction fragment length polymorphism (PCR- RFLP). [Results] Therewere no CYP2C9*2 allele in 151 patients with warfarin anticoagulant therapy .The allele frequencies of CYP2C9*1, CYP2C9*3were 92.7% and 7.3% respectively. The genotype frequencies of CYP2C9*1*1, CYP2C9*1*3, CYP2C9*3*3 were 85.4%(129) , 14.6% (22) , 0 (0) respectively. [Conclusion] The CYP2C9*3 mutant is present in patients with warfarin anticoag-ulant therapy in Shenzhen area. CYP2C9 genotype should be analyzed when using warfarin anticoagulant therapy. Key words: Warfarin; Anticoagulation; Gene; Polymorphism; Cytochrome P4502C9 华法林( warfarin) 是香豆素的衍生物, 它通过抑制维生 素K (Vit K) 环氧化还原酶活性, 阻止Vit K 循环利用, 并使 Vit K依赖性凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ无法激活, 从而发挥抗 凝作用 [1] , 是广泛应用于临床的一种口服抗凝药, 存在S- 华法 林( 左旋华法林) 和R- 华法林( 右旋华法林) , S- 华法林是消 旋华法林片剂的主要成分, 人类对华法林的药物代谢也主要针

华法林用药指导的基因检测

华法林用药指导的基因检测 (华法林用药剂量的预测) 华法林是临床常用的预防血栓栓塞性疾病口服药物,但存在明显个体差异。其中,VKORC1和CYP2C9基因多态性是华法林个体剂量差异的两个主要影响因素,分别解释约37%和6%的剂量差异。美国食品药品监督管理局(FDA)于2007年8月修改华法林用药标签,提示基因型检测有助于调整华法林给药剂量。2009年美国FDA再次修改华法林用药标签,并根据患者VKORC1和CYP2C9基因型确定华法林起始剂量。国际华法林药物基因组联合会(IWPC)收集了5700例来自4大洲9个国家的21个研究机构使用华法林达到稳定临床疗效的患者信息,并建立数据库。通过对此数据库的筛选和验证,建立了IWPC模型,是目前涉及病例规模最大的模型,该模型可解释华法林个体剂量差异47%。实践证明,依据患者基因型并结合患者临床信息进行华法林个体化给药,可明显提高华法林抗凝达标率,降低抗凝并发症,减少患者再住院率。因此,建议在使用华法林前进行CYP2C9*3和VKORC1基因检测,依据患者基因型指导华法林给药剂量。 该项目收费为800元,每个患者只需检测1次即可。临床医生可按照相应流程提出检测申请,并采用EDTA抗凝真空采血管(紫色帽头)采集外周静脉血2ml(无需空腹,无论是否用药,随时抽取血标本),药师将在2个工作日内出具基因检测报告,并提供个体化给药建议供临床参考。 医院在用的华法林规格:

检测申请流程: 一、进入“检测申请单分类”项下“按检验科室分类”中“药剂科——化学药物用药指导基因检测” 二、单击“药剂科——化学药物用药指导基因检测”,可显示华法林用药指导的基因检测,如患者需要进行华法林基因检测,单击华法林用药指导的基因检测,提交即完成检测申请

氯吡格雷和华法林代谢相关基因多态性检测及临床

氯毗格雷和华法林代谢相关基 因多态性检测及临床 检验通讯第60期 北京积水潭医院检验科主办2017年4月 氯吡格雷和华法林代谢相关基因多态性检测及 临床应用 一、概述 氯吡格雷是心血管疾病中广泛用于抗血小板的药物。多项研究表明,CYP2C佃*2功能缺 失型突变在亚洲人种出现频率约为29%-35%,而CYP2C19*3出现频率约为2%-9%,均高于白种人和

非洲人。FDA建议,临床医生在使用氯吡格雷前应检测患者的CYP2C佃基因型,对已证实的氯吡格雷代谢不良者应考虑增加剂量,或使用其他抗血小板药物。 华法林是一种双香豆素衍生物,是目前临床 上应用最广泛的口服抗凝药物之一,用于预防和治疗深静脉血栓、肺栓塞、心脏瓣膜置换术及房颤导致的血栓形成。华法林治疗窗较窄,很小的剂量都可能导致不良反应的发生,且在不同个体

达到相同作用效果,高低剂量者之间可相差10倍以上。CYP2C9基因多态性对华法林剂量影响较大。VK0RC1是维生素K循环中的关键酶,华法林因抑制该酶而阻断维生素K以辅因子形式参与羧化酶的催化反应,抑制了凝血因子U、 %、区、X 的功能活性,从而产生抗凝作用。 FDA指出:在使用华法林时,建议检测CYP2C9 和VKORC1基因型。 检测方法 Sulfurylase APS+PPi ATP lucirerin oxy Luciferin Luciferase ATP Light nucleotide incorporation light seen as a peak in Pyrvgmm 图1、焦磷酸测序检测原理 本实验室采用PCR-焦磷酸测序法”进行该 项目的检测。本法是由4种酶催化的同一反应体系中的酶级联化学发光反应。实验时,一条生物素标记的测序引物与单链模板DNA退火后,在DNA聚合酶、ATP硫酸化酶、荧光素酶和三磷酸腺苷双磷

