【学案】人教版数学九年级下册27.2.3 相似三角形的应用举例
- 格式:doc
- 大小:1.07 MB
- 文档页数:3
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。
通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。
但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。
因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.培养学生的逻辑思维能力和空间想象能力。
3.增强学生对数学学科的兴趣和自信心。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。
2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。
六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。
2.准备多媒体课件,展示实际问题及解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。
从而引出本节课的主题——相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。
请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计2一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》是本节课的主要内容。
相似三角形在实际生活中的应用非常广泛,是解决实际问题的重要工具。
本节课通过具体的例子让学生了解相似三角形的性质,学会运用相似三角形解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的定义和性质,具备了一定的数学思维能力。
但部分学生在解决实际问题时,仍存在运用不当的情况,需要通过本节课的学习加以巩固。
三. 教学目标1.理解相似三角形的性质,并能够运用到实际问题中。
2.培养学生的数学思维能力和解决问题的能力。
3.提高学生对数学的兴趣,增强学生的自信心。
四. 教学重难点1.掌握相似三角形的性质。
2.学会如何运用相似三角形解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形的性质。
2.通过具体的例子,让学生学会运用相似三角形解决实际问题。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学PPT,展示具体的例子。
2.准备一些实际问题,用于课堂练习。
3.准备黑板,用于板书。
七. 教学过程1.导入(5分钟)利用一个实际问题引入本节课的主题,引导学生思考如何运用相似三角形解决问题。
2.呈现(15分钟)通过PPT展示相似三角形的性质,让学生了解相似三角形的定义和性质。
3.操练(20分钟)让学生分组讨论,尝试解决一些实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)对学生的解答进行讲评,引导学生总结相似三角形的性质和解决实际问题的方法。
5.拓展(10分钟)给学生一些较复杂的问题,让学生尝试解决。
教师提供必要的指导。
6.小结(5分钟)对本节课的内容进行总结,强调相似三角形的性质和解决实际问题的方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)教师在黑板上板书相似三角形的性质和解决实际问题的方法。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教案1一. 教材分析《相似三角形应用举例》是人教版九年级数学下册第27章的一部分。
本节内容主要通过具体的例子来介绍相似三角形的应用,帮助学生理解和掌握相似三角形的性质和应用。
教材通过丰富的例题和练习题,使学生能够将相似三角形的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析九年级的学生已经学习了一定程度的代数和几何知识,对相似三角形的性质有一定的了解。
但是,学生可能对相似三角形在实际问题中的应用还不够熟悉。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握相似三角形的应用。
三. 教学目标1.理解相似三角形的性质。
2.能够运用相似三角形解决实际问题。
3.提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:相似三角形的性质和应用。
2.难点:如何将相似三角形的知识应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际问题,引导学生理解和掌握相似三角形的应用。
同时,运用小组合作和讨论的方式,激发学生的学习兴趣,提高学生的参与度。
六. 教学准备1.准备相关的例题和练习题。
2.准备教学PPT或者黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容。
例如,一个梯形的对角线长度分别为8cm和12cm,求梯形的面积。
让学生尝试解决这个问题,从而引出相似三角形的性质和应用。
2.呈现(15分钟)通过PPT或者黑板,呈现相似三角形的性质和应用的例题。
例如,两个相似三角形的边长比例为2:3,求这两个三角形的面积比例。
引导学生观察和分析例题,理解相似三角形的性质。
3.操练(15分钟)让学生分组合作,解决一些类似的实际问题。