氯吡格雷用药指导的基因检测

氯吡格雷用药指导的基 因检测 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

氯吡格雷用药指导的基因检测 氯吡格雷是治疗急性冠状动脉综合征和经皮冠状动脉介入术后抗栓的基础药物,但4%~30%患者在治疗期间出现氯吡格雷疗效下降,甚至出现氯吡格雷抵抗。氯吡格雷为前体药,主要依赖于CYP2C19代谢生成活性代谢产物,发挥抗血小板疗效。CYP2C19基因存在多态性,其酶有四种不同的代谢类型:快代谢型(RM,*1/*1);超快代谢型(UM,*17/*17);中间代谢型(IM,*1/*2,*1/*3,*17/*2,*17/*3);慢代谢型(PM,*2/*2,*2/*3,*3/*3)。中国人群中14%为CYP2C19慢代谢型,常规剂量的氯吡格雷在慢代谢型患者中产生的活性代谢物减少,抑制血小板聚集作用下降,形成血栓风险增加;而在超快代谢型患者中产生活性代谢产物增加,抑制血小板聚集作用增强,出血风险增加。2010年美国FDA修改的氯吡格雷说明书中黑框警示:CYP2C19基因型检测结果应作为医生调整治疗策略的参考,对于CYP2C19PM型患者,建议考虑调整治疗方案或治疗策略。此外,ABCB1-3435C>T影响到氯吡格雷在肠道的吸收,突变型(TT型)肠道吸收减少,生物利用度降低,心血管事件发生率明显高于野生型(CC型)。同时携带ABCB1突变基因和CYP2C19突变基因与携带ABCB1和CYP2C19野生型等位基因相比,其心血管事件发生风险比达到。最新研究证实,PON1在氯吡格雷生物转化上起着关键作用。PON1-G576A基因多态性可影响氯吡格雷中间代谢产物2-氧代-氯吡格雷转化为活性硫醇衍生物的能力,从而影响氯吡格雷抗血小板活性。与PON1-576GG型比较,GA型患者半年后出现支架内血栓的风险比为,出现心肌梗死的风险比为,而AA型患者发生的风险比分别为和,携带此等位基因的患者往往存在氯吡格雷抵抗风险。因此,建议在使用氯吡格雷前进行PON1、CYP2C19和ABCB1基因检测,依据患者基因型确定合适给药方案。 该项目收费为1600元,每个患者只需检测1次即可。临床医生可按照相应流程提出检测申请,并采用EDTA抗凝真空采血管(紫色帽头)采集外周静脉血2ml(无需空腹,无论是否用药,随时抽取血标本),检测人员将在2个工作日内出具基因检测报告,并提供个体化给药建议供临床参考。 医院在用的氯吡格雷规格:

基因检测与用药

基因与用药指导 新用药时代 科学的发展让许多不可能变为了可能,攀月登空,潜海游龙。如今我们身边充斥着诸多高科技的元素,基因——DNA更是这其中耀眼的明星。日常我们听到的转基因大豆、转基因动物、DNA眼霜。这些看似高科技外衣下的产品,使我们越来越习惯于听说基因的消息,那基因DNA到底离我们有多远呢? 平日老百姓生活最普通的一部分,感冒发烧,到医院拿点药,或者干脆自己到药店买点儿药。好了也便好了,不好只能归咎于“病毒性的”。遇到大病,医生幵药也是按照常规处方,摸着石头过河。患者更是糊里糊涂,听大夫的便是。至于好不好,好到什么程度,那只能说个人差异了。 岂不知,这差异就体现在基因上,而这吃药也是有讲究的。我们的基因决定了我们吃什么药管用,吃什么药不管用。正确合理的用药是未来个体化医疗的重要组成部分。据世界卫生组织统计,全球死亡患者中,1/3是死于不合理用药,而非死于自然疾病本身。 “基因指导用药” 这个概念并不等同于一般意义上的“抗生素耐药”。后者是针对侵害人体的细菌而言,抗生素是一类能够破坏细菌生理结构或生长代谢的物质。 细菌通过不断的优胜劣汰以抗拒抗生素对它们的杀灭,导致耐药菌株队伍不断壮大,这导致了细菌耐药性的出现,并且这种耐药形势在抗生素滥用的情况下不断恶化,以至于出现了“超级病菌”。 “基因指导用药”则是针对我们每个人先天的遗传基因而言,在一般情况下,基因是伴随我们一生不变的,上面提到医生常规用药,同样的病、同样剂量的药,不同患者服用后疗效可能大相径庭,比如:高血压,据不完全统计,我国现有高血压病人约2亿。高血压是心肌梗死、脑卒中发病的重要危险因素,高血压每年在全球造成的死亡超过700万人,也就是每分钟约有13个人因高血压而与世长辞。很多高血压患者有过用药、疗效不佳、换药的经历。为什么同是高血压,同样的药却结果不一样呢?答案是:基因。基因决定了一个人吃何种药有效、吃何沖药无效,甚至有不良反 应。根据现有研究表明,部分抗高血压的药物降压疗效及不良反应的个体差异主要是因为相关药物的代谢酶、转运体和受体的基因多态性所致。临床常用抗高血压药物包括利尿剂、13-受体阻滞剂(如美托洛尔、卡维地洛等)、钙离子拮抗剂、血管紧张素转换酶抑制剂 (ACE-I)、血管紧张素受体拮抗剂(ARB)等,其中大部分抗高血压药物可能因为基因多态性差异,致使不同患者个体间出现降压效应的差异。 患者当发现患上高血压时,应到相关医院咨询,医生幵具化验单检测上述基因,并在医生指导下合理选择药物,进行有针对性的用药,以免贻误病情或造成不必要的经济损失。

氯吡格雷个体化用药基因检测

氯吡格雷个体化用药基因检测 通过CYP2C19基因分型,指导氯吡格雷个体化用药,提高药物临床疗效,降低毒副作用。 临床研究证实,CYP2C19*2、*3、*17位点多态性影响氯吡格雷的代谢速率,从而影响药物的疗效。权威机构推荐: 2012年,中国国家食品药品监督管理局(CFDA )在氯吡格雷说明书中增添了药物基因组学意见, 指出CYP2C19慢代谢情况与氯吡格雷的作用降低相关。 美国FDA 、欧盟药品局(EMA )、日本药品与医疗器械管理局(PDMA )、加拿大健康局 (HCSC )强调CYP2C19慢代谢者使用氯吡格雷的疗效降低,发生副作用的风险增加。 2015年,国家卫计委个体化医学检测技术专家委员会发布《药物代谢酶和药物作用靶点基因检测技术指南(试行)》, 肯定了CYP2C19基因检测在氯吡格雷个体化用药中作用。检测技术:荧光定量PCR 探针法,技术成熟可靠。重复性高:批内及批间重复性均达95%以上。准确度高:探针引物特异性高,准确性达95%以上。 杭州中翰金诺医学检验所 地 址:浙江省杭州市余杭经济开发区兴国路519号电 话:4000 919 220 传真:0571-8902 8159网 址:https://www.doczj.com/doc/0413600535.html, 邮 箱:info@https://www.doczj.com/doc/0413600535.html, 注: * 表示用药建议仅供临床医生参考,不作为最终治疗依据,具体药物选择及用法用量请遵医嘱。1. SA Scott, K Sangkuhl, EE Gardner, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther. 2011,90(2):328-32. 2. Holmes D R, Dehmer G J, Kaul S, et al. Journal of the American College of Cardiology, 2010, 56(4): 321-341. 3. 丁力平, 胡桃红,马会利等. CYP2C19基因分型指导下的支架血栓治疗一例.中国心血管病研.2010,8(12):926-927 4. 4. 中华人民共和国国家卫生和计划生育委员会. 药物代谢酶和药物作用靶点基因检测技术指南(试行)概要[J]. 实用器官移植电子杂志, 2015, 3(5):257-267. 样本要求:EDTA 抗凝外周血 2ml 保存及运输条件:2~8℃低温保存、运输

个体化用药基因检测报告单模板氯吡格雷等

XXXXXXXXXXXXXXX药剂科 脱氧核糖核酸(DNA)位点测定报告单 姓名:XXX 性别:女年龄:67 身高:体重:民族: 科室:心内科病历号:病床号:33 送检医生:XXXX 送检日期:.02.09 临床诊断: 冠状动脉粥样硬化、PCI术后 DNA序列测定结果:(氯吡格雷用药相关基因) 序号检测基因检测位点检测结果 1 CYP2C19* 2 681G>A(rs4244285)GG 2 CYP2C19* 3 636G>A(rs4986893)GG CYP2C19*1/*1野生纯合型 4 PON1 576 G > A (rs662) AA:PON1突变纯合型 检测结论:该患者CYP2C19酶为正常代谢型,酶活性表达正常,PON1基因型突变纯合型(AA),酶活性表达减弱。该患者PCI术后,行标准氯吡格雷治疗,1年后发生支架血栓的风险,比正常人高11.6倍,因此,从理论上认为该患者使用常规剂量(75mg/d)的氯吡格雷可能无法有效转化为其活性代谢产物,可能导致氯吡格雷抵抗,使得血栓形成风险增加。 个体化用药建议: (1)该患者采用氯吡格雷(75mg,qd)抗血小板治疗,可能无法发挥良好的抗血小板作用。因此,建议替 代使用新型抗血小板药物替格瑞洛;但应关注替格瑞洛所致呼吸困难。或给予氯吡格雷(75mg/d)、阿司匹林(100mg/d)和西洛他唑三联抗血小板治疗;或者将阿司匹林剂量增加至200~300mg/d;或停用氯吡格雷,换用其他抗血小板药。 (2)调整给药方案后,应检测血小板聚集率或血栓弹力图以评价临床疗效。 (3)治疗期间应密切关注患者有无皮肤黏膜及消化道等部位出血的发生,若出现则应调整给药方案。 (4)在应用氯吡格雷时,应避免使用CYP2C19酶抑制药,如奥美拉唑、兰索拉唑、埃索美拉唑等,因其可 抑制CYP2C19酶,导致CYP2C19酶活性进一步减弱,使得氯吡格雷生物转化进一步下降,而降低氯吡格雷疗效。如必须使用,可替代使用其他对氯吡格雷作用影响较弱的药物如雷贝拉唑或H2受体阻断剂如雷尼替丁等。 (5)合并使用他汀类降脂抗炎药物,应避免使用阿托伐他汀、辛伐他汀等药物,体外研究表明,阿托伐他 汀及其体内代谢产物阿托伐他汀酯均对氯吡格雷有竞争性抑制作用,可降低氯吡格雷生物转化达90%,并呈浓度依赖性,可能会导致氯吡格雷疗效进一步减弱。可选择对氯吡格雷影响较弱的瑞舒伐他汀钙或氟伐他汀钠。 (6)上述建议仅供临床医生参考,具体使用还应该结合临床实际情况来制定和调整用药方案。 说明:氯吡格雷为前体药,主要依赖于CYP2C19代谢生成活性代谢产物,发挥抗血小板疗效。CYP2C19基因存在多态性,其酶有四种不同的代谢类型:快代谢型(RM,*1/*1);超快代谢型(UM,*1/*17,*17/*17);中间代谢型(IM,*1/*2,*1/*3,*17/*2,*17/*3);慢代谢型(PM,*2/*2,*2/*3,*3/*3)。常规剂量的氯吡格雷在慢代谢型患者中产生的活性代谢物减少,抑制血小板聚集作用下降,形成血栓风险增加;在超快代谢型患者中产生活性代谢产物增加,抑制血小板聚集作用增强,出血风险增加。2010年美国FDA修改的氯吡格雷说明书中黑框警示:CYP2C19基因型检测结果应作为医生调整治疗策略的参考。此外,ABCB1-3435C>T为氯吡格雷第二独立风险因素,突变型(TT型)肠道吸收减少,心血管事件发生率明显高于野生型(CC型)。最新研究证实,PON1在氯吡格雷生物转化上起着关键作用,PON1-576G>A基因多态性可影响PON1活性表达,是氯吡格雷疗效重要预测因子。与野生型(GG型)比较,GA型和AA型氯吡格