例如,两个相似三角形的边长比例为3:4,求这两个三角形的面积比例。
通过小组合作和讨论,引导学生运用相似三角形的性质解决问题。
4.巩固(10分钟)提供一些练习题,让学生独立完成。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教案3一. 教材分析《人教版九年级数学下册》第27.2.3节《相似三角形应用举例》主要让学生掌握相似三角形的性质及其应用。
通过本节课的学习,学生能够解决一些与相似三角形有关的生活问题,提高他们的数学应用能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对本节课的内容有了一定的了解。
但在实际应用中,部分学生可能对如何运用相似三角形的性质解决问题还不够熟练。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高他们的解题能力。
三. 教学目标1.理解相似三角形的性质及其应用。
2.能够运用相似三角形解决实际问题。
3.提高学生的数学应用能力和解决问题的能力。
四. 教学重难点1.重点:相似三角形的性质及其应用。
2.难点:如何将实际问题转化为相似三角形问题,并运用性质解决问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究相似三角形的性质及其应用。
2.通过实例分析,让学生了解相似三角形在实际问题中的应用。
3.运用小组讨论法,培养学生合作解决问题的能力。
六. 教学准备1.准备相关的生活实例和练习题。
2.准备课件,用于展示相似三角形的性质和应用。
七. 教学过程1.导入(5分钟)利用一个实际问题引入本节课的主题,如:“在修建桥梁时,为什么要使桥的两侧三角形相似?”引导学生思考相似三角形的性质及其应用。
2.呈现(10分钟)通过课件展示相似三角形的性质,引导学生回顾已学的知识。
然后,给出一个具体的实例,如:“一个正三角形被分成四个小正三角形,求大三角形的面积。
”让学生尝试运用相似三角形的性质解决问题。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用相似三角形的性质进行计算。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)选取一些类似的题目,让学生独立完成。
教师及时给予反馈,巩固学生对相似三角形性质的理解。
5.拓展(10分钟)给出一些与相似三角形有关的实际问题,让学生小组讨论,尝试运用所学知识解决问题。
第 1 页 共 3 页
27.2.3 相似三角形的应用举例
〔学习设计〕
学习过程 设计意图说明
新课引入: 1. 复习相似三角形的定义及相似三角形相似比的定义 2. 回顾相似三角形的概念及判定方法
以旧引新,帮助学生
建立新旧知识间的
联系。
提出问题: 利用三角形的相似,如何解决一些不能直接测量的物体的长度的问题?(学生小组讨论) ↓ “相似三角形对应边的比相等”四条对应边中若已知三条则可求第四条。 一试牛刀: 例3:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。 如图27.2-8,如果木杆EF长2m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO。 分析:BF∥ED∠BAO=∠EDF 又∠AOB=∠DFE=900 ∆ABO∽∆DEFBOOAEFFD20123BO 二试牛刀: 例4:如图27.2-9,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R。如果测得QS=45 m,ST=90 m,QR=60 m,求河的宽度PQ。
让学生了解:利用三
角形的相似可以解
决一些不能直接测
量的物体的长度的
问题。
通过解决“泰勒斯测
量金字塔的高度”问
题,培养学生学习数
学的兴趣,让学生在
浓厚的数学文化熏
陶中探究解决问题
的方法。
O
B
A(F)
E
D
第 2 页 共 3 页
分析:∠PQR=∠PST=900,∠P=∠P ∆PQR∽∆PST 81.66.45121.610.4FHFH,即PQQRPQQSST,604590PQPQ, 90(45)60PQPQ。解得PQ=90 三试牛刀: 例5:已知左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵树的一条水平直路L从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C? 分析:,ABlCDlAB∥CD,∆AFH∽∆CFK。 FHAHFKCK,即81.66.45121.610.4FHFH,解得FH=8。
让学生在解决实际
问题的过程中学会
建立数学模型,通过
建模培养学生的归
纳能力。
数学建模的关键是
把生活中的实际问
题转化为数学问题,
转化的方法之一是
画数学示意图,在画
图的过程中可以逐
渐明问题中的数量
关系与位置关系,进
而形成解题思路。
a
b
R
Q
P
S
T
第 3 页 共 3 页
运用提高: 1. P41练习题1 2.P41练习题2 让学生在练习中熟悉利用三角形
的相似去解决一些
不能直接测量的物
体的长度的问题。
课堂小结:说说你在本节课的收获. 让学生及时回顾整
理本节课所学的知
识。
布置作业: P43习题27·2题8,9,10. 备选题: 已知零件的外径为25cm,要求它的厚度x,需先求出它的内孔直径AB,现用一个交叉卡钳(AC和BD的长相等)去量(如图),若OA:OC=OB:OD=3,CD=7cm。求此零件的厚度x。 分层次布置作
业,让不同的学生在
本节课中都有收获。
备选题答案:
x=2