氯吡格雷基因检测结果报告(汇编)

精品文档 精品文档脱氧核糖核酸(DNA)位点测定报告单 NO. 姓名:性别:年龄:身高:体重:民族: 科室:病历号: 病床号: 送检医生: 送检日期: 临床诊断: DNA序列测定结果:(氯吡格雷用药相关基因) 序号检测基因检测位点 检测结果 1 CYP2C19*2 681G>A(rs4244285)GA 2 CYP2C19*3 636G>A(rs4986893)GG CYP2C19*1/*2突变杂合型3 CYP2C19*17 806C>T (rs12248560) CC 4 PON1 576 G > A (rs662) GA:PON1突变纯合型 检测结论:该患者PON1为突变杂合型此基因型氯吡格雷活性代谢物水平减弱,血小板活性较少被抑制。CPY2C19酶活性表达弱,因此,从理论上认为该患者使用常规剂量(75mg/d)的氯吡格雷有一定抵抗风险,应关注血小板等指标,临床可根据实际情况调整方案。 个体化用药建议: 1)目前可使用氯吡格雷标准方案进行抗血小板治疗,但使用氯吡格雷血栓风险中等,特别是半年后引发 支架血栓与心肌梗死风险。应持续关注抗凝效果,如抵抗应及时调整方案,换用其他抗血小板药物。 2)如发生抵抗,建议治疗卒中等脑血管狭窄等可将氯吡格雷换为西洛他唑或双嘧达莫阿司匹林复合剂 型,如心血管狭窄可换用替格瑞洛或使用三抗治疗; 3)或上调氯吡格雷剂量至150mg/d持续1至3个月后根据血小板情况调整方案。 4)如患者同型半胱氨酸水平较高,建议同时补充叶酸,VB6,VB12等药物控制水平。治疗期间应密切关注 患者有无皮肤黏膜及消化道等部位出血的发生,若出现则应调整给药方案,并加用保护胃黏膜药物或PPI类药物,该患者如继续使用氯吡格雷,应尽量避免同时使用奥美拉唑等PPI类药物,可选择如雷贝拉唑等不经CYP2C19代谢的药物; 5)调整给药方案后,应检测血小板聚集率或血栓弹力图以评价临床疗效; 本结论仅根据基因检测结果和循证医学证据得出,具体用药方案,尚需结合患者血小板反应等具体情况综合判断。 说明:氯吡格雷为前体药,主要依赖于CYP2C19代谢生成活性代谢产物,发挥抗血小板疗效。CYP2C19基因存在多态性,其酶有四种不同的代谢类型:快代谢型(RM,*1/*1);超快代谢型(UM,*1/*17,*17/*17);中间代谢型(IM,*1/*2,*1/*3,*17/*2,*17/*3);慢代谢型(PM,*2/*2,*2/*3,*3/*3)。常规剂量的氯吡格雷在慢代谢型患者中产生的活性代谢物减少,抑制血小板聚集作用下降,形成血栓风险增加;在超快代谢型患者中产生活性代谢产物增加,抑制血小板聚集作用增强,出血风险增加。2010年美国FDA修改的

氯吡格雷基因检测结果报告

脱氧核糖核酸(DNA)位点测定报告单 NO. 姓名:性别:年龄: 身高:体重:民族: 科室:病历号:病床号: 送检医生:送检日期:临床诊断: DNA序列测定结果:(氯吡格雷用药相关基因) 序号检测基因检测位点检测结果 1 CYP2C19* 2 681G>A(rs4244285)GA 2 CYP2C19* 3 636G>A(rs4986893)GG CYP2C19*1/*2突变杂合型 3 CYP2C19*17 806C>T (rs12248560) CC 4 PON1 576 G > A (rs662) GA:PON1突变纯合型 检测结论:该患者PON1为突变杂合型此基因型氯吡格雷活性代谢物水平减弱,血小板活性较少被抑制。CPY2C19酶活性表达弱,因此,从理论上认为该患者使用常规剂量(75mg/d)的氯吡格雷有一定抵抗风险,应关注血小板等指标,临床可根据实际情况调整方案。 个体化用药建议: 1)目前可使用氯吡格雷标准方案进行抗血小板治疗,但使用氯吡格雷血栓风险中等,特别是半年后引发 支架血栓与心肌梗死风险。应持续关注抗凝效果,如抵抗应及时调整方案,换用其他抗血小板药物。 2)如发生抵抗,建议治疗卒中等脑血管狭窄等可将氯吡格雷换为西洛他唑或双嘧达莫阿司匹林复合剂 型,如心血管狭窄可换用替格瑞洛或使用三抗治疗; 3)或上调氯吡格雷剂量至150mg/d持续1至3个月后根据血小板情况调整方案。 4)如患者同型半胱氨酸水平较高,建议同时补充叶酸,VB6,VB12等药物控制水平。治疗期间应密切关注 患者有无皮肤黏膜及消化道等部位出血的发生,若出现则应调整给药方案,并加用保护胃黏膜药物或PPI类药物,该患者如继续使用氯吡格雷,应尽量避免同时使用奥美拉唑等PPI类药物,可选择如雷贝拉唑等不经CYP2C19代谢的药物; 5)调整给药方案后,应检测血小板聚集率或血栓弹力图以评价临床疗效; 本结论仅根据基因检测结果和循证医学证据得出,具体用药方案,尚需结合患者血小板反应等具体情况综合判断。 说明:氯吡格雷为前体药,主要依赖于CYP2C19代谢生成活性代谢产物,发挥抗血小板疗效。CYP2C19基因存在多态性,其酶有四种不同的代谢类型:快代谢型(RM,*1/*1);超快代谢型(UM,*1/*17,*17/*17);中间代谢型(IM,*1/*2,*1/*3,*17/*2,*17/*3);慢代谢型(PM,*2/*2,*2/*3,*3/*3)。常规剂量的氯吡格雷在慢代谢型患者中产生的活性代谢物减少,抑制血小板聚集作用下降,形成血栓风险增加;在超快代谢型患者中产生活性代谢产物增加,抑制血小板聚集作用增强,出血风险增加。2010年美国FDA修改的氯吡格雷说明书中黑框警示:CYP2C19基因型检测结果应作为医生调整治疗策略的参考。此外,ABCB1-3435C>T为氯吡格雷第二独立风险因素,突变型(TT型)肠道吸收减少,心血管事件发生率明显高于野生型(CC型)。最新研究证实,PON1在氯吡格雷生物转化上起着关键作用,PON1-576G>A基因多态性可影响PON1活性表达,是氯吡格雷疗效重要预测因子。与野生型(GG型)比较,GA型和AA型氯吡格雷抵抗风险增加,其半年后发生支架内血栓风险亦明显增加。

氯吡格雷

氯吡格雷(Clopidogrel),属于噻吩吡啶类抗血小板药物,第二代ADP受体拮抗剂。氯吡格雷为无活性的药物前体,需经肝细胞内细胞色素P450酶系活化,其中约85%被酯化为无活性的代谢产物经肠道代谢,仅有约15%氯吡格雷被活化生成具有活性的代谢产物发挥其抗血小板药理作用。 主要机制:为选择性的、不可逆的抑制二磷酸腺苷(ADP)与血小板受体P2Y12的结合及继发ADP介导的糖蛋白GPIIIb/IIIa复合物的活化从而抑制血小板聚集。火化后的氯吡格雷主要是与血小板P2Y12受体结合,阻断其与ADP结合位点,从而持久的抑制继发的腺苷酸环化酶的激活,抑制血小板的活性。 氯吡格雷反应多样性的定义:氯吡格雷在临床上作为抗血小板制剂其疗效使大多数患者明显受益,然而,仍有一部分患者不可避免的出现并发症,研究发现,不同患者对氯吡格雷的反应呈现明显的个体差异,这种对氯吡格雷呈现低应答(Low responder)或无应答(Clopidogrel nonresponse)的现象称之为氯吡格雷抵抗(Clopidogrel resistance,CR)。目前学者们将临床上患者对氯吡格雷呈现不同应答状态的现象称之为氯吡格雷反应多样性(Clopidogrel Response Diversity,CRD)。 氯吡格雷反应多样性的定义:? CRD的相关因素:CYP2C19酶基因多态性、糖尿病、体重指数等因素有关。脂溶性他汀类药物包括阿托伐他汀、辛伐他汀等和除泮托拉唑外的质子泵抑制剂可通过竞争性抑制影响氯吡格雷活化、增加氯吡格雷应答和无应答几率。 CYP2C19酶作为细胞色素P450药物代谢酶家族中的重要成员,在不同种族和人群中具有显著差异。有研究指出,CYP2C19酶基因多态性与该酶活性密切相关。不同研究对氯吡格雷翻一个多样性产生的机制看法不同,目前大多数学者认为导致氯吡格雷反应多样性的原因有以下几个方面: 1、C YP2C19基因多态性与氯吡格雷反应多样性 所谓基因多态性(polymorphism ),是指在一个生物群体编码的基因序列中,存在由一个或多个不连续等位基因(allele)发生突变。这种多态性是导致编码的蛋白质(尤其是酶)生物活性产生差异的重要原因。细胞色素P450 酶系中多种代谢酶具有基因多态性,CYP2C19为其中之一。 CYP2C19酶主要在肝细胞微粒体中编码生成,主要存在于肝细胞中,具有明显的器官特异性。CYP2C19基因序列位于人类第10号常染色体上,整个蛋白质分子由490个氨基酸组成,分子量约55933,其中全部顺序包括9个外显子和8个内含子,序列已清楚,具有明显的分

氯吡格雷基因多态性,个人整理

氯吡格雷是一种前体药物,本身无抗血小板作用,需要经过细胞色素P450将其转化为活性代谢产物才能实现其血小板抑制效应。部分患者在长期服用氯吡格雷后,血小板活性未得到有效控制导致严重支架内血栓形成、再发心肌梗死等不良心血管事件发生,临床上称这种现象为氯吡格雷抵抗。CYP2C19是氯吡格雷活性代谢产物生成过程中的主要酶,而CYP2C19基因多态性是导致氯吡格雷抵抗的最重要的因素[1]。 2010 年3 月, 美国食品药品监督管理局(FDA) 宣布氯吡格雷抵抗的“黑框警告”,提醒应用氯吡格雷后出现心血管不良事件与CYP2C19 功能缺失的等位基因有关。 CYP2C19 不同位点的等位基因对氯吡格雷的代谢的作用强度不同, 在各等位基因中,*1 为正常功能等位基因;*2 和*3 为功能缺陷型等位基因(其在亚洲人群中突变频率分别为30%~50%和5%~10%);*17 是功能增强等位基因(其在我国人群中的突变频率为1.2%~3%),携带CYP2C19*2 和*3 等位基因者为CYP2C19 慢代谢型,此类人群氯吡格雷体内活化速率降低、活性代谢产物减少、抗血小板活性降低。Meta 分析的结果表明,在服用氯吡格雷的患者中,携带1~2 个CYP2C19 功能缺陷型等位基因的患者发生不良临床事件的危险性可能会增加55~76%[2]。

建议(1)基因多态性所致血小板反应性差异对个体临床结果的影响尚不能肯定,不推荐常规进行CYP2C19基因型检测。(2)这些个体化用药建议主要用于行PCI 的ACS 患者。目前还没有数据支持CYP2C19基因型检测用于其他场合的用药指导[3]。 常用经由CYP2C19代谢的药物: ①质子泵抑制剂:奥美拉唑、兰索拉唑、泮托拉唑、雷贝拉唑 ②抗抑郁药:氟西汀、西酞普兰、艾司西酞普兰 ③抗癫痫药:丙戊酸钠、苯妥英钠、苯巴比妥、地西泮 ④其他:伏立康唑、利福平 [1]张丽娜,王浩然,丁虎,等.氯吡格雷吸收和代谢通路相关基因变异与临床个体化用药实践.分子诊断与治疗杂志,2013,5(5):289-294 [2]刘俊,朱艳虹,栾佳杰,等.基因型检测在氯吡格雷个体化抗血小板治疗中的应用价值.中国药房,2014,25(12):1097-1098. [3]钟诗龙,韩雅玲,陈纪言,等.氯吡格雷抗血小板治疗个体化用药基因型检测指南解读.中国实用内科杂志,2015,35(1):38-41

2013年版华法林抗凝治疗的中国专家共识

由中华医学会心血管病学分会、中国老年学学会心脑血管病专业委员会共同制定的《华法林抗凝治疗的中国专家共识》于近日发布在2013年52卷第1期《中华内科杂志》上。详细内容见下: 华法林抗凝治疗的中国专家共识 中国医学会心血管病学分会中国老年学学会心脑血管病专业委员会 血栓栓塞性疾病的长期抗凝治疗一直是临床中的重要问题。尽管新型抗凝药物研发取得了重要的进展,并已经或即将上市,但是华法林作为最古老的口服抗凝药物仍然是需要长期抗凝治疗患者的最常用药物,包括静脉血栓栓塞性疾病(VTE)的一级和二级预防、心房颤动(房颤)血栓栓塞的预防、瓣膜病、人工瓣膜臵换术和心腔内血栓形成等[1。华法林在上述领域积累了大量的临床证据,目前全球有数百万患者在使用华法林。非瓣膜病心房颤动研究荟萃分析显示[2],华法林可使卒中的相对危险度降低64%,全因死亡率显著降低26%。但是,华法林在中国的使用率非常低,在房颤患者中不超过10%[3]。导致华法林在临床中治疗率较低的原因包括:治疗窗窄、剂量变异性大、与其他药物及食物相互作用、需要实验室监测等。但是,更重要的原因是临床医生往往高估了华法林的出血危险,而对华法林抗凝作用的重要性认识不足。由于特殊的药理特性使得华法林的使用具有很多特殊性。国内临床医生对于如何应用华法林存在很多顾虑和误区,例如,如何选择适应证、平衡获益和风险、剂量的选择与调整、国际标准化比值(INR)异常升高的处理、如何处理与抗血小板药联合使用以及围手术期的处理等实际问题。为此,中华医学会心血管病分会与中国老年学学会心脑血管病专业委员会组织制订了本共识,以推广和规范华法林的使用,降低血栓栓塞性疾病的致死率和致残率。 一、华法林的药理作用机制 凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ需经过γ-羧化后才能具有生物活性,而这一过程需要维生素K参与。华法林是一种双香豆素衍生物,通过抑制维生素K及其2,3-环氧化物(维生素K环氧化物)的相互转化而发挥抗凝作用(图1)[1]。羧基化能够促进凝血因子结合到磷脂表面,进而加速血液凝固;而华法林抑制羧基化过程。此外,华法林还因可抑制抗凝蛋白调节素C和S的羧化作用而具促凝血作 拮抗。香豆素类药物还可以干扰在骨组织用。华法林的抗凝作用能被维生素K 1 中合成的谷氨酸残基的羧化作用,孕期服用华法林可能导致胎儿骨质异常。 二 .华法林的药物动力学及药代学 华法林是两种不同活性的消旋异构体R和S型异构体的混合物(图1)。华法林经胃肠道迅速吸收,生物利用度高,口服90分钟后血药浓度达峰值,半衰期36~42小时,在血液循环中与血浆蛋白结合(主要是白蛋白),在肝脏中两种

药物基因检测位点及意义

药物基因检测位点及意义

检测项目名称基因位点检测意义 氯吡格雷01CYP2C19*2(G >A) 细胞色素氧化酶 2C19*2型,代谢酶 预测氯吡格雷抵 抗风险,给出个体 合适剂量,提高氯 吡格雷疗效,降低 无效用药风险。 氯吡格雷为前药, 体外无活性,口服 经肠(ABCB1)吸 收,入肝脏,经肝药 酶CYP2C19*2、 *3、*17代谢激活, 其活性代谢产物, 再经过PON1激 活,才能发挥抗血 小板的功效。 CYP2C19*2、*3、 *17及PON1酶活 性决定了氯吡格 雷的疗效。 其中, CYP2C19*17突变02CYP2C19*3(G >A) 细胞色素氧化酶 2C19*3型,代谢酶 60CYP2C19*17(C >T) 细胞色素氧化酶 2C19*17型,代谢 酶 152PON1(A>G) 对氧磷酶1,代谢 酶

后,氯吡格雷活性增强,敏感度高,出血风险高,需高度关注出血风险,尤其是蛛网膜下腔出血。 氯吡格雷简化版(只测两个位点)01CYP2C19*2(G >A) 细胞色素氧化酶 2C19*2型, 代谢酶 仅仅判断氯吡格 雷抵抗风险,只能 测出部分抵抗患 者,会有漏检,且 不能判断出血风 险。 02CYP2C19*3(G >A) 细胞色素氧化酶 2C19*3型, 代谢酶 华法林69VKORC1(1639 G>A) 维生素K环氧化 物还原酶复合物1 亚单位,靶点 华法林经CYP2C9 代谢后失活,基因 突变者导致该药 在体内蓄积,应减 量;VKORC1为

12CYP2C9*3(107 5A>C) 细胞色素氧化酶2C9*3型,代谢酶华法林作用靶点,基因突变者,对华法林敏感性增加,应减量。VKORC1 CYP2C9用于起始剂量和维持剂量的计算,起始剂量给药五天后,转入维持剂量微调。缩短调药时间,降低血栓和出血等不良反应发生。 阿司匹林106PEAR1(G>A)PEAR1 :GG等位基因对阿司匹林抗血小板应答好;AA\AG基因型,用阿司匹林(或结合氯吡格雷),PCI患者,心梗和死亡率高。预测疗效,给出个

CYP2C9和VKORC1基因多态性与华法林个体化用药的临床研究

CYP2C9和VKORC1基因多态性与华法林个体化用药的临床研究 摘要目的探讨细胞色素P450同工酶2C9(CYP2C9)及维生素K环氧化物还原酶复合体亚单位1(VKORC1)基因多态性对华法林个体化用药的影响。方法110例临床初次和维持口服华法林抗凝治疗的患者,记录患者的年龄、性别、身高、体重和服用华法林5~7 d后每次国际标准化比值(INR)的测定值,INR达到目标值时华法林的总用量以及华法林的日均用量。同时检测CYP2C9 *1、*2、*3位点和VKORC1-1639 AA、AG、GG位点基因型。结果对于初次口服华法林的患者,CYP2C9 *2或*3 基因型患者在抗凝治疗初期易发生INR 值超过治疗窗(INR>3.0);而VKORC1-1639 AG或GG基因型患者INR达标时间明显延长,并且INR达标时所服用的华法林总剂量和日均剂量均高于AA基因型患者。结论CYP2C9和VKORC1基因检测对于指导患者华法林的个体化用药具有一定的临床意义。 关键词华法林;个体化用药;基因多态性;细胞色素P450同工酶2C9;维生素K环氧化物还原酶复合体亚单位1 华法林在血栓性疾病的抗凝治疗中发挥着重要作用,但是华法林的应用剂量个体差异大,为达到相同的抗凝效果,不同个体所需华法林剂量甚至可以相差20余倍。目前绝大多数临床医生在使用过程中需要反复抽取静脉血化验,根据INR的结果调整华法林剂量。遗传因素是造成其剂量个体差异的主要原因之一[1]。近年来的研究发现,华法林的代谢酶CYP2C9和华法林的作用靶点VKORC1的基因多态性是造成不同个体间华法林剂量差异的重要原因[2]。本研究通过检测患者的CYP2C9和VKORC1基因情况,了解不同的基因型与华法林用药量的关系。现报告如下。 1 资料与方法 1. 1 一般资料110例研究病例均为2012年1月~2013年12月在郑州大学附属郑州中心医院心内科就诊的心房颤动、换瓣术后、肺栓塞和下肢静脉血栓的患者,资料按时间顺序收集。入选患者均签署知情同意书。其中男47例,女63例,年龄28~81岁,平均身高(170±11.7)cm,平均体重(67.6±8.8)kg。排除标准:既往曾有颅内出血、恶性肿瘤、严重肝肾功能异常。 1. 2 药品与设备华法林片(上海信谊制药公司生产,规格 2.5 mg/片)。DNA 提取试剂盒由北京Promega生物技术有限公司提供。DNA测序仪为QIAGEN PyroMark Q24 焦磷酸测序仪。聚合酶链式反应(PCR)试剂由大连宝生物技术有限公司提供。PCR反应在Eppendorf 5331型热循环仪上进行。 1. 3 血样采集在患者知情同意下,采集其外周血5 ml,在-20℃条件下保存。 1. 4 观察指标①记录入选患者的年龄、身高、体重、INR基础值和服用华

基因检测与用药

基因与用药指导新用药时代 科学的发展让许多不可能变为了可能,攀月登空,潜海游龙。如今我们身边充斥着诸多高 科技的元素,基因——DNA更是这其中耀眼的明星。日常我们听到的转基因大豆、转基因 动物、DNA眼霜。这些看似高科技外衣下的产品,使我们越来越习惯于听说基因的消息, 那基因DNA到底离我们有多远呢? 平日老百姓生活最普通的一部分,感冒发烧,到医院拿点药,或者干脆自己到药店买点儿 药。好了也便好了,不好只能归咎于“病毒性的”。遇到大病,医生幵药也是按照常规处 方,摸着石头过河。患者更是糊里糊涂,听大夫的便是。至于好不好,好到什么程度,那 只能说个人差异了。 岂不知,这差异就体现在基因上,而这吃药也是有讲究的。我们的基因决定了我们吃什么 药管用,吃什么药不管用。正确合理的用药是未来个体化医疗的重要组成部分。据世界卫 生组织统计,全球死亡患者中,1/3是死于不合理用药,而非死于自然疾病本身。 “基因指导用药”这个概念并不等同于一般意义上的“抗生素耐药”。后者是针对侵害人体的细菌而言,抗生素是一类能够破坏细菌生理结构或生长代谢的物质。 细菌通过不断的优胜劣汰以抗拒抗生素对它们的杀灭,导致耐药菌株队伍不断壮大,这导致了细菌耐药性的出现,并且这种耐药形势在抗生素滥用的情况下不断恶化,以至于出现 了“超级病菌”。 “基因指导用药”则是针对我们每个人先天的遗传基因而言,在一般情况下,基因是伴随 我们一生不变的,上面提到医生常规用药,同样的病、同样剂量的药,不同患者服用后疗 效可能大相径庭,比如:高血压,据不完全统计,我国现有高血压病人约2亿。高血压是心肌梗死、脑卒中发病的重要危险因素,高血压每年在全球造成的死亡超过700万人,也就是每分钟约有13个人因高血压而与世长辞。很多高血压患者有过用药、疗效不佳、换药的经历。为什么同是高血压,同样的药却结果不一样呢?答案是:基因。基因决定了一 个人吃何种药有效、吃何沖药无效,甚至有不良反 应。根据现有研究表明,部分抗高血压的药物降压疗效及不良反应的个体差异主要是因为 相关药物的代谢酶、转运体和受体的基因多态性所致。临床常用抗高血压药物包括利尿剂、13-受体阻滞剂(如美托洛尔、卡维地洛等)、钙离子拮抗剂、血管紧张素转换酶抑制剂(ACE-I)、血管紧张素受体拮抗剂(ARB)等,其中大部分抗高血压药物可能因为基因多态性差异,致使不同患者个体间出现降压效应的差异。 患者当发现患上高血压时,应到相关医院咨询,医生幵具化验单检测上述基因,并在医生 指导下合理选择药物,进行有针对性的用药,以免贻误病情或造成不必要的经济损失。 另一个重要的基因指导药物的代表是硝酸甘油。硝酸甘油用于心绞痛的治疗及预防,主要 通过生成一氧化氮(NO)而起血管扩张作用。ALDH2 (线粒体乙醛脱氢酶2)是使硝酸甘油生

氯吡格雷和华法林代谢相关基因多态性检测及临床.doc

检验通讯第60期 北京积水潭医院检验科主办2017年4月 氯吡格雷和华法林代谢相关基因多态性检测及临床应用 一、概述 氯吡格雷是心血管疾病中广泛用于抗血小板的药物。多项研究表明,CYP2C19*2效用缺失型突变在亚洲人种出现频率约为29%-35%,而CYP2C19*3出现频率约为2%-9%,均高于白种人和非洲人。FDA建议,临床医生在使用氯吡格雷前应检测患者的CYP2C19基因型,对已证实的氯吡格雷代谢不良者应考虑增加剂量,或使用其他抗血小板药物。 华法林是一种双香豆素衍生物,是目前临床上应用最广泛的口服抗凝药物之一,用于预防和治疗深静脉血栓、肺栓塞、心脏瓣膜置换术及房颤导致的血栓形成。华法林治疗窗较窄,很小的剂量都可能导致不良反应的发生,且在不同个体达到相同作用效果,高低剂量者之间可相差10倍以上。CYP2C9基因多态性对华法林剂量影响较大。VKORC1是维生素K循环中的关键酶,华法林因抑制该酶而阻断维生素K以辅因子形式参与羧化酶的催化反应,抑制了凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ的效用活性,从而产生抗凝作用。FDA指出:在使用华法林时,建议检测CYP2C9和VKORC1基因型。 二、检测方法 图1、焦磷酸测序检测原理 本实验室采用“PCR-焦磷酸测序法”进行该项目的检测。本法是由4种酶催化的同一反应体系中的酶级联化学发光反应。实验时,一条生物素标记的测序引物与单链模板DNA退火后,在DNA聚合酶、A TP硫酸化酶、荧光素酶和三磷酸腺苷双磷酸酶4种酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号的释放偶联起来,通过检测荧光的释放和强度,达到实时测定DNA序列的目的。判读结果时,根据荧光信号峰图读取核苷酸序列。焦磷酸测序具有检测速度快、特异性好的特点,比对试验中,与“金标准”的Sanger测序符合率100%。 三、临床应用 1、CYP2C19*2和CYP2C19*3多态性检测 CYP2C19参与氯吡格雷、S-美芬妥英、奥美拉唑、伏立康唑、安定、去甲安定等药物的代谢。CYP2C19遗传变异可导致酶活性的个体差异,使人群出现超快代谢者(UM)、快代谢者(EM)、中间代谢者(IM)和慢代谢者(PM)4种表型(表1)。 表1.CYP2C19基因型与代谢类型 代谢类型基因型 测序检测结果 CYP2C19*2 (G681A) CYP2C19*3 (G636A) 超快代谢UM *17/*17 (*17位点暂不开展检测) 快代谢EM *1/*1 GG GG 中代谢IM *1/*2 *1/*3 GA GG GG GA 慢代谢PM *2/*2 *2/*3 *3/*3 AA GA GG GG GA AA 氯吡格雷是一种抗血小板药物,广泛用于急性冠脉综合征、缺血性脑血栓、闭塞性脉管炎和动脉硬化及血栓栓塞引起的并发症。心脏支架手术后的患者需长期服用氯吡格雷以防止支架内再梗。氯吡格雷主要经CYP2C19代谢活化后发挥抗血小板效应。CYP2C19 PM患者应用常规剂量的氯吡格雷后体内活性代谢物生产减少,对血小板的抑制作用下降。美国FDA和美国心脏病学会建议,对于CYP2C19慢代谢基因型患者需考虑改变治疗方案,具体意见为:CYP2C19*1/*1基因型个体应用氯吡格雷有效,可常规使用;CYP2C19*2或*3基因型个体对氯吡格雷疗效降低,建议更换成普拉格雷或替卡格雷;CYP2C19*2或*3突变型纯合子个体应用氯吡格雷效果差,建议换

相关主题
文本预览
相关文档 最新文档